
Vol.:(0123456789)1 3

Microchimica Acta (2024) 191:80 
https://doi.org/10.1007/s00604-023-06112-3

ORIGINAL PAPER

Adsorptive stripping voltammetric sensor based on Cd zeolitic 
imidazole framework‑67 for electrochemical detection of sarin 
simulant

Mona Elfiky1  · Amr M. Beltagi2 · Osama Abuzalat3

Received: 2 August 2023 / Accepted: 21 November 2023 / Published online: 8 January 2024 
© The Author(s) 2023

Abstract
A selective and reliable modified glassy carbon sensor, based on a 1.0% Cd zeolitic imidazole framework-67 modified glassy 
carbon sensor  (GCS2), has been developed for ultrasensitive detection of dimethyl methyl phosphonate (DMMP) in human 
biological fluid. The synthesis of porous nanoparticles of Cd zeolitic imidazole framework-67 (Cd ZIF-67) was carried out 
via the hydrothermal method. The resulting Cd ZIF-67 powder emerges with good crystallinity, a rhombic dodecahedral 
morphology with particle size in the range  300 ~ 500 nm, and a specific surface area of 1780  m2·g−1. Furthermore, the 
fabricated sensor exhibited superior performance in the detection of DMMP with two linearity ranges  of 0.02–2.0 nM and 
2.0–9.0 nM and a limit of detection (LOD) of 0.06 pM. The fabricated sensor exhibited good reliability, long-term stability, 
and repeatability, which are favourable attributes for electroanalytical detection. In addition, the fabricated sensor displayed 
superior performance without significant interference during the assay of DMMP in a biological fluid (human serum sample) 
within two linearity ranges of 0.1–1.0 nM and 1.0–6.0 nM and a LOD of 0.03 nM.

Keywords Glassy carbon sensor · Modified electrode · Dimethyl methyl phosphonate · Cd zeolitic imidazole 
framework-67 · Stripping voltammetry · Human serum

Introduction

Chemical warfare agents, for instance sarin, are very toxic 
and often fatal chemicals that pose substantial health and 
safety risks. Dimethyl methyl phosphonate (DMMP) 
(Scheme.S1) has a comparable structure to sarin and is thus 
commonly used as a chemical warfare agent simulant [1]. 
Such nerve agents inhibit the acetylcholinesterase enzyme, 
causing the accumulation of an immoderate level of a neu-
rotransmitter (acetylcholine) at cholinergic synapses [2]. 

The military threat posed by the use of these materials as 
chemical warfare agents increases the need for quick, effi-
cient, and selective analytical sensors to detect such materi-
als in different types of biological and environmental fluids 
[3]. DMMP has reportedly been detected using a variety of 
analytical techniques, including the use of several types of 
sensors [4–17]. In recent studies, Dipak et al. [10] and Alev 
et al. [13] have fabricated gas sensors based on aluminum-
doped nickel ferrite nanoflakes and  WS2-coated quartz crys-
tal microbalance for the detection of DMMP in bulk form 
at room temperature with LODs of 0.8 µM and 0.04 µM, 
respectively. In addition, McKenna et al. [16] have success-
fully used paper spray mass spectroscopy to detect warfare 
agent products in the urine and blood samples with LODs of 
0.1 and 0.23 µM (12.6 and 28.6 ng  mL−1), respectively, as 
shown in Table S1. Shaik et al. have successfully fabricated 
p-hexafluoroisopropanol phenyl functionalized graphene 
as a strong hydrogen bond acidic polymer to interact with 
DMMP in its vapor state, which is considered one of the 
hydrogen-bond basic organophosphorus compounds using 
a quartz crystal microbalance (QCM) sensor [14]. As illus-
trated in Table S1, most of the reported methods need a 
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thermal analysis step to convert DMMP to its gaseous state 
before the main analysis process. The cyclic voltammetry 
technique, which uses a modified gold sensor based on the 
electro-polymerization of pyrrole, has only been applied 
by Sharma et al. [11] (Table S1) for the determination of 
DMMP. Due to its high selectivity and sensitivity (up to 
picomolar concentration levels), the adsorptive stripping 
voltammetry technique (AdSV) has devoted great attention 
to the field of sensing different species in different fluids 
[18]. To date, there are no detailed reports on the usage of 
the adsorptive stripping voltammetry technique (AdSV) 
for the detection of DMMP in bulk and/or biological flu-
ids using modified electrochemical sensors. Metal–organic 
frameworks (MOFs) [19] are promising new adsorbent 
frameworks with robust adsorption and well-ordered poros-
ity features [20]. However, the poor conductivity and sta-
bility of most MOFs reduce their usability in the field of 
electrochemical sensing applications. A zeolitic imidazole 
framework (ZIF) is a special subclass of MOFs [21], which 
are formed through a self-assembly method via the linking 
of metal ions including  Zn2+ or  Co2+ with organic ligands, 
including imidazole or imidazole derivatives. ZIFs have 
great potential in different applications due to their superior 
features such as thermal/hydrothermal stability of the frame-
work, high specific surface area with well-ordered porosity, 
and robust adsorption properties [22]. ZIF-67 is a rhombic 
dodecahedron ZIF with a 3D pore structure [22]. Due to the 
redox property of  Co2+, which is accompanied by excel-
lent porosity, and stability properties, ZIF-67 is a superior 
modifier in sensing applications [22, 23]. To improve the 
weakness of the conductivity property of ZIF-67 MOFs, 
preparation of multi-metal ZIF-67 is essential to merge the 
advantages of each metal ZIF material, which may improve 
the electrochemical sensing performance [24, 25].

