Skip to main content
Log in

A label-free ratiometric fluorescent aptasensor based on a peroxidase-mimetic multifunctional ZrFe-MOF for the determination of tetrodotoxin

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A Fe/Zr bimetal-organic framework (ZrFe-MOF) is utilized to establish a ratiometric fluorescent aptasensor for the determination of tetrodotoxin (TTX). The multifunctional ZrFe-MOF possesses inherent fluorescence at 445 nm wavelength, peroxidase-mimetic activity, and specific recognition and adsorption capabilities for aptamers, owing to its organic ligand, and Fe and Zr nodes. The peroxidation of o-phenylenediamine (OPD) substrate generates fluorescent 2,3-diaminophenazine (OPDox) at 555 nm wavelength, thus quenching the inherent fluorescence of ZrFe-MOF because of the fluorescence resonance energy transfer (FRET) effect. TTX aptamers, which are absorbed on the material surface without immobilization or fluorescent labeling, inhibit the peroxidase-mimetic activity of ZrFe-MOF. It causes the decreased OPDox fluorescence at 555 nm wavelength and the inverse restoration of ZrFe-MOF fluorescence at 445 nm wavelength. With TTX, the aptamers specifically bind to TTX, triggering rigid complex release from ZrFe-MOF surface and reactivating its peroxidase-mimetic activity. Consequently, the two fluorescence signals exhibit opposite changes. Employing this ratiometric strategy, the determination of TTX is achieved with a detection limit of 0.027 ng/mL and a linear range of 0.05–500 ng/mL. This aptasensor also successfully determines TTX concentrations in puffer fish and clam samples, demonstrating its promising application for monitoring trace TTX in food safety.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Akopian AN, Sivilotti L, Wood JN (1996) A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons. Nature 379(6562):257–262. https://doi.org/10.1038/379257a0

    Article  CAS  PubMed  Google Scholar 

  2. Bane V, Lehane M, Dikshit M, O’Riordan A, Furey A (2014) Tetrodotoxin: chemistry, toxicity, source, distribution and detection. Toxins 6(2):693–755. https://doi.org/10.3390/toxins6020693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li Y, Xu X, Liu L, Kuang H, Xu L, Xu C (2020) A gold nanoparticle-based lateral flow immunosensor for ultrasensitive detection of tetrodotoxin. Analyst 145(6):2143–2151. https://doi.org/10.1039/d0an00170h

    Article  CAS  PubMed  Google Scholar 

  4. Ling S, Chen QA, Zhang Y, Wang R, Jin N, Pang J, Wang S (2015) Development of ELISA and colloidal gold immunoassay for tetrodotoxin detetcion based on monoclonal antibody. Biosens Bioelectron 71:256–260. https://doi.org/10.1016/j.bios.2015.04.049

    Article  CAS  PubMed  Google Scholar 

  5. Rodriguez P, Alfonso A, Vale C, Alfonso C, Vale P, Tellez A, Botana LM (2008) First toxicity report of tetrodotoxin and 5,6,11-trideoxyTTX in the trumpet shell Charonia lampas lampas in Europe. Anal Chem 80(14):5622–5629. https://doi.org/10.1021/ac800769e

    Article  CAS  PubMed  Google Scholar 

  6. Chen L, Qiu J, Tang Y, Xu J, Huang S, Liu Y, Ouyang G (2017) Rapid in vivo determination of tetrodotoxin in pufferfish (fugu) muscle by solid-phase microextraction coupled to high-performance liquid chromatography tandem mass spectrometry. Talanta 171:179–184. https://doi.org/10.1016/j.talanta.2017.04.078

    Article  CAS  PubMed  Google Scholar 

  7. Rey V, Botana AM, Antelo A, Alvarez M, Botana LM (2018) Rapid analysis of paralytic shellfish toxins and tetrodotoxins by liquid chromatography-tandem mass spectrometry using a porous graphitic carbon column. Food Chem 269:166–172. https://doi.org/10.1016/j.foodchem.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  8. Liu S, Huo Y, Li G, Huang L, Wang T, Gao Z (2023) Aptamer-controlled reversible colorimetric assay: high-activity bimetallic organic frameworks for the efficient sensing of marine biotoxins. Chem Eng J 469:144027. https://doi.org/10.1016/j.cej.2023.144027

    Article  CAS  Google Scholar 

  9. Shen H, Zhang S, Fu Q, Xiao W, Wang S, Yu S, Xiao M, Bian H, Tang Y (2017) A membrane-based fluorescence-quenching immunochromatographic sensor for the rapid detection of tetrodotoxin. Food Control 81:101–106. https://doi.org/10.1016/j.foodcont.2017.06.001

