Skip to main content
Log in

In situ digestion-assisted multi-template imprinted nanoparticles for efficient analysis of protein phosphorylation

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new general approach called in situ digestion-assisted multi-template imprinting is proposed for preparation of phospho-specific molecularly imprinted nanoparticles. Through the novel templating strategy and controllable imprinting process, imprinted nanoparticles specific to the intact phosphoprotein and its phosphopeptides were synthesized. The prepared imprinted nanoparticles exhibited excellent specificity (cross reactivity < 10%), high affinity (10−6 M), high efficiency (47.5%), and good generality (both intact phosphoprotein and phosphopeptides). We also realized the fine tuning of the recognition at peptide level of the imprinted nanoparticles by adjusting the imprinting time. Based on the selective enrichment of the imprinted nanoparticles, the MS identification of both the intact phosphoprotein (Tau) and phosphopeptides (angiotensin II and peptides of Tau) in real complex samples could be achieved. Therefore, we believe that the in situ digestion-assisted multi-template imprinting strategy holds promising future in both phosphorylation analysis and proteomics applications.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 11:1633–1649. https://doi.org/10.1002/pmic.200300771

    Article  CAS  Google Scholar 

  2. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M (2006) Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell 217:635–648. https://doi.org/10.1016/j.cell.2006.09.026

    Article  CAS  Google Scholar 

  3. Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee SJ, Mah AS, Meng L, Stark MJ, Stern DF, De VC, Tyers M (2005) Global analysis of protein phosphorylation in yeast. Nature 438:679–684. https://doi.org/10.1038/nature04187

    Article  CAS  PubMed  Google Scholar 

  4. Kalume DE, Molina H, Pandey A (2003) Tackling the phosphoproteome: Tools and strategies. Curr Opin Chem Biol 7:64–69. https://doi.org/10.1016/s1367-5931(02)00009-1

    Article  CAS  PubMed  Google Scholar 

  5. Hubbard MJ, Cohen P (1993) On target with a new mechanism for the regulation of protein phosphorylation. Trends Biochem Sci 18:172–177. https://doi.org/10.1016/0968-0004(93)90109-z

    Article  CAS  PubMed  Google Scholar 

  6. Graves JD, Krebs EG (1999) Protein phosphorylation and signal transduction. Pharmacol Ther 82:111–121. https://doi.org/10.1016/s0163-7258(98)00056-4

    Article  CAS  PubMed  Google Scholar 

  7. Van Simaeys D, Turek D, Champanhac C, Vaizer J, Sefah K, Zhen J, Sutphen R, Tan WH (2014) Identification of cell membrane protein stress-induced phosphoprotein 1 as a potential ovarian cancer biomarker using aptamers selected by cell systematic evolution of ligands by exponential enrichment. Anal Chem 86:4521–4527. https://doi.org/10.1021/ac500466x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen IH, Xue L, Hsu CC, Paez SJ, Pan L, Andaluz H, Wendt MK, Lliuk AB, Zhu JK, Tao WA (2016) Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proc Natl Acad Sci 114:3175–3180. https://doi.org/10.1073/pnas.1618088114

    Article  CAS  Google Scholar 

  9. Iqbal K, Liu F, Gong CX, Grundke-Iqbal I (2010) Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 7:656–64. https://doi.org/10.2174/156720510793611592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fraser KB, Moehle MS, Alcalay RN, West AB (2016) Urinary LRRK2 phosphorylation predicts parkinsonian phenotypes in G2019S LRRK2 carriers. Neurology 86:994–999. https://doi.org/10.1212/WNL.0000000000002436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Riley NM, Coon JJ (2016) Phosphoproteomics in the age of rapid and deep proteome profiling. Anal Chem 88:74–94. https://doi.org/10.1021/acs.analchem.5b04123

