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Abstract
In this tutorial review, we provide a guiding reference on the good practice in building calibration and correlation experi-
ments, and we explain how the results should be evaluated and interpreted. The review centers on calibration experiments 
where the relationship between response and concentration is expected to be linear, although certain of the described prin-
ciples of good practice can be applied to non-linear systems, as well. Furthermore, it gives prominence to the meaning and 
correct interpretation of some of the statistical terms commonly associated with calibration and regression. To reach a mutual 
understanding in this significant field, we present, through a practical example, a step-by-step procedure, which deals with 
typical challenges related to linearity and outlier assessment, calculation of the associated error of the predicted concentra-
tion, and limits of detection. The utilization of regression lines to compare analytical methods is also elaborated. The results 
of regression and correlation data are acquired by implementing the Excel spreadsheet of Microsoft, being perhaps one of 
the most widely used user-friendly software in education and research.

Keywords Linearity assessment · Outliers · Error of predicted concentrations · Correlation and agreement · Standard 
addition · Practical example

Introduction

Regression and correlation are the most used techniques 
for investigating the relationship between two quantitative 
variables [1, 2]. There is, though, a key difference between 
them; regression is how one variable affects another and 
correlation measures the degree of a relationship between 
two independent variables (x and y). A good example of 
regression analysis is the construction of an analytical cali-
bration curve, where the instrument response (the depend-
ent variable) depends upon the concentration of the analyte 
(independent variable). In other words, if someone aims to 
analyze the effect of how an independent variable is numeri-
cally associated with a dependent variable, then the use of 
regression is mandatory [3]. The ultimate goal of calibra-
tion involves the prediction of the concentration of an ana-
lyte from a single instrumental response after setting up the 
above relationship between the values of known samples 

(i.e., standards with known amounts of analyte present) 
and instrument responses. Calibration curves (or graphs or 
plots) are the bread and butter of analytical chemistry, and 
their examination is an important step in any method valida-
tion or application.

Although the common name of the resulting plot is 
“calibration curve,” analytical chemistry researchers, typi-
cally, attempt fitting a linear function. Calibration, typically, 
involves the proper preparation of a set of standards contain-
ing a known amount of the analyte of interest, measurement 
of the instrument response for each standard, and establish-
ment of the relationship between them. Based on a certain 
number of measurements of standards, two fitting techniques 
for the linear regression model can be established to set up 
the calibration curve and estimate the slope and the inter-
cept of a linear calibration model: the ordinary least-squares 
(OLS) and weighted least-squares (WLS) [4, 5]. The testing 
of the reported linearity of a calibration curve should be 
an everyday task in routine analytical operations. While a 
great deal of effort is put in the selection and calibration of 
an analytical instrument, the choices behind curve calcula-
tion are usually overlooked. However, neglecting the con-
sideration of statistics of calibration can lead to unfortunate 
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conclusions as there is no advanced instrumentation or 
additional measurements that can rescue sound data from 
an erroneously built calibration curve. A calibration curve 
should either confirm the analyte–response relationship or 
raise an alert of the presence of a problem, which should 
properly be addressed.

Critical to the success of calibration and correlation is the 
understanding of the limitations and statistics used to set up 
a curve. The aim of this tutorial review is to provide a good 
practice guide in building calibration and correlation experi-
ments and to explain how the results should be evaluated and 
interpreted. It centers on calibration experiments where the 
relationship between response and concentration is expected 
to be linear, although many of the principles of good practice 
described can be applied to non-linear systems, as well. First, 
we provide a general-case argument for the minimum num-
ber of standards required by regulatory guidance. Then, we 
examine the poor success rate of simple outlier detection in 
calibration curves using equidistant (linear) and logarithmic 
scale standard spacing, as well as we look into the significant 
risks associated with extrapolating the curve (where appro-
priate) beyond the linear response region. To enhance the 
understanding of this significant field, we present, through 
a practical example,  a step-by-step procedure dealing with 
typical challenges related to regression, outlier assessment, 
procedures for linearity testing, calculation of the associated 
error of the predicted concentration and the limits of detec-
tion. The utilization of the concepts of correlation and agree-
ment to compare analytical methods is also elaborated. The 
regression data results are acquired by utilizing the Excel 
spreadsheet of Microsoft, being perhaps one of the most 
widely used user-friendly software in educational settings.

Handling calibration data sets

One of the first questions analysts often ask is: “How many 
calibration standards do we need to measure and what is 
the number of replicates at each calibration level?” Before 
answering this question, the purpose of the calibration 
experiment must be defined. It is necessary to make a dis-
tinction between the calibration of a measurement system 
and the check of the validity of the calibration of a measure-
ment system. To minimize the risk of error associated with 
improper calibration of a measurement system, international 
guidance dictates a minimum number of calibrators and 
the threshold at which a measurement becomes an outlier. 
Regulatory guidance provides the minimum required num-
ber of standards to establish the calibration curve. For an 
assessment of the calibration function, as part of a method 
validation, for example, standards with at least seven differ-
ent concentrations should be included. The EURACHEM 
Guide “The Fitness for Purpose of Analytical Methods” and 

the draft guidance from the USFDA mandate a minimum 
of seven calibration standards—six plus zero concentration 
standards—to perform the calibration [6, 7]. Other docu-
ments lay down a different number of calibration levels. For 
example, ISO standard 15,302:2007 specifies four calibra-
tion levels and Commission Decision 2002/657/EC stipu-
lates at least five concentration levels (including blank) for 
the construction of a calibration curve [8], as a minimum 
requirement for an assessment of the calibration function. 
ISO standard 8466–1:1990 demands ten calibration levels 
[9]. However, these requirements do not explain why the 
curve should be drawn with this number of points and not 
with more or less than that. The sample with zero analyte 
concentration should definitely be included as it allows us to 
gain better insight into the region of low analyte concentra-
tions and detection capabilities.