In this work, porous nanoparticles of Cd zeolitic imida-
zole framework-67 (Cd ZIF-67) were synthesized via the 
hydrothermal method. Afterward, a selective and reliable 
modified glassy carbon sensor has been developed, based 
on 1.0% Cd ZIF-67  (GCS2), for ultrasensitive determina-
tion of DMMP. In addition, the as-prepared sensor was 
utilized to estimate DMMP in human serum samples with-
out significant interference from the common biological 
interferents during the analysis process.

Experimental part

Materials, apparatus, electroanalytical solutions, 
and the point of zero charges (pHZPC) measurements

This part is detailed in the supplementary material section.

Synthesis of Cd ZIF‑67 powder

In a typical synthesis, 0.34 g (1 mM) of cadmium nitrate 
hexahydrate and 0.291 (1 mM) of cobalt nitrate hexahydrate 
were dissolved in 20 mL of methanol under stirring to pre-
pare the metal solution. Two grams of triethylamine and 
1.64 g of 2-methylimidazole were dissolved in 20 mL of 
methanol to prepare the ligand solution. The metal solu-
tion was then poured into the ligand solution under stirring 
and continually stirred for 1 h. The mixed solution was then 
transferred into a teflon-lined autoclave. The autoclave was 
placed in the oven at 60 °C for 48 h. After the reaction was 
done, the powder was collected, washed with methanol, and 
dried under vacuum at room temperature.

Fabrication of bare and modified sensors

The bare GCSs were cleaned by polishing with a 0.05 μm 
alumina slurry and sonicated several times with a solution 
of DDW and ethanol (1:1) for 10 min. The modified GCS 
 (GCS1) was carried out as follows: 4.0 mg of Cd ZIF-67 
powder was dispersed in 1.0 mL of ethanol and 0.1 mL 
of a 0.5% nafion solution, followed by ultrasonication for 
15 min. Then, 8.0 μL of suspension was dropped on the 
surface of GCS and allowed to air dry at room temperature. 
The same procedure was performed utilizing 8.0 mg (1.0%) 
and 12.0 mg (2.0%) of Cd ZIF-67 powder to fabricate  GCS2 
and  GCS3.

Results and discussion

The charge delocalization of DMMP

The fabrication of super-sensitive and selective electrochem-
ical sensors mainly depends on providing diverse proper-
ties, including a low degree of resistivity (Rct), better surface 
area, and adsorption, as well as a better electrostatic attrac-
tion force between the proposed sensor and the solvated 
analyte throughout the analysis process. Therefore, the 
charge delocalization of DMMP was tested and estimated 
to be − 1.8858431 concerning the density functional theory 
(DFT) method, as illustrated in Table 1.

Characterization of Cd ZIF‑67 powder

Visual examination reveals that the reaction of cobalt and 
cadmium nitrate hexahydrate with 2-methylimidazole in 
methanol yields the pure dark brown crystalline product of 
Cd ZIF-67. Scanning electron microscopy confirms a rhom-
bic dodecahedral morphology of Cd ZIF-67 and its particle 
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size distribution in the range of 300 ~ 500 nm, as shown in 
Fig. 1A and Fig. S1. Furthermore, the SEM–EDX demon-
strated the elemental mapping distribution of Cd, C, N, and 
Co elements in the Cd ZIF-67 sample, proving the incorpo-
ration and uniform distribution of Cd and Co elements in the 
sample, as displayed in Fig. 1B.

X-ray diffraction patterns in Fig. 2A demonstrate that a 
pure ZIF-67 topology phase is formed, which showed simi-
lar patterns and was in good agreement with the simulated 
pattern [26, 27]. The comparative intensities and notable 
peak positions at 2θ = 7.3°, 10.35°, 12.7°, 14.8°, 16.4°, and 
18° correspond to (110), (200), (211), (220), (310), and 
(222), respectively. This is in good agreement with previous 
reports [28, 29]. The values of grain size were determined 
by Scherrer’s equation [30].