    Article  CAS  Google Scholar 

  10. Leonardo S, Kiparissis S, Rambla-Alegre M, Almarza S, Roque A, Andree KB, Christidis A, Flores C, Caixach J, Campbell K, Elliott CT, Aligizaki K, Diogène J, Campàs M (2019) Detection of tetrodotoxins in juvenile pufferfish Lagocephalus sceleratus (Gmelin, 1789) from the North Aegean Sea (Greece) by an electrochemical magnetic bead-based immunosensing tool. Food Chem 290:255–262. https://doi.org/10.1016/j.foodchem.2019.03.148

    Article  CAS  PubMed  Google Scholar 

  11. Dillon M, Zaczek-Moczydlowska MA, Edwards C, Turner AD, Miller PI, Moore H, McKinney A, Lawton L, Campbell K (2021) Current trends and challenges for rapid SMART diagnostics at point-of-site testing for marine toxins. Sensors 21(7):2499. https://doi.org/10.3390/s21072499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang Q, Yang Q, Wu W (2020) Ensuring seafood safe to spoon: a brief review of biosensors for marine biotoxin monitoring. Crit Rev Food Sci Nutr 62(9):2495–2507. https://doi.org/10.1080/10408398.2020.1854170

    Article  PubMed  Google Scholar 

  13. Zhao Y, Li L, Yan X, Wang L, Ma R, Qi X, Wang S, Mao X (2022) Emerging roles of the aptasensors as superior bioaffinity sensors for monitoring shellfish toxins in marine food chain. J Hazard Mater 421:126690. https://doi.org/10.1016/j.jhazmat.2021.126690

    Article  CAS  PubMed  Google Scholar 

  14. Zhao L, Huang Y, Dong Y, Han X, Wang S, Liang X (2018) Aptamers and aptasensors for highly specific recognition and sensitive detection of marine biotoxins: recent advances and perspectives. Toxins 10(11):427. https://doi.org/10.3390/toxins10110427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mohan B, Priyanka SG, Chauhan A, Pombeiro AJL, Ren P (2023) Metal-organic frameworks (MOFs) based luminescent and electrochemical sensors for food contaminant detection. J Hazard Mater 453:131324. https://doi.org/10.1016/j.jhazmat.2023.131324

    Article  CAS  PubMed  Google Scholar 

  16. Yu K, Wei T, Li Z, Li J, Wang Z, Dai Z (2020) Construction of molecular sensing and logic systems based on site-occupying effect-modulated MOF–DNA interaction. J Am Chem Soc 142(51):21267–21271. https://doi.org/10.1021/jacs.0c10442

    Article  CAS  PubMed  Google Scholar 

  17. Xue W, Wang Y, Guo L, Zhang H (2023) Zr-MOF functionalized nanochannels: application to regenerative and sensitive electrochemical aptasensing platform. Sens Actuat B: Chem 381:133455. https://doi.org/10.1016/j.snb.2023.133455

    Article  CAS  Google Scholar 

  18. Rasheed T, Nabeel F (2019) Luminescent metal-organic frameworks as potential sensory materials for various environmental toxic agents. Coord Chem Rev 401:213065. https://doi.org/10.1016/j.ccr.2019.213065

    Article  CAS  Google Scholar 

  19. Li G, Liu S, Huo Y, Zhou H, Li S, Lin X, Kang W, Li S, Gao Z (2022) “Three-in-one” nanohybrids as synergistic nanozymes assisted with exonuclease I amplification to enhance colorimetric aptasensor for ultrasensitive detection of kanamycin. Anal Chim Acta 1222:340178. https://doi.org/10.1016/j.aca.2022.340178

    Article  CAS  PubMed  Google Scholar 

  20. Luo L, Ou Y, Yang Y, Liu G, Liang Q, Ai X, Yang S, Nian Y, Su L, Wang J (2022) Rational construction of a robust metal-organic framework nanozyme with dual-metal active sites for colorimetric detection of organophosphorus pesticides. J Hazard Mater 423:127253. https://doi.org/10.1016/j.jhazmat.2021.127253

    Article  CAS  PubMed  Google Scholar 

  21. Cai G, Yan P, Zhang L, Zhou H, Jiang H (2021) Metal–organic framework-based hierarchically porous materials: synthesis and applications. Chem Rev 121(20):12278–12326. https://doi.org/10.1021/acs.chemrev.1c00243

    Article  CAS  PubMed  Google Scholar 

  22. Feng D, Gu Z, Li J, Jiang H, Wei Z, Zhou H (2012) Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew Chem Int Ed 51(41):10307–10310. https://doi.org/10.1002/anie.201204475