The design of calibration experiments and the number 
of calibration levels depend very much not only on the pur-
pose of the experiment but also on the existing knowledge. 
Less knowledge about the shape of the calibration func-
tions requires performing initial assessment measurements 
on more concentration levels. Ideally, the calibration range 
should be drawn so that the concentrations of the analyte 
in the test samples fall in the center of the range, where the 
uncertainty associated with the predicted concentrations is 
minimized. It is also useful to make at least triplicate inde-
pendent measurements at each concentration level, particu-
larly at the method validation stage, as it allows the precision 
of the calibration process to be evaluated, at each concentra-
tion level. Analyte calibration solutions should be prepared 
from a pure substance with a known purity value or a solu-
tion of a substance with a known concentration.

The standard concentrations should not only cover the 
range of concentrations encountered during the analysis of 
test samples but also, they should be evenly spaced across 
the range (for wide calibration ranges, partial arithmetic 
series could be considered). However, the risk of leverage 
arises from the introduction of error into the measurement 
in the calculated curve, even in the absence of an outlier 
(vide infra). Leverage can be a concern if one or two of the 
calibration points are far from the others along the x-axis 
(near the ends of a calibration curve), where any error has 
a disproportionate effect on the curve. Even if these points 
are not outliers, they may have a leverage to a certain degree. 
In other words, a relatively small error in the measured 
response will have a significant effect on the position of the 
regression line. Often, this situation arises when calibration 
standards are prepared by sequential dilution of solutions. 
The procedure frequently employed in the preparation of 
calibration standards is to prepare the most concentrated 
standard and then dilute it by, say, 50%, to obtain the next 
standard. This standard is subsequently diluted by 50% and 
so on (e.g., 64 μg  L−1, 32 μg  L−1, 16 μg  L−1, 8 μg  L−1, 4 μg 
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 L−1, 2 μg  L−1). This procedure is not recommended as, in 
addition to the lack of independence, the standard concen-
trations will not be evenly spaced across the concentration 
range, leading to a leverage (e.g., the concentration of 64 μg 
 L−1 in Fig. 1). As a result, the calculated slope and intercept 
might be disproportionally affected by that data point.

Linearity in calibration and its 
misinterpretation

Linearity is an important feature for any analytical method. 
If the calibration function is linear, then, the estimation of 
the equation is easier and errors in estimating the concen-
trations of unknown samples from the calibration equation 
are likely to be smaller. The correlation coefficient (r) of 
a calibration graph or the R-squared (R2) or coefficient of 
determination is usually employed as an indicator of linear-
ity, by inspecting its closeness to 1. Strictly speaking, r is a 
measure of the relationship between two variables x and y. 
Its use in calibration, though, is based on a widespread mis-
understanding; if the calibration points are clustered around 
a straight line (and this is not the unique case), the experi-
mental value of r will be close to unity. However, the oppo-
site is not true. The International Union of Pure and Applied 
Chemistry (IUPAC) discourages the use of r to assume lin-
earity in the relationship between concentration and analyti-
cal response. This is expressed by the excerpt from Ref. [4]: 
“... the correlation coefficient, which is a measure of the 
relationship of two random variables, has no meaning in 
calibration...” Furthermore, when a new analytical method is 
developed, the guide for authors of the Journal of Chroma-
tography Α explicitly states that “claims of linearity should 
be supported by regression data that include slope, intercept, 
standard deviations of the slope and intercept, standard error 
and the number of data points; correlation coefficients are 
optional.” That is, the criterion of r to provide a measure of 
the degree of linear association between concentration and 
signal is weak.

In view of the above, the perception of linearity based on 
the criterion of correlation coefficient has been overturned by 
relevant statistical tests, in the last years. The assessment of the 
linearity can be carried out by resorting to the analysis of vari-
ance (ANOVA) of the calibration data [10]. In this methodol-
ogy, a comparison of the so-called lack-of-fit (LOF) variance 
with the squared pure error is made through an F-test (See the 
“Practical example” and “Procedures for linearity assessment” 
section); however, it is essential to consider the error com-
ponents of the regression. The prediction error for each data 
point can be measured as the difference between the observed 
response ( yij ) and the predicted response ( ̂yij ), i.e., yij − ŷij . To 
assess the overall prediction error, we calculate this difference 
for every data point, square it, and then sum all these squared 
differences, resulting in a term known as the “sum of squares of 
the residuals  (SSRES).” The degrees of freedom (d.f.) associated 
with  SSRES is [p (concentration levels) × n (replicates)] − 2 since 
we estimate the slope and the intercept (i.e., two parameters).

This residual error,  SSRES, can be decomposed into two 
constituent components: the “sum of squares for lack of fit 
 (SSLOF)” and the “sum of squares for pure error  SSPE,” e.g., 
 SSRES =  SSLOF +  SSPE (Fig. 2).

When a line effectively fits the data, it implies that the 
average of observed responses yi at each x-value closely 
aligns with the predicted response ( ŷij), for that specific 
x-value. Consequently, to assess the extent to which the 
overall error arises from model inadequacy, we gauge the 
deviation between the average observed response at each 
x-value and the predicted response for each data point, i.e., 
yi − ŷij (Fig. 2). To measure the complete lack of fit of the 
model, we calculate this distance for every calibration point, 
square it, and sum all these squared differences to obtain the 
 SSLOF (associated with p-2 degrees of freedom).

To assess the portion of the overall error attributed solely 
to random fluctuations, we examine the extent to which each 
observed response ( yij ) deviates from the average observed 
response ( yi ) at each corresponding concentration (x-value), 
i.e., yij − yi . Similarly, the total pure error is calculated by 
summing the squared differences for each calibration point 
to get the  SSPE (p × n − p d.f.). When the respective sum of 
squares is divided by their associated degrees of freedom, 
the mean squares (MS) are obtained. It is those mean squares 
from which we can calculate the F-statistic, as follows:

It is advisable that readers, for further reading, peruse 
the excellent brief reports edited by the Analytical Methods 
Committee of the Royal Society of Chemistry [11] and the 
textbook “Calibration and Validation of Analytical Methods” 
edited by Mark T. Stauffer [12], which seek to introduce the 
readers to current methodologies of analytical calibration.