The estimated crystallite size was 83.52 nm. As well, the 
FT-IR spectra in Fig. 2B further demonstrate the structural 
analysis of Cd ZIF-67. At higher frequencies, Cd ZIF-67 
showed three contributions. The first one is a broad peak 
between 3500 and 3200  cm−1 due to the stretching of the 
N–H bond of protonated imidazole [31, 32], and the other 
two are the small peaks present at 3134 and 2925  cm−1, 
which can be ascribed to C–H stretching vibrational modes 
of the imidazole ring and the methyl group existing in the 
organic ligand [33]. The peak at 1591  cm−1 may be due to 
the C = N stretch modes, while the peak at 1457  cm−1 agrees 
with the entire ring stretching [32]. Several spectral bands 
were found in the range of 1350 to 900  cm−1 that might be 
related to the ring’s in-plane bending. The peaks at 760 and 
690  cm−1 correspond to aromatic sp2 C–H bending [34]. 
The peak at 425  cm−1 corresponds to the Co–N bond [35].

Furthermore, Fig. 2C presents the  N2-adsorption iso-
therms Cd ZIF-67, and accordingly, the BET surface area is 
1780  m2/g. The obvious high surface area could confirm the 
effective fabrication of highly porous Cd ZIF-67.

In addition, the point of zero charges (pHpzc) is described 
as a pH at which the surface charge density of the surface of 
fabricated molecules is equal to zero [18]. In this work, the 
pHpzc of Cd ZIF-67 was found to be equal to pH 7.3, as illus-
trated in Fig.S2. Subsequently, at pH ≤ 7.0, the net surface 
charge of Cd ZIF-67 is positively charged (+ ve), whereas at 
pH ≥ 8.0, the net surface charge is negatively charged (− ve).

As shown in Fig. 2D, ZIF-67 and Cd ZIF-67 were fur-
ther studied using Raman spectroscopy. The peaks at 413, 
468, 515, and 680  cm−1 are attributed to ZIF-67, includ-
ing the Co–N bond at 413  cm−1 and the vibrational mode 
of the 2-methyl imidazolate ligand at 680  cm−1 [36]. The 
peaks at 468, 515, 607, and 687  cm−1 belonged to the four 
Raman active modes of Eg, F1

2g, F2
2g, and A1

g for the Co–O 
bond [37]. Cd ZIF-67 spectrum (Fig. 2D) showed new peaks 
around 300, 510, and 590  cm−1. The peak around 300  cm−1 
is the 1LO (longitudinal optical) phonon arising from the A1 
mode of the Cd–N bond vibration, and the peak at 590  cm−1 
is caused by the offset of Cd in the Cd ZIF-67 composite 
[38]. In addition, peaks that can be observed at 120, 413, and 
687  cm−1 are evidence for the retention of ZIF-67 [36, 38].

XPS survey spectra of Cd ZIF-67 are shown in Fig.
S3(A). The spectrum shows that the incorporated ele-
ments in the structure are C, N, Co, and Cd, and their 
atomic abundance percentages are 61.2, 28.3, 4.1, and 
6.4%, respectively. The Cd ZIF-67 N 1 s core-level spec-
tra are illustrated in Fig.S3(B). They are separated into 

Table 1  Data of Mulliken 
atomic charge of DMMP 
structure 

Atom Mulliken atomic 
charges

DMMP charge without H atoms Overall DMMP charge

P 0.7111409  − 1.8858431 0.0
O  − 0.508380
O  − 0.291168
O  − 0.443817
C  − 0.786972
H 0.270428
H 0.197125
H 0.206583
H 0.283538
C  − 0.270596
H 0.144688
H 0.133786
H 0.139845
C  − 0.296051
H 0.170421
H 0.170230
H 0.168931
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Fig. 1  A SEM image and B 
SEM image coupled with 
the EDX elemental mapping 
distribution of Cd, C, N, and Co 
elements of Cd ZIF-67  

Fig. 2  A PXRD pattern, B 
FTIR, C nitrogen sorption 
measurements at 77 K, and D 
Raman spectra of Cd ZIF-67
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several peaks, depending on the nitrogen environment. The 
deconvolutions were divided into four peaks. The pyridinic 
nitrogen atoms may be responsible for the strongest N 1 s 
peaks at 398.8 eV [39]. This peak denotes the successful 
coordination through nitrogen-sp2 bonding with metal ions 
due to the small difference in binding energies between the 
metal-coordinated N and pyridinic N [40]. It further speci-
fies that most methyl imidazole reactions should result in 
methyl imidazolate. The deconvoluted C 1 s spectra are 
shown in Fig.S3(C). There are three major peaks at 284.57, 
284.99, and 288.15 eV. These peaks may be attributed 
to the C–C/C = C [41–43], C = N [44–46], and C–N [43, 
46, 47], respectively. The Co 2p deconvoluted spectra are 
shown in Fig.S3(D). There are two primary peaks visible. 
These peaks are indexed to Co 2p3/2 and 2p1/2 spin–orbit 
splitting at 780.9516 and 797.24 eV. The deconvoluting 
cobalt Co 2p3/2 and Co 2p1/2 spectra present two main 
peaks under each one along with their significant corre-
sponding satellite peaks. The peaks at 782.94, 786.5, and 
789.44 eV correspond to the unsaturated Co species in 
Co–N coordination within the framework [48]. Further-
more, Fig.S3(D) shows the XPS spectra of Cd incorpo-
rated in Cd ZIF-67, showing two main peaks at 412.37 
and 405.21 eV, which are recognized as Cd 3d3/2 and 
Cd 3d5/2, respectively, representing the  Cd2+ oxidation 
state [49]. The spin–orbit interaction with Cd(3d5/2) and 
Cd(3d3/2) produced the fine doublet at energies of 406.51 
and 411.85 eV, respectively [50].

