Skip to main content
Log in

Bioenzyme-free colorimetric assay for creatinine determination based on Mn3O4 nanoparticles catalyzed oxidation of 3,3′,5,5′-tetramethylbenzidine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Mn3O4 nanozyme with good oxidase-like activity was successfully synthesized. The prepared Mn3O4 nanozyme can directly and effectively catalyze the oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) to generate green–blue-colored ox-TMB. Creatinine exhibits distinct inhibition effect on Mn3O4 nanozyme-catalyzed TMB colorimetric reaction system, leading to obvious color fading and absorbance intensity decrease of the reaction system. Furthermore, interference from uric acid can be effectively eliminated by regulating the pH of TMB-Mn3O4 colorimetric reaction system to pH 2.0. Then, a simple and bioenzyme-free colorimetric assay for the determination of creatinine was developed based on TMB-Mn3O4 colorimetric reaction. The linear detection range is from 100 to 800 μM and from 1 to 20 mM. The lowest limit of detection is 35.3 μM. Satisfied results are obtained for the determination of creatinine in real urine and sweat samples. This work provides the synthesis of a good oxidase-like nanozyme Mn3O4 and presents the fabrication of an effective nanozyme-based bioenzyme-free colorimetric assay for the determination of creatinine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All relevant data are within the manuscript and its Supplementary Information.

References

  1. Levey AS, Inker LA, Coresh J (2015) Chronic kidney disease in older people. JAMA 314:557–558

    Article  CAS  PubMed  Google Scholar 

  2. Kellum JA, Romagnani P, Ashuntantang G, Ronco C, Zarbock A, Anders HJ (2021) Acute kidney injury. Nat Rev Dis Primers 7:52

    Article  PubMed  Google Scholar 

  3. Kashani K, Rosner MH, Ostermann M (2020) Creatinine: from physiology to clinical application. Eur J Intern Med 72:9–14

    Article  CAS  PubMed  Google Scholar 

  4. Cánovas R, Cuartero M, Crespo GA (2019) Modern creatinine (bio)sensing: challenges of point-of-care platforms. Biosens Bioelectron 130:110–124

    Article  PubMed  Google Scholar 

  5. Fakrogha PE, Ntuen N, Oko-Jaja R, Duru U, Harry AM, David-West M, Amadi O, Nonju TI, Owhonda G, Ohiri J, Alasia DD, Izuchukwu AD, Erekosima I, Lewis D, Wokoma FS, Emem-Chioma PC, Poulikakos D (2022) Evaluation and use of point-of-care creatinine for detection of acute kidney injury in nigeria. Kidney Int Rep 7:1439–1440

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li Y, Luo L, Nie M, Davenport A, Li Y, Li B, Choy K-L (2022) A graphene nanoplatelet-polydopamine molecularly imprinted biosensor for ultratrace creatinine detection. Biosens Bioelectron 216:114638

    Article  CAS  PubMed  Google Scholar 

  7. An JN, Kim J-K, Lee H-S, Kim SG, Kim HJ, Song YR (2022) Serum cystatin C to creatinine ratio is associated with sarcopenia in non-dialysis-dependent chronic kidney disease. Kidney Res Clin Pract 41:580–590

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hanif S, John P, Gao W, Saqib M, Qi L, Xu G (2016) Chemiluminescence of creatinine/H2O2/Co2+ and its application for selective creatinine detection. Biosens Bioelectron 75:347–351

    Article  CAS  PubMed  Google Scholar 

  9. Karn-orachai K, Ngamaroonchote A (2021) Role of polyelectrolyte multilayers over gold film for selective creatinine detection using Raman spectroscopy. Appl Surf Sci 546:149092

    Article  CAS  Google Scholar 

  10. Yen T-A, Dahal KS, Lavine B, Hassan Z, Gamagedara S (2018) Development and validation of high performance liquid chromatographic method for determination of gentisic acid and related renal cell carcinoma biomarkers in urine. J Microchem 137:85–89

    Article  CAS  Google Scholar 

  11. Jen JF, Hsiao S-L, Liu K-H (2002) Simultaneous determination of uric acid and creatinine in urine by an eco-friendly solvent-free high performance liquid chromatographic method. Talanta 58:711–717