F =
MS(LOF)

MS(PURE ERROR)
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Fig. 1  Leverage due to uneven distribution of the calibration standards
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Ηomogeneity and non‑homogeneity 
of variances

Most of the reports in the literature refer to OLS, which 
practically, should be only used when experimental data 
have constant variance (homoscedasticity). In contrast, WLS 
is more appropriate when the variance varies (heterosce-
dasticity) or in other words, when every calibration point 
does not have an equal impact on the regression. There are 
several tests for homogeneity of more than two variances 
[13]. A simple way for testing homoscedasticity is to plot the 
residuals calculated from the straight line obtained by using 
the OLS method. A horizontal band of residuals indicates 
constant variance and unweighted least squares regression 
is recommended. A trumpet-shaped opening toward larger 
values signifies increasing variability as concentration 
increases.

From a practical viewpoint, when a narrow concen-
tration range is considered, the unweighted linear model 
is usually adapted while a larger range may require a 
weighted model. If the weight is estimated incorrectly, 
the calculated estimators of regression coefficients (slope 
and intercept), being sensitive to extreme data points will 
be biased, with a concomitant negative impact on the pre-
dicted concentration intervals for real samples. It is noted 
that ignoring the inhomogeneity of variances will not 
sacrifice much statistical reliability when working in the 
mid-range of the calibration curve. Nonetheless, the WLS 
can reduce the limit of quantification and enable a broader 
linear calibration range with higher accuracy and preci-
sion, especially for bioanalytical methods. Depending on 
the characteristics of the data set, the weighting factors 
can be employed in a number of different ways [14]. The 

incorporation of heteroscedasticity into the calibration 
procedure is recognized by ISO and USFDA; the latter 
recommends that “the simplest model that adequately 
describes the concentration–response relationship should 
be used. Selection of weighting and use of a complex 
regression equation should be justified” [15]. Raposo, 
in his tutorial review, provides an illustrative example 
selected from the literature that best suits the weighting 
approach in calibration [5]. A more detailed examination 
of this topic is beyond the scope of this review.

Non‑linearity

It may be the case that several analytical methods exhibit 
good response over a broad concentration range (i.e., several 
orders of magnitude). Because of this behavior, it is helpful 
to construct a double logarithmic plot based on the raw data. 
Importantly, the resulting plot serves the purpose of proving 
the method response over this broad concentration range but 
not of fitting linear function to the data sets. In other cases, 
non-linear dependence of analytical response on concentra-
tion is likely to appear, for instance, in analytical methods 
based on electrochemistry (Fig. 3). The method that leads 
to such a calibration data set may have unacceptably low 
or very low sensitivity (note the low slope in the concen-
tration range above 10 nM in the raw data calibration plot 
of Fig. 3A). To cope with this situation, some researchers 
choose to tap into the logarithms of concentration values and 
the analytical response (Fig. 3B), thus claiming linearity of 
the method over the extended concentration range. Using 
raw data or data after logarithmic transformation primarily 
depends on analytical principles.

Fig. 2  Error components in 
regression analysis
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Arguably, associating the analytical response with the 
logarithm of concentration in handling calibration data sets 
may not be the best choice, as it can easily lead to mis-
interpretation of the analytical performance. A legitimate 
practice in this case is to consider displaying calibration data 
sets in plots with linear axes (equidistant scale) fitted with 
logarithmic or other nonlinear functions. Nonetheless, when 
the non-linear relationship is fitted for a small number of 
concentration levels this makes the process unreliable. Any 
curve that includes a non-linear response should have suf-
ficient additional points between the upper limit of linearity 
and the upper limit of quantitation to describe the inflec-
tion point. Unless a great number of concentration levels are 
included in the data set, the plateau interval within a fitted 
nonlinear function cannot be used for quantitative analysis.

In 2020, P.L. Urban published a Perspective on the 
dependence between analytical response and logarithm 
of concentration, with the deterring title “Please Avoid 
Plotting Analytical Response against Logarithm of Con-
centration” [16]. The author puts forward a well-argued 
case for proper data treatment, where a non-logarithm of 
concentration is displayed in the x-axis of the calibration 
plot, threatening bad results if someone does not follow 
it. Others, in defense of the application of logarithmically 

transformed data, claim that enzyme-catalyzed reactions 
or electrochemical data in logarithmic form are more 
appropriate for function fitting [17].

Outliers’ assessment in linear regression

An outlier is an experimental measurement that is signifi-
cantly different from the rest of the entire data set. In the 
case of calibration, an outlier appears as a point which is 
well apart from the trend of the other calibration points and 
introduces a leverage or bias into the position of the line. 
Once in the middle of the calibration range, the outlier can 
shift the regression line up or down (Fig. 4A). The slope of 
the line will approximately be correct but the intercept will 
be wrong. In this case, a bias is introduced. An outlier at the 
extremes of the calibration range will change the position 
of the calibration curve by tilting it upwards or downwards 
(Fig. 4B). The outlier is said to have a degree of leverage.

After estimating the regression parameters, the plot 
needs to be examined to identify any data points that devi-
ate significantly from the remaining data set (considering the 
assumption of linear calibration). For this purpose, initially, 
the residuals (yi − ̂y  ) are calculated and graphed against 
their corresponding concentration levels. Two horizontal 
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dotted-dashed lines, representing ± t (0.05, p–2) × Sy/x, are 
utilized to denote the permissible deviation for each individ-
ual point in the residual plot. Any calibration data point(s) 
that lie outside these lines are considered qualitative outliers. 
Details are given in the “Practical example” and “Assess-
ment of outliers” section.

With respect to identifying outliers in the case of fit-
ting curves with nonlinear regression, a method has been 
proposed, which combines robust regression and outlier 
removal [18]. Although this is not an easy task, the analysis 
of simulated data demonstrated that this procedure identified 
outliers from nonlinear curve fits with reasonable power and 
few false positives.

Standard addition(s) method

The use of pure standard solutions to establish the ordi-
nary calibration graph assumes that there is no reduction or 
enhancement of signal by other matrix components of real 
samples. Hence, the so-called direct calibration method of 
analysis can be applied. However, in many areas of analyti-
cal chemistry, this assumption is not valid as matrix effects 
can occur even with methods that have the reputation of 
being relatively free from interferences. A solution to this 
problem is that all the analytical measurements, includ-
ing the construction of the calibration graph, can be per-
formed using the sample itself, thus applying the standard 
addition(s) method. Matrix effects should be ascertained pre-
viously; this can be done by testing the statistical equality 
of the slopes of the lines arising from the direct calibration 
and standard addition methods. If slopes are demonstrated 
to be statistically different at a certain confidence level (and 
the adequate number of degrees of freedom), the use of the 
standard addition method is undoubtedly the most favorable 
choice [19].