Electrochemical characterization of as‑prepared 
sensors

Previous studies [51, 52] indicated that metal nanopar-
ticles co-formulated with modified electrode materials 
rarely undergo oxidation in aqueous buffer solutions [52], 
except [53, 54] when they are exposed to a strongly acidic 
medium of 0.5 M HCl (pH 0.3) [53]. The electrochemical 
behavior of the  GCS2 was first studied by cyclic voltam-
metry to prove the incorporation of Cd in ZIF-67. Cyclic 
voltammograms for both BGCS and  GCS2 were recorded 
in a 0.5 M HCl solution (Fig.S4). The electrochemical 
response for BGCS (red line, curve a) shows no redox 
processes; however, the  GCS2 (blue line, curve b) showed 
a characteristic oxidation process at − 898 mV and a reduc-
tion process at − 982 mV in the reverse scan for the Cd 
redox process.

Electroactive surface area and resistive properties

ZIF-67 usually has a positive surface charge [55, 56]. 
Nafion, a negatively charged perfluorinated polymer, can 

bind to positively charged ZIF-67 and form a stable porous 
film on electrode surfaces. This agrees with the results of the 
point of zero charges previously mentioned. As previously 
reported, contacting ZIF-67 with water could result in a pH 
increase, which might be due to the protonation effect of 
imidazolate groups (mim) exposed at the outer surface of the 
ZIF-67 particles [57], according to the equation:

The interactions between anionic species and ZIF-67, 
which has a positive surface charge, were made easier by 
the solution’s increased pH. Furthermore, the uncoordi-
nated  Co2+ sites at the outer surface of ZIF-67 were deemed 
to bond with hydroxide derived from water in an aqueous 
solution [58]. This means that ZIF-67 could adsorb anionic 
[Fe(CN)6]3−/4−species through electrostatic interactions.

The electroactive surface area of bare and modified strip-
ping voltammetric glassy carbon sensors was measured to 
provide more information about the electrochemical prop-
erties of the surface of BGCS and as-prepared sensors. 
Figure 3A demonstrates the CV of 10 mM  K3[Fe(CN6)] in 
0.1 M of KCl as a redox probe cell system using BGCS and 
 GCS1-3 sensors (scan rate (ν) of 100 mV·s−1). The CV vol-
tammograms demonstrate a well-defined redox peak, owing 
to the reversible electron transfer rate of [Fe(CN)6]3−/4 com-
pared to unmodified GCS. Moreover, the redox peaks dis-
play ΔEp values almost equal to 140, 100, and 150 mV for 
the  GCS1,  GCS2, and  GCS3 sensors, respectively, compared 
to the BGCS (ΔEp = 210 mV).

Notably, the amount of charges on the as-prepared sen-
sors’ surface causes an acceleration of the rate of electron 
transfer of [Fe(CN)6]3−/4−on the as-prepared sensors’ sur-
face, which accounts for the ΔEp values decreasing for some 
of the as-prepared sensors. Furthermore, [Fe(CN)6]3−/4− had 
its highest redox peak current intensity at the  GCS2 sensor, 
which may be due to the large surface area of Cd ZIF-67, 
and the good conductivity of co-mixed metal ions (Co and 
Cd).

By using the Randles–Sevcik equation [59], the electro-
active surface area (Asurface) of all as-prepared sensors was 
evaluated from ip versus v1/2 plots relating the CV of 10 mM 
of  K4[Fe(CN6)] in 0.1 M of KCl at v ≈ 20–400 mV∙s−1 (Fig.
S5 and Fig. 3B) according to the following equation:

ip = (2.69 × 105) n3/2Asurface D1/2 v.1/2

where n is the amount of  e. in the electrochemical pro-
cess, D is the diffusion coefficient (7.6 µcm2·s−1), Asurface is 
the electroactive surface area of the as-prepared sensor, and 
C is the concentration of  K3[Fe(CN)6]. The values of the 
electroactive area of BGCS and  GCS1-3 sensors were calcu-
lated to be 0.056, 0.13, 0.21, and 0.11  cm2, respectively. It 
is noteworthy that the  GCS2 sensor has the highest Asurface 
value, with a fourfold increase compared to the BGCS.

mim
−
+ H

2
O ⟺ Hmim + OH

−
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Furthermore, the charge transfer resistance (Rct) at the 
interface of BGCS and as-prepared sensors was accounted 
for via electrochemical impedance spectroscopy (EIS) [60]. 
Nyquist plots for BGCS and  GCS1-3 sensors were meas-
ured in 0.1 M of KCl containing 10.0 mM  K3[Fe(CN6)] to 
provide more details about the performance of the sensing 
mechanism of all as-prepared sensors (Fig. 3C). Rct values 
were evaluated to be 420 ± 1.53, 290 ± 2.51, 200 ± 2.08, and 
330 ± 2.08 Ω for the BGCS and  GCS1-3 sensors, respectively. 