    Article  CAS  PubMed  Google Scholar 

  12. Chiou WL, Pu FS, Prueksaritanont T (1983) Creatinine. XIII: micro high-performance liquid chromatographic assay of creatinine in biological fluids using fixed- or variable-wavelength UV detector. J Chromatogr A 277:436–438

    CAS  Google Scholar 

  13. Lad U, Khokhar S, Kale GM (2008) Electrochemical creatinine biosensors. Anal Chem 80:7910–7917

    Article  CAS  PubMed  Google Scholar 

  14. Corba A, Sierra AF, Blondeau P, Giussani B, Riu J, Ballester P, Andrade FJ (2022) Potentiometric detection of creatinine in the presence of nicotine: molecular recognition, sensing and quantification through multivariate regression. Talanta 246:123473

    Article  CAS  PubMed  Google Scholar 

  15. Saidi T, Moufid M, Zaim O, El Bari N, Bouchikhi B (2018) Voltammetric electronic tongue combined with chemometric techniques for direct identification of creatinine level in human urine. Measurement 115:178–184

    Article  Google Scholar 

  16. Li J, Li Z, Dou Y, Su J, Shi J, Zhou Y, Wang L, Song S, Fan C (2021) A nano-integrated microfluidic biochip for enzyme-based point-of-care detection of creatinine. ChemComm 57:4726–4729

    CAS  Google Scholar 

  17. Liang L, Xiong Y, Duan Y, Zuo W, Liu L, Ye F, Zhao S (2022) Colorimetric detection of creatinine based on specifically modulating the peroxidase-mimicking activity of Cu-Fenton system. Biosens Bioelectron 206:114121

    Article  CAS  PubMed  Google Scholar 

  18. Lewińska I, Speichert M, Granica M, Tymecki Ł (2021) Colorimetric point-of-care paper-based sensors for urinary creatinine with smartphone readout. Sens Actuators B Chem 340:129915

    Article  Google Scholar 

  19. He Y, Zhang X, Yu H (2015) Gold nanoparticles-based colorimetric and visual creatinine assay. Microchim Acta 182:2037–2043

    Article  CAS  Google Scholar 

  20. Sergeyeva TA, Gorbach LA, Piletska EV, Piletsky SA, Brovko OO, Honcharova LA, Lutsyk OD, Sergeeva LM, Zinchenko OA, El’skaya AV, (2013) Colorimetric test-systems for creatinine detection based on composite molecularly imprinted polymer membranes. Anal Chim Acta 770:161–168

    Article  CAS  PubMed  Google Scholar 

  21. Cheng J, Guo J, Li X, Guo J (2023) A smartphone-connected point-of-care photochemical biosensor for the determination of whole blood creatinine by differential optical signal readout. Biosens Bioelectron 235:115410

    Article  CAS  PubMed  Google Scholar 

  22. Tseng CC, Yang RJ, Ju WJ, Fu LM (2018) Microfluidic paper-based platform for whole blood creatinine detection. Chem Eng J 348:117–124

    Article  CAS  Google Scholar 

  23. Piéroni L, Delanaye P, Boutten A, Bargnoux A-S, Rozet E, Delatour V, Carlier M-C, Hanser A-M, Cavalier E, Froissart M, Cristol J-P (2011) A multicentric evaluation of IDMS-traceable creatinine enzymatic assays. Clin Chim Acta 412:2070–2075

    Article  PubMed  Google Scholar 

  24. Junge W, Wilke B, Halabi A, Klein G (2004) Determination of reference intervals for serum creatinine, creatinine excretion and creatinine clearance with an enzymatic and a modified Jaffé method. Clin Chim Acta 344:137–148

    Article  CAS  PubMed  Google Scholar 

  25. Wang X, Hu Y, Wei H (2016) Nanozymes in bionanotechnology: from sensing to therapeutics and beyond. Inorg Chem Front 3:41–60

    Article  CAS  Google Scholar 

  26. Gupta A, Das R, Yesilbag Tonga G, Mizuhara T, Rotello VM (2018) Charge-switchable nanozymes for bioorthogonal imaging of biofilm-associated infections. ACS Nano 12:89–94

    Article  CAS  PubMed  Google Scholar 

  27. Liang M, Yan X (2019) Nanozymes: from new concepts, mechanisms, and standards to applications. Acc Chem Res 52:2190–2200