Note that sound evidence of linearity of the direct calibra-
tion method is a requisite for the use of the method of stand-
ard addition and the extrapolation involved. Also, standard 
addition cannot be applied if the intercept of the regression 
equation estimated by pure standard solutions in the direct 
calibration method is not zero, or close to zero (the zero-
intercept assumption is seldom plausible). Unless the inter-
cept is zero, the method will show a positive error compared 
with the true concentration of the target in the sample.

Based on the above, once it has been established that the 
linearity of the direct calibration method fits the data, a sta-
tistical test should be carried out for zero intercept (see the 
“Practical example” and “Procedures for linearity assess-
ment” section). This can be judged by inspecting the con-
fidence interval of the intercept a, i.e., a ± t × sa (sa is the 
standard error of a and t the two-tailed Student’s with n–2 
degrees of freedom). If zero value is included within the 

confidence interval ± t × sa, then, the intercept is statistically 
zero. Provided that zero-intercept has been demonstrated, 
the standard addition approach adheres to the following 
procedure: (i) take several portions of the (treated) solu-
tion (six or seven at a minimum) and add a known amount 
of the analyte to each of them; (ii) the amounts added are 
(almost) evenly spaced from zero to maximum. Importantly, 
the total volume of all the treated solutions should be kept 
constant; (iii) the responses are measured, and the original 
concentration is estimated by extrapolation of the line to 
zero response.

Despite its capacity, the implementation of standard addi-
tion implies certain limitations. The extrapolation causes the 
technique to perform poorly in narrow (linear) calibration 
ranges. When carrying out such an experiment it is, there-
fore, recommended to add several times the original analyte 
concentration. Also, extrapolation degrades the precision 
compared with direct calibration where interpolation is 
exploited and hence, the uncertainty is generally increased. 
More details about its application are beyond the scope of 
this review.

Standard deviation vs standard error

From a properly constructed calibration plot, the analyst 
expects that a reliable calculation of the concentration of 
analyte in tested samples can be made. No quantitative result 
is of any value unless it is accompanied by a realistic esti-
mate of uncertainty, i.e., the range within which the true 
value of the quantity being measured should lie. At this 
stage, the residual standard deviation (or error) can be used 
as an estimate of the uncertainty in predicted concentration 
values. This is due to the precision of measurements (as rep-
resented by the residual standard deviation) being an impor-
tant factor in assessing the uncertainty. Additionally, the 
regression model can be employed for estimating the limit 
of detection of the analytical procedure (see the “Practical 
example” and “Calculation of a concentration, its error, and 
the limits of detection” section). Hence, the random errors in 
the slope (Sb) and intercept (Sa) values hold significance (see 
the “Practical example” and “Assessing the scatter plot and 
performing regression analysis” section). “Standard error of 
mean” (SEM) and “standard deviation” (SD) are employed 
in different contexts and have different interpretations and 
calculations; however, they are often confused and misused 
and for this reason, they deserve discussion [20, 21]. The 
SD may be a good estimate of the variability of the popula-
tion from which the data (i.e., the statistical sample) was 
drawn. For normally distributed data, about 99% of them 
will have values which lie within 3 × SD of the mean value 
while the other 1% is scattered above and below these limits. 
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Evidently, in case that widely scattered measurements are to 
be expressed, the standard deviation should be quoted.

As the sample mean varies from statistical sample to sam-
ple in a population, the way this variation occurs is expressed 
by the “sampling distribution of the mean.” Here, the SEM is 
a type of standard deviation, which expresses the precision 
of the sample mean and is calculated by the simple relation:

The SEM is always smaller than the SD; as the sample 
size increases the standard error decreases. From a prac-
tical viewpoint, if the aim is to obtain an insight into the 
uncertainty around the estimate of the mean value of the 
measurements—this is almost invariably the case in ana-
lytical chemistry—reporting the SEM is the most useful 
and reliable way of calculating a confidence interval. For a 
large sample, a 95% confidence interval is obtained as val-
ues of 1.96 × SEM either side of the mean. To report a 95% 
confidence interval instead of a 99% one is only a matter 
of choice, and has become a convention, related to calling 
statistically significant a p-value lower than 0.05. the analyst/
researcher should appreciate that the contrast between these 
two terms reflects the distinction between description statis-
tics (i.e., SD) and inference statistics (i.e., SEM). Standard 
deviation is the degree to which individual values within a 
statistical sample differ from the sample mean. In contrast, 
SEM gauges how close the sample mean is likely to be to 
the population mean.

Finally, in many publications/analytical reports, the 
sign ± is used to join the SD or SEM to an observed mean—
for example, 13.4 ± 2.3 or 13 ± 2. However, this notation 
does not give an indication of whether the second figure is 
the SD or SEM. Analysts/researchers are advised to indicate 
clearly whether standard deviation or standard error is being 
quoted.

Correlation vs agreement

As mentioned above, correlation allows researchers to know 
the association or the absence of a relationship between 
two variables. When these variables are correlated, we can 
measure the strength of their association. Tasks pertinent 
to the correlation in analytical chemistry often involve 
demonstrating a degree of association between analytical 
methods. These may be carried out by investigating a rela-
tionship between a new method and an official/reference/
alternative interference-free method. When researchers 
seek to report this association, correlation or agreement is 
often used. However, the term “correlation” as a synonym of 
“agreement” can be misleading in any field of research [22]. 

SEM = SD∕
√

sample size

This part aims to clarify the definition of these two terms in 
method development.