    Article  CAS  PubMed  Google Scholar 

  12. Solari FA, Dell’Aica M, Sickmann A, Zahedi RP (2015) Why phosphoproteomics is still a challenge. Mol Biosyst 11:1487–1493. https://doi.org/10.1039/c5mb00024f

    Article  CAS  PubMed  Google Scholar 

  13. Li XS, Yuan BF, Feng YQ (2016) Recent advances in phosphopeptide enrichment: Strategies and techniques. TrAC Trends Anal Chem 78:70–83. https://doi.org/10.1016/j.trac.2015.11.001

    Article  CAS  Google Scholar 

  14. Yaffe MB (2002) Phosphotyrosine-binding domains in signal transduction. Nat Rev Mol Cell Biol 3:177–186. https://doi.org/10.1038/nrm759

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Wang Y, Dong M, Zou HF, Ye ML (2017) Sensitive approaches for the assay of the global protein tyrosine phosphorylation in complex samples using a mutated SH2 domain. Anal Chem 89:2304–2311. https://doi.org/10.1021/acs.analchem.6b03812

    Article  CAS  PubMed  Google Scholar 

  16. Wang MY, Deng CH, Li Y, Zhang XM (2014) Strengthening alginate/polyacrylamide hydrogels using various multivalent cations. ACS Appl Mater Interfaces 21:10418–10422. https://doi.org/10.1021/am403966x

    Article  CAS  Google Scholar 

  17. Chi A, Huttenhower C (2007) Analysis of phosphorylation sites on proteins from saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA 104:2193−2198. https://doi.org/10.1073/pnas.0607084104

  18. Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJD (2005) Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4:873–886. https://doi.org/10.1074/mcp.T500007-MCP200

    Article  CAS  PubMed  Google Scholar 

  19. Liu FJ, Wan H, Liu ZS, Wang HW, Mao JW, Ye ML, Zou HF (2016) Preparation of polypropylene spin tips filled with immobilized titanium(IV) ion monolithic adsorbent for robust phosphoproteome analysis. Anal Chem 88:5058–5064. https://doi.org/10.1021/acs.analchem.6b00701

    Article  CAS  PubMed  Google Scholar 

  20. Qin WJ, Zhang WJ, Song LN, Zhang YJ, Qian XH (2010) Surface initiated atom transfer radical polymerization: Access to three dimensional wavelike polymer structure modified capillary columns for online phosphopeptide enrichment. Anal Chem 82:9461–9468. https://doi.org/10.1021/ac1021437

    Article  CAS  PubMed  Google Scholar 

  21. Zhou HJ, Ye ML, Dong J, Corrandini E, Cristobal A, Heck AJR, Zou HF, Mohanmmed S (2013) Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat Protoc 8:461–480. https://doi.org/10.1038/nprot.2013.010

    Article  CAS  PubMed  Google Scholar 

  22. Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ, Zhang H, Zha XM, Polakiewicz RD, Comb MJ (2005) Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23:94–101. https://doi.org/10.1038/nbt1046

    Article  CAS  PubMed  Google Scholar 

  23. Oda Y, Nagasu T, Chait BT (2001) Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol 19:379–382. https://doi.org/10.1038/86783

    Article  CAS  PubMed  Google Scholar 

  24. Zhang Y, Liu RJ, Hu YL, Li GK (2009) Microwave heating in preparation of magnetic molecularly imprinted polymer beads for trace triazines analysis in complicated samples. Anal Chem 81:967–976. https://doi.org/10.1021/ac8018262

    Article  CAS  PubMed  Google Scholar 

  25. Yang HH, Zhang SQ, Yang W, Chen XL, Zhuang ZX, Xu JG, Wang XR (2004) Molecularly imprinted sol−gel nanotubes membrane for biochemical separations. J Am Chem Soc 126:4054–4055. https://doi.org/10.1021/ja0389570