    Article  CAS  Google Scholar 

  23. Kandiah M, Nilsen MH, Usseglio S, Jakobsen S, Olsbye U, Tilset M, Larabi C, Quadrelli EA, Bonino F, Lillerud KP (2010) Synthesis and stability of tagged UiO-66 Zr-MOFs. Chem Mater 22(24):6632–6640. https://doi.org/10.1021/cm102601v

    Article  CAS  Google Scholar 

  24. Kulandaivel S, Chen HT, Lin CH, Yeh YC (2023) Exploring the potential of iron-based metal-organic frameworks as peroxidase nanozymes for glucose detection with various secondary building units. J Mater Chem B 11(43):10362–10368. https://doi.org/10.1039/d3tb00981e

    Article  CAS  PubMed  Google Scholar 

  25. Wang Y, Tang W, Li X, Wei D (2021) Improving the electrocatalytic activity of NiFe bimetal-organic framework toward oxygen evolution reaction by Zr doping. Electrochim Acta 381:138292. https://doi.org/10.1016/j.electacta.2021.138292

    Article  CAS  Google Scholar 

  26. Peterson GW, Mahle JJ, DeCoste JB, Gordon WO, Rossin JA (2016) Extraordinary NO2 removal by the metal-organic framework UiO-66-NH2. Angew Chem Int Ed 55(21):6235–6238. https://doi.org/10.1002/anie.201601782

    Article  CAS  Google Scholar 

  27. Amiripour F, Ghasemi S, Azizi SN (2022) Forster resonance energy transfer-based molecularly imprinted polymer/amine-functionalized metal-organic framework nanocomposite for trace level detection of 4-nitrophenol. Anal Chim Acta 1202:339638. https://doi.org/10.1016/j.aca.2022.339638

    Article  CAS  PubMed  Google Scholar 

  28. Huo Y, Liu S, Gao Z, Ning B, Wang Y (2021) State-of-the-art progress of switch fluorescence biosensors based on metal-organic frameworks and nucleic acids. Microchim Acta 188(5):168. https://doi.org/10.1007/s00604-021-04827-9

    Article  CAS  Google Scholar 

  29. Zhao M, Wang Y, Ma Q, Huang Y, Zhang X, Ping J, Zhang Z, Lu Q, Yu Y, Xu H, Zhao Y, Zhang H (2015) Ultrathin 2D metal-organic framework nanosheets. Adv Mater 27(45):7372–7378. https://doi.org/10.1002/adma.201503648

    Article  CAS  PubMed  Google Scholar 

  30. Sun X, Wang Y, Zhang L, Liu S, Zhang M, Wang J, Ning B, Peng Y, He J, Hu Y, Gao Z (2020) CRISPR-Cas9 triggered two-step isothermal amplification method for E. coli O157:H7 detection based on a metal–organic framework platform. Anal Chem 92(4):3032–3041. https://doi.org/10.1021/acs.analchem.9b04162

    Article  CAS  PubMed  Google Scholar 

  31. Liu S, Huo Y, Deng S, Li G, Li S, Huang L, Ren S, Gao Z (2022) A facile dual-mode aptasensor based on AuNPs@MIL-101 nanohybrids for ultrasensitive fluorescence and surface-enhanced Raman spectroscopy detection of tetrodotoxin. Biosens Bioelectron 201:113891. https://doi.org/10.1016/j.bios.2021.113891

    Article  CAS  PubMed  Google Scholar 

  32. Kalimuthu P, Kim Y, Subbaiah MP, Kim D, Jeon BH, Jung J (2022) Comparative evaluation of Fe-, Zr-, and La-based metal-organic frameworks derived from recycled PET plastic bottles for arsenate removal. Chemosphere 294:133672. https://doi.org/10.1016/j.chemosphere.2022.133672

    Article  CAS  PubMed  Google Scholar 

  33. Zhang M, Wang Y, Wu P, Wang W, Cheng Y, Huang L, Bai J, Peng Y, Ning B, Gao Z, Liu B (2020) Development of a highly sensitive detection method for TTX based on a magnetic bead-aptamer competition system under triple cycle amplification. Anal Chim Acta 1119:18–24. https://doi.org/10.1016/j.aca.2020.04.050

    Article  CAS  PubMed  Google Scholar 

  34. Luengo C, Brigante M, Antelo J, Avena M (2006) Kinetics of phosphate adsorption on goethite: comparing batch adsorption and ATR-IR measurements. J Coll Interf Sci 300(2):511–518. https://doi.org/10.1016/j.jcis.2006.04.015