    Article  CAS  PubMed  Google Scholar 

  28. Wu J, Li S, Wei H (2018) Multifunctional nanozymes: enzyme-like catalytic activity combined with magnetism and surface plasmon resonance. Nanoscale Horiz 3:367–382

    Article  CAS  PubMed  Google Scholar 

  29. Jiang D, Ni D, Rosenkrans ZT, Huang P, Yan X, Cai W (2019) Nanozyme: new horizons for responsive biomedical applications. Chem Soc Rev 48:3683–3704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ai Y, Hu ZN, Liang X, Hb S, Xin H, Liang Q (2021) Recent advances in nanozymes: from matters to bioapplications. Adv Funct Mater 32:2110432

    Article  Google Scholar 

  31. Zhang XD, Huang YM (2015) Evaluation of the antioxidant activity of phenols and tannic acid determination with Mn3O4 nano-octahedrons as an oxidase mimic. Anal Methods 7:8640–8646

    Article  CAS  Google Scholar 

  32. Huang L, Qin S, Xu Y, Cheng S, Yang J, Wang Y (2023) Enzyme-free colorimetric detection of uric acid on the basis of MnO2 nanosheets-mediated oxidation of 3, 3′, 5, 5′- tetramethylbenzidine. Microchem J 190:108719

    Article  CAS  Google Scholar 

  33. Yang W, Fei J, Xu W, Jiang H, Sakran M, Hong J, Zhu W, Zhou X (2022) A biosensor based on the biomimetic oxidase Fe3O4@MnO2 for colorimetric determination of uric acid. Colloids Surf B 212:112347

    Article  CAS  Google Scholar 

  34. Wang JJ, Wang JL, Zhou P, Tao H, Wang XL, Wu YG (2020) Oligonucleotide-induced regulation of the oxidase-mimicking activity of octahedral Mn3O4 nanoparticles for colorimetric detection of heavy metals. Microchim Acta 187:1–11

    Google Scholar 

  35. Guan J, Xiong Y, Wang M, Liu Q, Chen X (2024) A novel functionalized CdTe@MOFs based fluorometric and colorimetric biosensor for dual-readout assay of creatinine. Sens Actuators B-Chem 399:134842

  36. Kai K, Yoshida Y, Kageyama H, Saito G, Ishigaki T, Furukawa Y, Kawamata J (2008) Room-temperature synthesis of manganese oxide monosheets. J Am Chem Soc 130:15938–15943

    Article  CAS  PubMed  Google Scholar 

  37. Singh N, Savanur MA, Srivastava S, D’Silva P, Mugesh G (2017) A redox modulatory Mn3O4 nanozyme with multi-enzyme activity provides efficient cytoprotection to human cells in a parkinson’s disease model. Angew Chem Int Ed 56:14267–14271

    Article  CAS  Google Scholar 

  38. Cao S, Han N, Han J, Hu Y, Fan L, Zhou C, Guo R (2016) Mesoporous hybrid shells of carbonized polyaniline/Mn2O3 as non-precious efficient oxygen reduction reaction catalyst. ACS Appl Mater Interfaces 8:6040–6050

    Article  CAS  PubMed  Google Scholar 

  39. Moses Ezhil Raj A, Victoria SG, Jothy VB, Ravidhas C, Wollschläger J, Suendorf M, Neumann M, Jayachandran M, Sanjeeviraja C (2010) XRD and XPS characterization of mixed valence Mn3O4 hausmannite thin films prepared by chemical spray pyrolysis technique. Appl Surf Sci 256:2920–2926

    Article  CAS  Google Scholar 

  40. Liu Y, Li H, Guo B, Wei L, Chen B, Zhang Y (2017) Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens Bioelectron 91:734–740

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by NSAF (Grant No. U2230117), the Fundamental Research Funds for the Central Universities (PA2022GDSK0044) and the Undergraduate Innovation and Entrepreneurship Training Program (X202310359291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The experimental protocol was approved by the Research Ethics committee of Hefei University of Technology, China (Project No. U2230117).

Informed consent

All participants provided written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1466 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Shen, N., Xi, Y. et al. Bioenzyme-free colorimetric assay for creatinine determination based on Mn3O4 nanoparticles catalyzed oxidation of 3,3′,5,5′-tetramethylbenzidine. Microchim Acta 191, 44 (2024). https://doi.org/10.1007/s00604-023-06129-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06129-8

Keywords

Navigation