    Article  CAS  PubMed  Google Scholar 

  26. Zhang W, Liu W, Li P, Xiao HB, Wang H, Tang B (2014) A fluorescence nanosensor for glycoproteins with activity based on the molecularly imprinted spatial structure of the target and boronate affinity. Angew Chem Int Ed 53:12489–12493. https://doi.org/10.1002/anie.201405634

    Article  CAS  Google Scholar 

  27. Kunath S, Panagiotopoulou M, Maximilien J, Marchyk N, Sänger J, Haupt K (2015) Cell and tissue imaging with molecularly imprinted polymers as plastic antibody mimics. Adv Healthc Mater 4:1322–1326. https://doi.org/10.1002/adhm.201500145

    Article  CAS  PubMed  Google Scholar 

  28. Takeuchi T, Mori K, Sunayama H, Takano E, KitayamamY ST, Hirose Y, Inubushi S, Sasaki R, Tanino H (2020) Antibody-conjugated signaling nanocavities fabricated by dynamic molding for detecting cancers using small extracellular vesicle markers from tears. J Am Chem Soc 142:6617–6624. https://doi.org/10.1021/jacs.9b13874

    Article  CAS  PubMed  Google Scholar 

  29. Rangel PXM, Moroni E, Merlier F, Gheber LA, Vago R, Bui BTS, Haupt K (2020) Chemical antibody mimics inhibit cadherin-mediated cell-cell adhesion: A promising strategy for cancer therapy. Angew Chem Int Ed 59:2816–2822. https://doi.org/10.1002/anie.201910373

    Article  CAS  Google Scholar 

  30. Emgenbroich M, Vilela F, Courtois J, Borrelli C, Hall AJ, Simanova A, Shinde S, Oxelbark J, Verhage J, Lorenzi DE, Irgum K, Lazraq I, Karim K, Sellergren B (2008) A phosphotyrosine-imprinted polymer receptor for the recognition of tyrosine phosphorylated peptides. Chem A Eur J 14:9516–9529. https://doi.org/10.1002/chem.200801046

    Article  CAS  Google Scholar 

  31. Helling S, Shinde S, Brosseron F, Schnabel A, Meyer HE, Marcus K, Sellergren B (2011) Ultratrace enrichment of tyrosine phosphorylated peptides on an imprinted polymer. Anal Chem 83:1862–1865. https://doi.org/10.1021/ac103086v

    Article  CAS  PubMed  Google Scholar 

  32. Chen J, Shinde S, Koch MH, Eisenacher M, Galozzi S, Lerari T, Barkovits K, Subedi P, Krüger R, Kuhlmann K, Sellergren B, Helling S, Marcus K (2015) Low-bias phosphopeptide enrichment from scarce samples using plastic antibodies. Sci Rep 5:11438. https://doi.org/10.1038/srep11438

    Article  PubMed  PubMed Central  Google Scholar 

  33. Emgenbroich M, Borrelli C, Shinde S, Lazraq I, Vilela F, Hall AJ, Oxelbark J, De Lorenzi E, Courtois J, Simanova A, Verhage J, Irgum K, Karim K, Sellergren B (2008) A phosphotyrosine-imprinted polymer receptor for the recognition of tyrosine phosphorylated peptides. Chem - Eur J 14:9516–9529. https://doi.org/10.1002/chem.200801046

    Article  CAS  PubMed  Google Scholar 

  34. Li QS, Shen F, Zhang X, Hu YF, Ren XQ (2013) One-pot synthesis of phenylphosphonic acid imprinted polymers for tyrosine phosphopeptides recognition in aqueous phase. Anal Chim Acta 795:82–87. https://doi.org/10.1016/j.aca.2013.07.040

    Article  CAS  PubMed  Google Scholar 

  35. Chen Y, Li DJ, Bie ZJ, He XP, Liu Z (2016) Coupling of phosphate-imprinted mesoporous silica nanoparticles-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for highly efficient analysis of protein phosphorylation. Anal Chem 88:1447–1454. https://doi.org/10.1021/acs.analchem.5b04343