Correlation coefficient r does not provide any informa-
tion on the agreement between two variables. Under certain 
conditions, the magnitude of r only provides information on 
how close the points lie to the regression line (see above, the 
“Linearity in calibration and its misinterpretation” section). 
The correlation analysis assumes that the distribution of one 
variable does not depend on the other, which is the case 
when comparing two different analytical methods. Also, r 
does not assume normality but it does assume homoscedas-
ticity, i.e., constant variance. Inspection of the available data 

Table 1  Calibration data for Cd determination in natural water

No Cd Conc – μg⋅L−1

(Concentration levels: p = 7)
Absorbance
(Replicates: n = 5)

1 0.000  − 0.001
2 0.000  − 0.002
3 0.000  − 0.001
4 0.000  − 0.001
5 0.000  − 0.002
6 0.980 0.010
7 0.980 0.010
8 0.980 0.009
9 0.980 0.009
10 0.980 0.008
11 2.030 0.020
12 2.030 0.022
13 2.030 0.020
14 2.030 0.020
15 2.030 0.021
16 3.010 0.030
17 3.010 0.032
18 3.010 0.033
19 3.010 0.032
20 3.010 0.031
21 4.005 0.043
22 4.005 0.042
23 4.005 0.044
24 4.005 0.045
25 4.005 0.044
26 5.005 0.053
27 5.005 0.053
28 5.005 0.055
29 5.005 0.055
30 5.005 0.054
31 6.000 0.065
32 6.000 0.066
33 6.000 0.066
34 6.000 0.065
35 6.000 0.064
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can reveal whether the correlation is linear or non-linear. In 
this context, a scatterplot of data should always be the first 
step before interpreting a correlation coefficient, to avoid 
incorrect assumptions about the relationship between the 
variables of interest.

When calculating r, statistical software reports a p-value 
which represents the chance that a significant linear corre-
lation does not exist between the variables (this is the null 
hypothesis). A significantly non-zero r means that there is 
a dependence between x and y. Here, “significant” means 
how far we would expect r to be from zero and depends 
on both the number of measurements, n, and the distribu-
tion of each. A low p-value (≤ 0.05) provides evidence that 
the measured r represents a significant correlation between 
two variables. When a correlation exists, linear regression 
enables the calculation of the equation that minimizes the 
distance between the fitted line and all the data points in the 

sample. The R-squared (R2) or coefficient of determination 
commonly used in analytical chemistry, is another measure 
often encountered in linear regression analysis.

The term agreement is distinct; it is used to assess whether 
the measurements by two analysts or two different methods 
yield similar results. In the case of comparing the concentra-
tion of an analyte via two methods, we are measuring the 
same analyte in the same sample with different methods. Τhe 
two values may be correlated but do not necessarily agree. 
In this case, r is not sufficient. Even if the two methods are 
likely to be highly correlated with an r approaching unity, this 
does not provide concluding evidence that the methods agree. 
A high r value may indicate agreement but this remains false 
without further analysis to assess potential biased results. 
Again, by inspecting the relationship on a scatter plot it may 
be easy to see if they demonstrate poor agreement with sig-
nificant bias.

Ordinary least-square regression could potentially be used 
to assess agreement; however, this regression assumes that 
one method is error-free and this is not true in most settings. 
When agreement between paired measurements is required, 
a Bland–Altman plot, also referred to as a difference plot, 
is a straightforward and reliable alternative to a scatter plot 
[23]. Practically, it is about a plot of the difference between 
two measurements on the y-axis (Method 1 minus Method 
2) against the mean of the two measurements on the x-axis 
({Method 1 + Method 2}/2). This simple plot reveals any 
bias between measurements, which is the difference between 
Method 1 and Method 2. Limits of agreement (LOA) are plot-
ted as separate lines, demonstrating the range within which 
95% of the differences between one method and the other 
are included. These limits are expressed as: mean observed 
difference (md) ± 1.96 × standard deviation of the observed 

Fig. 5  Calibration plot of response (Absorbance) versus Cd concen-
tration (μg⋅L−1)

Table 2  Output of Excel regression

Regression statistics

Multiple R 0.99920187
R square 0.99840437
Adjusted R square 0.99835602
Standard error 0.00091869 *(Sy/x)
Observations 35
ANOVA

df SS MS F Significance F
Regression 1 0.01742712 0.01742712 20,648.52 9.72946E-48
Residual 33 2.78516E-05 8.43989E-07
Total 34 0.017454971

Coefficients Standard error t stat p-value
Intercept  − 0.00165967 0.000280046 *(Sa)  − 5.926421333 1.2E-06
X variable 1 0.01114682 7.75723E-05 *(Sb) 143.6959391 9.73E-48

Lower 95% Upper 95%
Intercept  − 0.002229431  − 0.001089914
X variable 1 0.010989002 0.011304646
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differences (sdd). Broad LOA or values that consistently fall 
outside these bounds is an indication of a lack of agreement 
between the two methods (see the “Practical example” and 
“Comparison of analytical methods” section).

As alluded to above, correlation is not synonymous with 
agreement. Correlation refers to the presence of a relation-
ship between two different variables, whereas agreement 
refers to the concordance between two measurements of one 

Table 3  Responses and residuals from data of Table 1 after OLS regression

a Can be provided by statistical packages like Excel (it is crucial to make sure that an adequate number of significant figures is employed)
b Sy/x = Residual standard deviation or SRES, can be also found from Output of Excel Regression -1st Table: indicated as “Standard error”

No Response
(yi)

aPredicted response
(ŷ)

Residuals
(yi − ̂y)