The  GCS2 exhibited a development in the rate of electron 
transfer with low resistivity compared to the BGCS and all 
other as-prepared sensors.

Electrochemical behavior and sensor reaction mechanism 
of DMMP

To clarify the electrochemical behavior of DMMP, cyclic 
voltammograms (CVs) of 1.0 μM DMMP were measured in 
B-R universal buffer of different pH values upon the surface 
of  GCS2 at scan rate (v = 100 mV·s−1). As displayed in Fig.
S6, the CV of DMMP in pH 4 displayed the main oxida-
tion peak at peak potential (Ep) ≈ − 0.75 V, which could be 
related to the selective oxidation of the phosphonate group 
into phosphate [61, 62]. The voltammogram did not show 
the oxidation/reduction couple for Cd in the sensor material, 
which means that Cd nanoparticles in the sensor material 
are electrochemically inert in the investigated B-R buffer 
solutions. No anodic peak was observed in the reverse scan 
upon increasing the scan rate from 10 to 500 mV/s suggest-
ing that the oxidation reaction of DMMP can be chemically 
irreversible electron transfer for the scan rates being used, 
in which the redox event is followed by a chemical reaction 
(EC mechanism) [63]. On the other side, it was observed 
that Ep shifts linearly in negative direction with an increase 
in pH, following the equation: Ep (V) = (− 0.067 ± 0.0022) 
pH + (0.45 ± 0.031) (R2 = 0.998 and n = 6) (pH of 2.0–7.0), 
as shown in Fig.  S7(B), which indicates the involvement of 
protons in the electrochemical oxidation of DMMP at the 
surface of  GCS2. Generally, the number of protons partici-
pating in the electrochemical reaction was calculated for the 
reversible or quasi-reversible electrode reaction process [64]. 
This slope value of 0.067 V/pH was close to the Nernst slope 
of 0.059 V/pH at 25 °C. This result indicated that an equal 
number of protons and electrons took part in the oxidation 
process of DMMP [65]. Furthermore, the transfer coefficient 
(α) was evaluated to be 0.73 while assuming the number 
of electrons (na) is equal to 1 from the slope value of the 
linear plot of Ep vs. ln v of 1.0 μM DMMP in B-R universal 
buffer (pH 4) using  GCS2 (Fig.S7(C)), which is expressed 
by the following equation [66]: Ep (V) = (0.035 ± 0.0037) ln 
v (mV∙s−1) + (0.880 ± 0.045) (R2 ≈ 0.984 and n = 8). As for 
a completely irreversible and reversible electrode reaction, 
α can be taken as 0.5 and 1.0, respectively [67]; the elec-
trode reaction can be considered a quasi-reversible reaction 
for the scan rates being considered (10–500 mV/s). Further, 
[ΔE = EP − EP/2] of 55 to 60 mV suggested also the quasi-
reversible electrode process. For such a quasi-reversible 
system [68, 69], [EP − EP/2] = 1.857 RT/(αnaF), values of 
αna (0.80–0.87) were also calculated at various pH values. 
These results confirm the participation of an equal number 
of protons (p) and electron transfer (na), which is assumed 
to be 1 in the oxidation mechanism [70], as demonstrated 

Fig. 3  A CVs of 10  mM of  K3[Fe(CN6)] in 0.1  M of KCl 
(v = 100  mV·s−1), and B plot of ip vs. v1/2 relating CVs at v ≈ 
10–400  mV·s.−1 using (a) BGCS and (b)  GCS1, (c)  GCS2, and (d) 
 GCS3 sensors (n = 3). C Nyquist plots of 10.0  mM  K3[Fe(CN6)] in 
0.1 M of KCl utilizing (a) BGCS, (b)  GCS1, (c)  GCS2, and (d)  GCS3 
sensors (n = 3)
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in Scheme 1. As well, the linear plot of Log ip vs. Log ν in 
a B-R buffer pH 4 was estimated to investigate the adsorp-
tion-controlled process of the DMMP upon the surface of 
 GCS2, which is expressed by the following equation: Log 
ip/μA = (1.023 ± 0.004) Log ν/mV·s

−1 − (1.84 ± 0.033) (n = 8 
and R2 = 0.998), as displayed in Fig.S7(D). The obtained 
slope value suggests that the oxidation process of the 
DMMP on the surface of  GCS2 is controlled by the adsorp-
tion process [18].