    Article  CAS  PubMed  Google Scholar 

  36. Li DY, Qin YP, Li HY, He XW, Li WY, Zhang YK (2015) A “turn-on” fluorescent receptor for detecting tyrosine phosphopeptide using the surface imprinting procedure and the epitope approach. Biosens Bioelectron 66:224–230. https://doi.org/10.1016/j.bios.2014.11.023

    Article  CAS  PubMed  Google Scholar 

  37. Chen Y, Li DJ, Bie ZJ, He XP, Liu Z (2016) Coupling of phosphate-imprinted mesoporous silica nanoparticles-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for highly efficient analysis of protein phosphorylation. Anal Chem 88:1447–1454. https://doi.org/10.1021/acs.analchem.5b04343

    Article  CAS  PubMed  Google Scholar 

  38. Zhao JL, He H, Guo ZC, Liu Z (2021) Molecularly imprinted and cladded nanoparticles provide better phosphorylation recognition. Anal Chem 93:16194–16202. https://doi.org/10.1021/acs.analchem.1c04070

    Article  CAS  PubMed  Google Scholar 

  39. Xing RR, Wang SS, Bie ZJ, He H, Liu Z (2017) Preparation of molecularly imprinted polymers specific to glycoproteins, glycans and monosaccharides via boronate affinity controllable-oriented surface imprinting. Nat Protoc 12:964–987. https://doi.org/10.1038/nprot.2017.015

    Article  CAS  PubMed  Google Scholar 

  40. Bie ZJ, Xing RR, He XP, Ma YY, Chen Y, Liu Z (2018) Precision imprinting of glycopeptides for facile preparation of glycan-specific artificial antibodies. Anal Chem 90:9845–9852. https://doi.org/10.1021/acs.analchem.8b01903

    Article  CAS  PubMed  Google Scholar 

  41. Bie ZJ, Chen Y (2021) Selective analysis of interferon-alpha in human serum with boronate affinity oriented imprinting based plastic antibody. Talanta 230:122338. https://doi.org/10.1016/j.talanta.2021.122338

    Article  CAS  PubMed  Google Scholar 

  42. Bie ZJ, Zhao WM, Lv ZY, Liu SL, Chen Y (2019) Preparation of salbutamol imprinted magnetic nanoparticles via boronate affinity oriented surface imprinting for the selective analysis of trace salbutamol residues. Analyst 144:3128–3135. https://doi.org/10.1039/C9AN00198K

    Article  CAS  PubMed  Google Scholar 

  43. Wagner U, Utton M, Gallo JM, Miller CCJ (1996) Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci 109:1537–1543. https://doi.org/10.1242/jcs.109.6.1537

    Article  CAS  PubMed  Google Scholar 

  44. Hanger DP, Noble W (2011) Functional implications of glycogen synthase kinase-3-mediated tau phosphorylation. Int J Alzheimer’s Dis 2011:352805. https://doi.org/10.4061/2011/352805

    Article  CAS  Google Scholar 

  45. Tan YJ, Sui DX, Wang WH, Kuo MH, Reid GE, Bruening ML (2013) Phosphopeptide enrichment with TiO2-modified membranes and investigation of tau protein phosphorylation. Anal Chem 85:5699–5706. https://doi.org/10.1021/ac400198n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors received financial support of the 512 Talent Cultivation Plan of Bengbu Medical College (by51202305), the Natural Science Research Project of Bengbu Medical college (2022byfy003), and the Natural Science Research Project of Anhui Educational Committee (2022AH051537, 2022AH051424, 2023AH030091).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijun Bie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4128 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhao, X., Zhang, H. et al. In situ digestion-assisted multi-template imprinted nanoparticles for efficient analysis of protein phosphorylation. Microchim Acta 190, 490 (2023). https://doi.org/10.1007/s00604-023-06081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06081-7

Keywords

Navigation