(yi − ̂y)2 bStandardized residuals: 
(yi − ̂y)/Sy/x

1  − 0.001  − 0.00165967 0.00066 4.35E-07 0.7181
2  − 0.002  − 0.00165967  − 0.00034 1.16E-07  − 0.3704
3  − 0.001  − 0.00165967 0.00066 4.35E-07 0.7181
4  − 0.001  − 0.00165967 0.00066 4.35E-07 0.7181
5  − 0.002  − 0.00165967  − 0.00034 1.16E-07  − 0.3704
6 0.010 0.00926421 0.00074 5.41E-07 0.8009
7 0.010 0.00926421 0.00074 5.41E-07 0.8009
8 0.009 0.00926421  − 0.00026 6.98E-08  − 0.2876
9 0.009 0.00926421  − 0.00026 6.98E-08  − 0.2876
10 0.008 0.00926421  − 0.00126 1.60E-06  − 1.3761
11 0.020 0.02096838  − 0.00097 9.38E-07  − 1.0541
12 0.022 0.02096838 0.00103 1.06E-06 1.1229
13 0.020 0.02096838  − 0.00097 9.38E-07  − 1.0541
14 0.020 0.02096838  − 0.00097 9.38E-07  − 1.0541
15 0.021 0.02096838 0.00003 1.00E-09 0.0344
16 0.030 0.03189227  − 0.00189 3.58E-06  − 2.0597
17 0.032 0.03189227 0.00011 1.16E-08 0.1173
18 0.033 0.03189227 0.00111 1.23E-06 1.2058
19 0.032 0.03189227 0.00011 1.16E-08 0.1173
20 0.031 0.03189227  − 0.00089 7.96E-07  − 0.9712
21 0.043 0.04298336 0.00002 2.77E-10 0.0181
22 0.042 0.04298336  − 0.00098 9.67E-07  − 1.0704
23 0.044 0.04298336 0.00102 1.03E-06 1.1066
24 0.045 0.04298336 0.00202 4.07E-06 2.1951
25 0.044 0.04298336 0.00102 1.03E-06 1.1066
26 0.053 0.05413018  − 0.00113 1.28E-06  − 1.2302
27 0.053 0.05413018  − 0.00113 1.28E-06  − 1.2302
28 0.055 0.05413018 0.00087 7.57E-07 0.9468
29 0.055 0.05413018 0.00087 7.57E-07 0.9468
30 0.054 0.05413018  − 0.00013 1.69E-08  − 0.1417
31 0.065 0.06522127  − 0.00022 4.90E-08  − 0.2409
32 0.066 0.06522127 0.00078 6.06E-07 0.8477
33 0.066 0.06522127 0.00078 6.06E-07 0.8477
34 0.065 0.06522127  − 0.00022 4.90E-08  − 0.2409
35 0.064 0.06522127  − 0.00122 1.49E-06  − 1.3294

SUM = 0.0000278516
degrees of freedom, d.f.: p × n − 2 = 7 × 5 − 2 = 33
(Sy/x)2 = 0.0000278516/33 = 0.0000008440
Sy/x = 0.00091869
t (0.05, p − 2) = 2.571
 ± t (0.05, p − 2) × Sy/x = 0.0024 (dashed line)
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variable. Two sets of measurements, which are highly cor-
related, may have poor agreement. However, if the two sets 
agree, they will surely be highly correlated.

Practical example

To showcase the suitability of the suggested approach, we uti-
lize data from a method that has been internally validated for 
the determination of Cd in natural water (Table 1).

Assessing the scatter plot and performing 
regression analysis

The process that allows for a quick identification of any issues 
with the calibration data is the visual inspection of the calibra-
tion plot (Fig. 5).

Based on the findings, a typical approach would be to 
assume that the response is linearly correlated to the concen-
tration. Regression determines the optimal values of slope 
(indicated as “b”) and intercept (indicated as “α”), that best 
describe the linear relationship between the analyte level (x) 
and the analytical signal (y). Typically, regression analysis is 
conducted using specialized software provided with instru-
ments or popular packages like Excel (Table 2).

According to the Excel spreadsheet output, the instrumental 
response is linearly related to the Cd concentration (independ-
ent variable-x) based on OLS regression, in the form of y = b 
(± Sb) x + α (± Sa), as follows (with rounding to an appropriate 
number of significant digits):

Assessment of outliers

The differences between the observed values (yi) and the 
predicted values ( ̂y) (Table 3) are computed or can be gener-
ated from spreadsheet software programs.

(1)y = 0.01115 (± 0.00008) x − 0.0017 (± 0.0003)

These differences are then plotted against their respec-
tive concentration levels as shown in Fig. 6. In this plot, two 
horizontal dashed lines, which indicate the acceptable range 
of deviation for each individual data point, are drawn at ± t 
(0.05, p–2) × Sy/x.

Another straightforward numerical criterion to iden-
tify potential outliers is to check if standardized residuals 
(a residual divided by Sy/x is commonly known as a stand-
ardized residual) greater than 3 are found (last column of 
Table 3). Similarly, there is also no indication of an outlier 
in this hypothetical scenario.

Note: Other more sophisticated calculation techniques 
include the estimation of Cook’s squared distance for each 
data point. However, before applying these, it is important 
to identify (based on the above) the suspect calibration point 
that could potentially be omitted.

Procedures for linearity assessment

As mentioned before, R2 values can be misleading in the 
context of linearity evaluation. Examining the plot of resid-
uals generated through linear regression of the responses 
against the concentrations is an option to assess the linearity. 
The residual plot (Fig. 6) exhibits a random pattern within 
the range, without any discernible systematic pattern, indi-
cating that the linearity assumption is likely correct. How-
ever, there are instances when this visual inspection may be 
quite personal and open to interpretation.

Note: By plotting the ratio of the individual response val-
ues to their corresponding concentrations vs the concentra-
tion range could be another option (Huber’s linearity test 
[5]). The lower and upper limits of tolerance are established 
by multiplying the median value of the ratio of individual 
response values to their corresponding concentrations with 
constant factors of 0.95 and 1.05, respectively. The calibra-
tion range falls within the linear range as there are no results 
that exceed the tolerance limits.

Fig. 6  Plot of residuals vs Cd 
concentration. No evidence of 
outliers is observed. Dashed lines 
represent the ± t (0.05, p–2) × Sy/x.
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To ensure the accuracy of the chosen model (Eq. 1), it 
is essential to employ reliable statistical tools that can con-
firm the assumption of linearity. This necessitates the use 
of robust statistical methods, such as ANalysis Of VAri-
ance (ANOVA).

If the regression F-value (found in the Excel output, Table 2) 
is greater than the critical F (0.05, 1, p × n–p), then the regres-
sion model is considered acceptable. This indicates that the 
variations in the response can be explained by the model.