The anodic/forward charge transfer may be followed by 
a homogenous irreversible chemical reaction [63, 71]. The 
product of electron transfer from the oxidation process has 
been chemically consumed in the formation of the follow-up 
product and is therefore not available for reduction at such a 
low scan rate (i.e., at this time-scale of the experiment, the 
backward electron transfer reaction could not take place, 
leaving the forward reaction dominant) [63, 71]. Adsorp-
tion effects may also contribute to the absence of the peak 
in the reverse direction [72]. Samin et al. observed similar 
results [72] which successfully captured the physics with 
a model taking into account diffusion, kinetics, adsorption 
effects, and morphology changes on the electrode surface or 
the electron transfer step.

As suggested in mechanism (Scheme 1), the methoxy 
group (O–CH3) and phosphoryl oxygen (P = O) of DMMP 
were linked with the surface of  GCS2 with an electrostatic 
attraction force depending on the Lewis acid–base interac-
tions [73]. The methoxy group (O–CH3) is first cleaved and 
protonated to generate methanol  (CH3OH) as a by-product, 
accompanied by the formation of methyl hydrogen methyl 
phosphonate (MHMP) molecules [74, 75]. As shown in 
Fig.S7(A), the ip vs. pH plot confirmed that the highest ip 
was obtained at pH 4, followed by a gradual decrease with 
increasing pH until complete disappearance at pH ˃ 8. This 
electrochemical performance may arise from the electro-
static repulsion between DMMP and  GCS2, which can be 
further explained by the following reasons: As stated pre-
viously, the charge delocalization throughout the solvated 
DMMP was measured and displayed with a − ve charge 
(− 1.8858431) using the Gaussian 09 program package. 
At pH ≤ 3.0, the magnitude of ip is very small, owing to 

the repulsion force between the strong protonated form of 
DMMP molecules (+ νe) in the acidic medium (acid–base 
dissociation constant (pKa ~ 2.37 [76])) and the positively 
charged surface (+ νe) of  GCS2 (pHzpc ~ 7.3; Fig.S2), as 
shown in Scheme 1. Thus, the mechanism of the reaction 
mainly depends on the electrostatic attraction force accom-
panied by the adsorption characteristics between the DMMP 
molecules and the surface of  GCS2, which occur easily at 
pH 4. At pH ≥ 8, the ip is completely disappeared, due to the 
occupancy of the surface of DMMP and  GCS2 with a lone 
pair of electrons upon methoxy groups (− νe) and imida-
zole groups (− νe), which hinders the electrostatic attraction 
between the DMMP molecules and the surface of  GCS2.

The adsorption behavior and the preliminary stripping 
voltammetry test of as‑prepared sensors

The preliminary anodic stripping voltammetric scan of 
2.0 pM of DMMP in the BR buffer pH 4 (Fig.S8(A)) was 
recorded utilizing BGCS,  GCS1,  GCS2, and  GCS3 sensors at 
an accumulation potential (Eacc) of − 1.5 V (versus Ag/AgCl/
KCls) using the square-wave adsorptive anodic stripping vol-
tammetry technique (SW-AdASV) at tacc = 30 s, a = 25 mV, 
f = 100 Hz, and ΔEs = 10 mV. Notably, the ip of  GCS2 dis-
played a greater affinity for DMMP with about a threefold 
increase concerning the bare CPS, which may arise from 
the improvements in the electroactive surface area features 
of the utilized modifier material.

In this context, the adsorption behavior of the DMMP on 
the surface of the BGCS (inset; Fig.S8(B)) and  GCS2 (Fig.
S8(B)) sensors was also evaluated by recording CV voltam-
mograms of 1.0 nM DMMP in the B-R buffer of pH 4. The 
peak current intensity (ip) voltammograms were recorded 
without applying adsorptive accumulation time (open cir-
cuit conditions) (ipIII), followed by utilizing an adsorptive 
accumulation time of 75 s (ipI 1st cycle and ipII 2nd cycle). 
According to the adsorptive step, a well-defined peak was 
noticed at the  GCS2 (ipI; in Fig.S8(B)), owing to the great 
enhancement in the adsorption property toward DMMP even 
at open circuit conditions (ipIII). Moreover, the remarkable 
decline of the ipII observed in the 2nd cycle may be due to 

Scheme 1  The proposed 
mechanism for the oxidation of 
DMMP
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the desorption of DMMP from the sensor surface. Based on 
the last-mentioned findings, we can deduce that  GCS2 has 
the best affinity toward the determination of DMMP, which 
could be used in electroanalytical studies due to its good 
catalytic, adsorptive, and selective properties.