    Article  CAS  Google Scholar 

  35. Dou X, Xu S, Jiang Y, Ding Z, Xie J (2023) Aptamers-functionalized nanoscale MOFs for saxitoxin and tetrodotoxin sensing in sea foods through FRET. Spectrochim Acta, Part A 284:121827. https://doi.org/10.1016/j.saa.2022.121827

    Article  CAS  Google Scholar 

  36. Fu J, Zhou S, Zhao P, Wu X, Tang S, Chen S, Yang Z, Zhang Z (2022) A dual-response ratiometric fluorescence imprinted sensor based on metal-organic frameworks for ultrasensitive visual detection of 4-nitrophenol in environments. Biosens Bioelectron 198:113848. https://doi.org/10.1016/j.bios.2021.113848

    Article  CAS  PubMed  Google Scholar 

  37. Shen Y, Wei Y, Zhu C, Cao J, Han D-M (2022) Ratiometric fluorescent signals-driven smartphone-based portable sensors for onsite visual detection of food contaminants. Coord Chem Rev 458:214442. https://doi.org/10.1016/j.ccr.2022.214442

    Article  CAS  Google Scholar 

  38. Long F, Zhang M, Yuan J, Du J, Ma A, Pan J (2020) A simple, versatile, and automated pulse-diffusion-focusing strategy for sensitive milliliter-level-injection HILIC-MS/MS analysis of hydrophilic toxins. J Hazard Mater 392:122318. https://doi.org/10.1016/j.jhazmat.2020.122318

    Article  CAS  PubMed  Google Scholar 

  39. Zhou Y, Li Y, Lu S, Ren H, Li Z, Zhang Y, Pan F, Liu W, Zhang J, Liu Z (2010) Gold nanoparticle probe-based immunoassay as a new tool for tetrodotoxin detection in puffer fish tissues. Sens Actuat B: Chem 146(1):368–372. https://doi.org/10.1016/j.snb.2010.02.049

    Article  CAS  Google Scholar 

  40. Reverté L, Campàs M, Yakes BJ, Deeds JR, Katikou P, Kawatsu K, Lochhead M, Elliott CT, Campbell K (2017) Tetrodotoxin detection in puffer fish by a sensitive planar waveguide immunosensor. Sens Actuat B: Chem 253:967–976. https://doi.org/10.1016/j.snb.2017.06.181

    Article  CAS  Google Scholar 

  41. Reverté L, Campbell K, Rambla-Alegre M, Elliott CT, Diogène J, Campàs M (2017) Immunosensor array platforms based on self-assembled dithiols for the electrochemical detection of tetrodotoxins in puffer fish. Anal Chim Acta 989:95–103. https://doi.org/10.1016/j.aca.2017.07.052

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Y, Fan Y, Wu J, Wang X, Liu Y (2016) An amperometric immunosensor based on an ionic liquid and single-walled carbon nanotube composite electrode for detection of tetrodotoxin in pufferfish. J Agric Food Chem 64(36):6888–6894. https://doi.org/10.1021/acs.jafc.6b02426

    Article  CAS  PubMed  Google Scholar 

  43. Shkembi X, Skouridou V, Svobodova M, Leonardo S, Bashammakh AS, Alyoubi AO, Campàs M, O’Sullivan CK (2021) Hybrid antibody–aptamer assay for detection of tetrodotoxin in pufferfish. Anal Chem 93(44):14810–14819. https://doi.org/10.1021/acs.analchem.1c03671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gu H, Duan N, Xia Y, Hun X, Wang H, Wang Z (2018) Magnetic separation-based multiple SELEX for effectively selecting aptamers against saxitoxin, domoic acid, and tetrodotoxin. J Agric Food Chem 66(37):9801–9809. https://doi.org/10.1021/acs.jafc.8b02771

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (No. 2021YFA0910200).

Author information

Authors and Affiliations

Authors

Contributions

Sha Liu: methodology, investigation, validation, data curation, formal analysis, writing—original draft; Yapeng Huo: data curation, formal analysis, conceptualization, writing—original draft; Zhiyong Hu: investigation, validation, writing—original draft; Gaofang Cao: methodology, project administration, writing—original/reviewing and editing, supervision; Zhixian Gao: conceptualization, project administration, writing—original/reviewing and editing, funding acquisition, supervision. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Gaofang Cao or Zhixian Gao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4361 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Huo, Y., Hu, Z. et al. A label-free ratiometric fluorescent aptasensor based on a peroxidase-mimetic multifunctional ZrFe-MOF for the determination of tetrodotoxin. Microchim Acta 191, 57 (2024). https://doi.org/10.1007/s00604-023-06118-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06118-x

Keywords

Navigation