The ANOVA-LOF, also known as the LOF (lack of fit) 
test, is the most common and reliable statistical test that 
is applied to calibration experiments for the acceptance 
of the model linearity. The ratio of FLOF (MS-LackOfFit/
MS-PureError) is compared to critical F (0.05, p–2, p × n–p). 
If FLOF is equal or less than critical F, it is possible to 
accept the hypothesis that the regression model is linear. 
From Table 3, we obtain the residual error sum of squares 

Table 4  Data treatment for the 
calculation of the terms SSPE 
and MSPE

No Response
(yi)

Average response ( y) yi − y (yi − y)2

1  − 0.001  − 0.0014 0.0004 0.0000002
2  − 0.002  − 0.0006 0.0000004
3  − 0.001 0.0004 0.0000002
4  − 0.001 0.0004 0.0000002
5  − 0.002  − 0.0006 0.0000004
6 0.010 0.0092 0.0008 0.0000006
7 0.010 0.0008 0.0000006
8 0.009  − 0.0002 0.0000000
9 0.009  − 0.0002 0.0000000
10 0.008  − 0.0012 0.0000014
11 0.020 0.0206  − 0.0006 0.0000004
12 0.022 0.0014 0.0000020
13 0.020  − 0.0006 0.0000004
14 0.020  − 0.0006 0.0000004
15 0.021 0.0004 0.0000002
16 0.030 0.0316  − 0.0016 0.0000026
17 0.032 0.0004 0.0000002
18 0.033 0.0014 0.0000020
19 0.032 0.0004 0.0000002
20 0.031  − 0.0006 0.0000004
21 0.043 0.0436  − 0.0006 0.0000004
22 0.042  − 0.0016 0.0000026
23 0.044 0.0004 0.0000002
24 0.045 0.0014 0.0000020
25 0.044 0.0004 0.0000002
26 0.053 0.0540  − 0.0010 0.0000010
27 0.053  − 0.0010 0.0000010
28 0.055 0.0010 0.0000010
29 0.055 0.0010 0.0000010
30 0.054 0.0000 0.0000000
31 0.065 0.0652  − 0.0002 0.0000000
32 0.066 0.0008 0.0000006
33 0.066 0.0008 0.0000006
34 0.065  − 0.0002 0.0000000
35 0.064  − 0.0012 0.0000014

SUM = 0.0000244000 = SSPE
d.f.: p × n − p = 7 × 5 − 7 = 28
MSPE = 0.0000244000/28 = 0.00000087

1429
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∑
�

yi − ŷ
�2 or SSRES = 0.0000278516. The pure error sum 

of squares (SSPE) is equal to 0.0000244000 (see Table 4).
Since the sum of squares of the residuals (SSRES) are 

divided into pure error (SSPE) and lack of fit (SSLOF), the 
latter term can be calculated by subtraction: SSLOF = S
SRES − SSPE = 0.0000278516 − 0.0000244000 = 0.000003
45163. Mean squares (MS) for lack of fit (MSLOF, p − 2 
d.f.) is calculated as 0.00000345163/5 = 0.00000069032
5. Accordingly, the mean squares for pure error, (MSPE, 
p × n − p d.f.) is 0.0000244000/28 = 0.000000871429. So, 
FLOF = MSLOF/MSPE = 0.000000690325/0.000000871429 
= 0.792 < Fcritical (0.05 5, 28) = 2.5581.

If there is no significant lack-of-fit, it is advisable to 
conduct a final t-test to determine if the intercept signifi-
cantly deviates from zero. If the calculated t-value (= a/Sa) 
is equal or lower to the critical t (d.f.: p − 2, confidence 
limit:  99.9%, although a 95% is more common), the null 
hypothesis that the intercept is not significantly different 
from zero is accepted. From Eq. 1, we calculate t = 0.0
017/0.0003 = 5.666 > 4.032 tcrit (0.01, 5). Therefore, the 

calibration curve should not be forced through zero and it 
is described properly by Eq. 1, as given above.

Note: Arithmetically, the decision to force zero or not 
can be based on the comparison of y-intercept (α) to its 
standard error (Sa = 0.000280046, Table 2). If y-inter-
cept > Sa, then b ≠ 0, otherwise b = 0.

Calculation of a concentration, its error, 
and the limits of detection

Assuming that homoscedasticity is fulfilled, the regression 
line computed in the preceding section will be utilized 
for estimating the concentrations of test samples through 
interpolation as well as its error. Additionally, it may be 
employed for estimating the limit of detection of the ana-
lytical procedure. Hence, the significance lies in the ran-
dom errors associated with the values of the slope (Sb) and 
intercept (Sa).

The unknown sample concentration can readily  be 
determined by substituting the sample signal or response 
of 0.030 (for k = 5 replicates) into the regression equation 
(Eq. 1). This yields x value of 2.84024 μg⋅L-1. To calculate 
the overall error in the corresponding concentration we 
employ the following formula [2]:

where k is the number of replicate measurements we use to 
establish the sample’s average signal y, p is the number of 
calibration points, y is the average signal for the calibration 
standards, xi and x are the individual and the mean concen-
trations for the calibration standards and b is the calculated 
slope from the regression equation (Eq. 1).

Confidence limits can be calculated as μ = xo ± t × sxo, (p − 2 
d.f.). In our case, xo = 2.84024 μg⋅L-1, sxo = 0.04833 μg⋅L-1, 

(2)sx =
s y
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Table 5  Data obtained by two analytical methods

Sample
No

Reference 
method

New method Mean of two 
methods

Difference

1 1.49 1.54 1.515  − 0.05
2 2.31 2.23 2.27 0.08
3 2.69 2.56 2.625 0.13
4 3.12 3.35 3.235  − 0.23
5 0.99 1.12 1.055  − 0.13
6 2.77 2.69 2.73 0.08
7 2.34 2.25 2.295 0.09
8 3.45 3.33 3.39 0.12
9 0.71 0.74 0.725  − 0.03
10 1.66 1.72 1.69  − 0.06
11 1.93 1.95 1.94  − 0.02
12 2.01 2.10 2.055  − 0.09
13 2.84 2.80 2.82 0.04
14 1.76 1.74 1.75 0.02
15 2.34 2.41 2.375  − 0.07
16 1.49 1.54 1.515  − 0.05
17 2.31 2.23 2.27 0.08
18 2.69 2.56 2.625 0.13
19 3.12 3.35 3.235  − 0.23
20 0.99 1.12 1.055  − 0.13
21 2.77 2.69 2.73 0.08
22 2.34 2.25 2.295 0.09
23 3.45 3.33 3.39 0.12
24 0.71 0.74 0.725  − 0.03
25 1.66 1.72 1.69  − 0.06
mean difference: md: − 0.008
standard deviation of the differences: sdd: 0.101
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Fig. 7  Comparison of two analytical methods with regression analysis
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and the corresponding 95% confidence limits (t3 = 2.571) are 
2.84024 ± 0.12425 μg⋅L-1. [Sy/x = 0.000918689, b = 0.01115, 
k = 5, p = 7, y(sample signal) = 0.030, y = 0.032, (y − y)

2 = 
0.0000033, x = 3.004, Σi(xi − x)2 = 28.05132143].