Optimization of the pH medium and analytical parameters

Because of the ion exchange process between the detected 
sample and the surface of sensor, the pH of solution gener-
ally has a significant impact on the ip signal and the clarity 
of voltammograms of the detected sample on the surface of 
as-prepared sensors. Thus, the effect of changing pH values 
of B-R buffer (2–8) as a supporting electrolyte on the ip 
signal of 0.7 nM of DMMP was tested at Eacc =  − 1.5 V (vs. 
Ag/AgCl-KCl) for 30 s using  GCS2 as displayed in Fig.S9. 
The oxidative ip signal was strongly affected by changing the 
acidity of the solution from 2 to 7, followed by the complete 
disappearance of the ip at pH ≥ 8. The highest oxidative peak 
was obtained at pH 4, which was subsequently utilized for 
optimizing instrumental operational conditions.

The optimum instrumental operational conditions 
for the detection of DMMP were pointed out to be pH 6, 
Eacc =  − 1.5 V, tacc = 30 s, frequency (f) = 90 Hz, pulse ampli-
tude (a) = 30 mV, and scan increment (ΔEs) = 10 mV using 
 GCS2, as displayed in Figs.S10(A, B, and C). According to 
the adsorption step, the effect of changing Eacc from − 1.7 
to − 1.3 V (vs. Ag/AgCl-KCl) on the ip signal of 2.0 pM 
of DMMP in B-R buffer pH 4 was estimated for 30 s using 
 GCS2, as displayed in Figs.S11(A) and (B).

Also, the effect of changing the tacc of 0.3 and 0.7 nM 
of DMMP on the ip signal was estimated, as displayed 
in Fig.  S11(C). According to the last-mentioned results, 
Eacc =  − 1.5 V and tacc at 30 s are the optimum accumulation 
conditions for the determination of DMMP in B-R buffer of 
pH 4, which are employed for the subsequent electroanalyti-
cal measurements.

The electroanalytical detection of DMMP

Limits of quantification (LOQ) and detection (LOD)

Under the chosen analytical conditions, the calibration 
curve of different concentrations of DMMP showed two 
linear portions over the ranges of 0.02–2.0 and 2.0–9.0 nM 
into the B-R buffer of pH 4 at the  GCS2 was character-
ized by SW-AdASV, as displayed in Fig. 4A. The linear 
regression equations of the last-mentioned calibration 
plots were expressed as follows: ip/μA = (6.975 ± 0.138) 
CDMMP/nM + (0.0423 ± 0.0047) (R2 = 0.990),  and 
ip/μA = (1.650 ± 0.33) CDMMP/nM + (9.8 ± 0.36) (R2 = 0.994) 
with a limit of detection (LOD) ≈ 0.06 pM (sensitivity of 

6.975 μA/pM). As summarized in Table S1, different types 
of methods and sensors have been developed to detect 
DMMP in gaseous and liquid states. Among the mentioned 
findings in Table S1, we can conclude that  GCS2 has the 
lowest LOD value and wider linearity range (LR) toward 
the detection of DMMP in bulk and biological fluid (serum 
sample) at room temperature (RT) compared to the other 
reported analytical methods to date. Furthermore, there 
are no detailed reports on the usage of the SW-AdASV 
technique for the detection of DMMP in bulk and biologi-
cal fluids.

Fig. 4  A SW-AdAV voltammograms of different amounts of DMMP 
in pH 4 on  GCS2 (Eacc =  − 1.5 V, tacc = 60 s, ΔEs = 10 mV, f = 90 Hz, 
and a = 30  mV) in bulk form: (a) baseline, (b) 0.04, (c) 0.09, (d) 
0.3, (e) 0.6, (f) 0.7, (g) 1.3, (h) 1.7, (m) 5.5, (n) 8.0, and (o) 9.0 nM 
(inset: its corresponding plot (n = 3)). B SW-AdAV voltammograms 
of different amounts of DMMP in pH 4 on  GCS2 (Eacc =  − 1.5  V, 
tacc = 60 s, ΔEs = 10 mV, f = 90 Hz, and a = 30 mV) in spiked serum 
form: (a) baseline, (b) 0.1, (c) 0.2, (d) 0.6, (e) 1.0, (f) 3.0, (g) 4.0, (h) 
5.0, and (m) 6.0 nM (inset: its corresponding plot (n = 3))
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Validity of the as‑modified sensor

Under optimum conditions, reliability and repeatability 
could be evaluated throughout the day (intra-day analysis) 
and every day over 3 days (inter-day analysis) by recording 
SW-AdAS voltammograms of 0.3 nM DMMP using five 
freshly as-modified  GCS2 in parallel. The recovery ± relative 
standard deviation (R% ± RSD) of the intra-day and inter-day 
analysis of DMMP were 101.51% ± 3.28 and 99.3% ± 3.36, 
respectively, revealing the excellent reliability and repeat-
ability of the as-modified sensor. Furthermore, the stabil-
ity of the as-modified sensor has been checked three times 
(n = 3) every 7 days through its storage in air for 30 days at 
RT, maintaining 96.36% of its initial activity for more than 
15 days and reaching 92.3% after 30 days, as figured out 
in Fig.S12(A). As tabulated in Table.S2, the results proved 
that the sensor exhibited proper reliability, repeatability, and 
long-term stability, owing to the chemical stability of the 
as-prepared Cd ZIF-67 modifier.