As we have seen, the limit of detection (LOD) can be 
described as the concentration of the analyte that produces a 
signal equivalent to the blank signal, yB, augmented by three 
times the standard deviations of the blank, sB: LOD = yB + 3×sB. 
The calculated intercept (α) can serve as an estimation for the 
value of yB. The unweighted least-squares method relies on 
the assumption that every point on the plot—including the 
point representing the blank or background—exhibits a vari-
ation that follows a normal distribution. This variation occurs 
only in the y-direction and its standard deviation is estimated 
using Sy/x. Thus, it is suitable to substitute Sy/x for sB, when 
estimating the limit of detection. From previous calculations 
Sy/x = 0.000918689 and yB ≈ α = 0.0017. Thus, LOD = 0.0017 
+ (3 × 0.000918689) = 0.00446 μg⋅L−1.

Note: It is feasible to conduct multiple repetitions of the 
blank experiment to acquire independent values for sB. These 
two approaches for estimating LOD should exhibit negligi-
ble differences.

For the standard additions method, the concentration of the 
analyte in the test sample can be calculated from the ratio of 
the intercept (α) and the slope (b) of the regression line (since 
this is extrapolated to the point on the x-axis at which y = 0). 
As the concentration of the sample cannot be predicted solely 
based on a single measured value (multiple standard additions 
are required) the error of the extrapolated xE value is provided 
by:

The respective confidence limits can be calculated as 
xE ± t (p − 2) × sxE (see worked example below).

(3)sxE =
Sy∕x

b
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The copper concentration in wastewater was determined 
by the method of standard additions. The following results 
were obtained with the aid of flame atomic absorption spec-
trometry: added Cu (moles  L−1): 0, 10.0, 20.0, 30.0, 40.0, 
50.0, 60.0, response (absorbance): 0.4115, 0.647, 0.8134, 
1.021, 1.212 1.356, 1.667. Regression analysis provides 
the values of intercept  a = 0.44, slope b  = 0.0189. The 
ratio of these values (α/b) provides the concentration of 
0.44/0.0189 = 23 mol⋅L−1. Sy/x = 0.024575484, y = 1.0183, 
∑

i (xi − x)
2 = 2800. Therefore, the calculated error of the 

extrapolated xE value is: sxE = 1.408 and the confidence lim-
its are 23 ± 2.57 × 1.408, i.e., 23.1 ± 3.6 (mol⋅L−1).

Comparison of analytical methods

Typically, when comparing two methods (e.g., reference and 
new method, Table 5) across various levels of analyte con-
centrations, it is customary to follow the procedure depicted 
in Fig. 7.

If each sample produces the same outcome with both ana-
lytical protocols, the regression line depicted will have an 
intercept of zero, a slope of 1, and a correlation coefficient 
of 1. Typically, we aim to examine whether the intercept 
significantly deviates from zero and whether the slope sig-
nificantly deviates from 1. Confidence limits for the values 
of constant and intercept are calculated, usually at a signifi-
cance level of 95%.

Based on the calculation of the regression parameters (as 
in the previous worked example) the intercept is determined 
to be 0.103923647, with upper and lower confidence limits 
of − 0.066613699 and + 0.274460993, respectively, encom-
passing the desired value of zero. Similarly, the slope is 
0.955604606244823, with a 95% confidence interval that 
falls within 0.880924897601987 − 1.03028431488766 
including the value of 1.

Note: The focus is more on establishing the range within which 
the slope and intercept values are likely to fall, rather than solely 

Fig. 8  Bland and Altman 
plot for data from Table 5, 
with the representation of the 
limits of agreement (dotted 
lines), from − 1.96 × sdd 
to + 1.96 × sdd. md: mean 
difference, sdd: standard 
deviation of the differences
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relying on the correlation coefficient. The method that offers higher 
precision is represented on the x-axis of the graph while we assume 
that the error in the y-values remains constant (homoscedasticity).

Bland–Altman plots serve as a valuable graphical tool, 
especially in clinical analysis to compare and evaluate the 
agreement between two sets of data obtained from different 
measurement techniques. Illustrated in Fig. 8, these plots 
visually depict the difference between two measurements 
on the y-axis and the average of those measurements on the 
x-axis. Additionally, a horizontal line is incorporated to rep-
resent the mean difference between the two measurements. 
Also, these plots, as already mentioned feature lines—the 
limits of agreement (LOA)—indicating the standard devia-
tion, typically ± 1.96 × standard deviation of the differences 
(sdd) from the mean difference (md). This enables the identi-
fication of any potential outliers within the data [24].

From the data of Table 5, sdd = 0.101, so the 95% of differ-
ences will be: a) for − 1.96 × sdd: − 0.008 − (1.96 × 0.101) =  − 
0.206, and b) for + 1.96 × sdd: − 0.008 + (1.96 × 0.101) = 0.190.

Conclusions

Researchers need to realize the limits and capabilities of con-
ventional statistics and they should bring into their chemical 
analysis elements of scientific judgement about the plausibil-
ity of statistics. This review focuses, mainly, on the regression 
and correlation to find connections between two variables, 
measure the connections, and to make predictions of ana-
lyte concentrations in a proper way. By way of a practical 
example, the Excel software package can easily generate a 
large number of statistics in a form which is digestible and 
easily applicable. The tutorial review benefits research-
ers and authors embarking on studies handling analytical 
measurements.
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