Selectivity

The anti-interference performance (selectivity) of the  GCS2 
was investigated by the addition of common interferences in 
human biological systems, as displayed in Fig.S12(B). The 
ip voltammogram of 0.3 nM of DMMP (CI) (Fig.  S11(B); a) 
was evaluated after addition of 30.0 nM (~ 100-fold) of com-
mon metal cations (Mix1:  Ca+2,  Mg+2,  Fe+2,  Zn+2,  Co+2, 
 Na+, and  K+) and 30.0 nM (100-fold) mixture of S-con-
taining amino acids (S-amino: cysteine (Cys) and thiamine 
(TA)), as demonstrated in Fig.S12(B); b. Noteworthy, there 
was no noticeable difference in the magnitude of the ip vol-
tammogram of 0.3 nM of DMMP with an RSD of 2.88%, 
and no additional peaks of  Mix1 and S-amino interferents 
appeared. Moreover, Fig.S12(B); c exhibits a new peak at 
0.36 V (CII), which corresponds to 0.03 nM (15-fold) uric 
acid (UA) with a relative error (RE %) ~  ± 1.2 at the DMMP 
peak. Furthermore, Fig.S12(B); d demonstrates another peak 
at 0.15 V (CIII) after the addition of 30.0 nM (~ 100-fold) of 
the mixture of other interferents  (Mix2: ascorbic acid (AA), 
dopamine (DA), and glucose (Glu.)).

On the other hand, the specificity performance of the 
 GCS2 was investigated toward the detection of DMMP in the 
presence of compounds with similar electroactive functional 
groups such as glyphosate (GLYP) and chlorpyrifos (CPYP) 
in bulk form, as displayed in Scheme.S1 and Fig.S13. The ip 
voltammogram of 0.6 nM of DMMP (Fig.  S12; a) was evalu-
ated with the same value even after the addition of 60.0 nM 
of GLYP, which demonstrated a small peak at − 0.02 V, cor-
responding to (GLYP). According to previous reports by Wu 
et al. [44], Indra et al. [45], and Liu et al. [46], the limita-
tion in the detection response of GLYP during the detec-
tion of DMMP could arise from the usage of an optimized 

pH medium (universal buffer; pH 4), which is far from the 
reported optimized pH condition (phosphate buffer; pH 7) 
in the detection of GLYP. Moreover, the ip voltammogram 
of 0.6 nM of DMMP did not show any additional oxidation 
peak associated with the addition of 60.0 nM of CPYP as 
a result of it not being oxidized (Fig.  S13; b) [47]. These 
results proved that the presence of common interferences 
in human biological systems and other compounds with 
the same electroactive functional groups does not interfere 
with the detection of DMMP, even when the concentrations 
exceed 100-fold.

Application in spiked human serum fluid

The  GCS2 was applied to detect DMMP, spiked in human 
serum samples of 3 healthy volunteers in the B-R buffer 
of pH 4 using SW-AdASV under the chosen analytical 
conditions without the necessity for sample pre-treatment 
steps. SW-AdAS voltammograms of different concentra-
tions of DMMP in the presence of spiked human serum 
samples  (Voulanter1) over two linear ranges of 0.1–1.0 and 
1.0–6.0 nM into the B-R buffer of pH 4 at the  GCS2 with a 
LOD ≈ 0.03 nM (sensitivity of 4.83 μA/nM), as displayed 
in Fig. 4B. Moreover, 0.6 and 1.0 nM of DMMP were esti-
mated in the presence of spiked human serum samples 
 (Voulanter2, 3), which achieved a good recovery (R %) ± rela-
tive standard deviation (RSD %) without interference from 
other biological contents, as summarized in Table.S3. These 
results proved that the fabricated sensor exhibited proper 
accuracy (RE %) and reliability in the detection of DMMP 
even among complex biological systems.

Conclusion

This work involved the successful hydrothermal synthe-
sis of porous nanoparticles of Cd ZIF-67 with a rhombic 
dodecahedral morphology, which were then applied to the 
construction of an electrochemical sensor for DMMP. The 
porous Cd ZIF-67 nanoparticles possessed a high surface 
area, while 1.0% of the modified GCS  (GCS2) promoted the 
electrocatalytic activity and adsorption behaviors of BGCS. 
Subsequently, the  GCS2 exhibited low limit of detection in 
bulk with proper reliability, long-term stability, and repeat-
ability, which were necessary for the electroanalytical detec-
tion. Furthermore, the fabricated modified sensor exhibited 
a proper accuracy and reliability in the detection of DMMP 
even among complex biological systems.
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