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Abstract
A novel cobalt-doped two-dimensional molybdenum diselenide/polypyrrole hybrid-based carbon nanofiber (Co/MoSe2/
PPy@CNF) was prepared using the hydrothermal method followed by electrospinning technique. The structural and mor-
phological properties of the 2D-TMD@CNF-based hybrids were characterized through X-ray photoelectron spectroscopy 
(XPS), scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS), and transmission electron microscopy 
(TEM). The Co-MoSe2/PPy@CNF exhibited large surface area, porous structure, and improved active sites due to the syn-
ergistic effect of the components. The electrochemical and electrocatalytic characteristics of the 2D-TMD@CNF-modified 
electrodes were also investigated using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The 
Co/MoSe2/PPy@CNF electrode was used as an electrochemical sensor for simultaneous detection of ascorbic acid (AA), 
dopamine (DA), and uric acid (UA) and showed enhanced catalytic activity and sensitivity. Using DPV measurements, the 
Co/MoSe2/PPy@CNF demonstrated wide linear ranges of 30–3212 μM for AA, 1.2–536 μM for DA, and 10–1071 μM for 
UA with low detection limits of 6.32, 0.45, and 0.81 μM, respectively. The developed sensor with the Co/MoSe2/PPy@
CNF-modified electrode was also applied to a human urine sample and gave recoveries ranging from 94.0 to 105.5% (n = 3) 
for AA, DA, and UA. Furthermore, the Co/MoSe2/PPy@CNF-based sensor exhibited good selectivity and reproducibility 
for the detection of AA, DA, and UA.

Keywords  Molybdenum diselenide · Carbon nanofibers · Electrospinning · Electrochemical sensor · Cyclic voltammetry · 
Differential pulse voltammetry · Dopamine · Ascorbic acid · Uric acid

Introduction

The human body is an intricately balanced system con-
taining countless molecules and compounds that work 
together to maintain optimal health and function. These 
molecules include dopamine (DA), ascorbic acid (AA), 
and uric acid (UA), which have different structural and 
functional properties and which play key roles in the 
physiological well-being of the organism [1]. Recognized 

as the “euphoria-inducing” neurotransmitter, DA is a key 
neurotransmitter that functions as a chemical messenger 
with central involvement in the central nervous system. 
AA, scientifically identified as L-ascorbic acid and recog-
nized as vitamin C, is a water-soluble essential micronutri-
ent that plays a central role in a wide range of biochemical 
pathways essential to human physiology [2]. UA exhibits 
antioxidant properties by effectively scavenging reactive 
oxygen species, thereby protecting cellular components 
from oxidative stress-induced damage [3]. These mol-
ecules have similar structures and tend to coexist in bio-
logical samples, leading to potential interference in their 
respective analyses. Therefore, it is critical for analytical 
and diagnostic applications to be able to detect these mol-
ecules simultaneously, efficiently, reliably, selectively, and 
rapidly [4, 5]. Various techniques, including ion chroma-
tography, electrophoresis, calorimetry, and chemilumines-
cence, have been used to analyze these molecules, but they 
require complex equipment, trained person, and long time 
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to complete an analysis [6]. Compared with these tech-
niques, electrochemical sensors offer several advantages 
such as ease of use, affordability, rapid response, increased 
sensitivity, and excellent selectivity [7, 8]. AA, DA, and 
UA are electroactive molecules and can therefore be deter-
mined by electrochemical methods [9]. Electrochemical 
sensors built with nanomaterials have found widespread 
use across multiple application fields due to their analyti-
cal advantages, such as their simplicity, remarkable sen-
sitivity, high selectivity, cost-effectiveness, and power-
ful response signals [10–14]. For this reason, enormous 
research efforts have been directed toward the enhance-
ment of novel electrodes made from diverse materials. 
Nanomaterials with various benefits, including improved 
structural features (i.e., substantial surface area, high 
porosity), excellent electrical conductivity, high biocom-
patibility, and fine particle size, have been selected to aug-
ment the sensitivity and detection limit of electrochemical 
sensors [15]. Among various materials, two-dimensional 
(2D) transition metal dichalcogenides (TMDs), which are 
analogous to graphene, have garnered significant atten-
tion in electrochemical sensing applications owing to their 
layered structure, extensive surface area, high chemical 
stability, and excellent adsorption capacity [16]. 2D-TMD 
materials contain edge sites, which enable the materials to 
show high catalytic activities, and their catalytic perfor-
mance can be controlled by controlling the number of lay-
ers [17]. In particular, molybdenum diselenide (MoSe2), 
as a typical TMD material, has become very popular for 
electrochemical applications, including sensors, electro-
catalysis, and energy storage due to its unique properties 
[18–20]. MoSe2 and its composites have attracted wide-
spread attention due to their unique properties, such as 
low cost, high electrocatalytic abilities, natural abundance, 
good electrochemical stability, and band gap [21, 22]. 
However, bulk pristine TMD materials, such as MoSe2, 
suffer from low electric conductivity, agglomeration, and 
a rapid decrease in capacitive properties, which limit their 
electrocatalytic performance [22, 23]. Therefore, various 
approaches have been reported to prepare TMD materials 
with controlled and enhanced catalytic properties [24]. It 
has been reported that elemental doping with nonnoble 
metals (Co, Ni, Fe, etc.) can improve the electronic con-
ductivity and electron density of MoSe2 for electrochemi-
cal sensors and facilitate charge transfer properties during 
redox reactions [25–27]. Furthermore, conductive poly-
mers (CPs) can be utilized as a conductive template with a 
large surface area to preserve more TMD nanolayers, lead-
ing to the formation of more active sites and improving 
their electrocatalytic properties [28]. Recently, it has been 
reported that the combination of MoSe2, elemental doping, 
and conducting polymer results in improved electrochemi-
cal performance for electrocatalytic performance [29]. In 

addition to these methods, the preparation of TMD-based 
nanofibers can further increase their catalytic perfor-
mances for various electrochemical applications [30, 31].

Among conventional fiber production methods, electro-
spinning is a highly efficient technology with many advan-
tages; as fiber morphologies can be controlled, finer fibers 
can be produced and increasingly compatible materials can 
be fabricated [32]. Although new approaches have been 
developed in this field of technology since the 20th cen-
tury, there has been increasing interest in terms of simple 
production techniques, ease of setup, application areas, and 
possible future biomedical applications [33]. Therefore, 
among various nanomaterials, electrospun nanofibers (NFs) 
have been widely used in the field of electrochemical sen-
sors due to their large surface area, good surface modifica-
tions, porous structure, and high biocompatibility [34, 35]. 
In addition, carbon nanofibers (CNFs) are a perfect support 
for MoSe2 to eliminate the limitations mentioned above. 
CNFs, which have a diameter of 10–500 nm and a length up 
to 10 μm, can be produced by electrospinning followed by 
a carbonization process. CNFs exhibit a large surface area, 
high electron transfer potential, and excellent mechanical 
structure due to the presence of more edges on their outer 
walls [36, 37]. Much focus has been placed on the combina-
tion of highly active MoSe2 with carbonaceous materials for 
preparing functional materials with enhanced electrical and 
structural properties for electrochemical applications [38]. 
Here, we report the production of 2D-TMD-based CNFs and 
their application as electrochemical sensors for the detec-
tion of AA, DA, and UA. A hydrothermal procedure was 
first used to prepare all 2D-TMD-based materials (MoSe2, 
MoSe2/PPy, Co/MoSe2, Co/MoSe2/PPy). Then, NFs and 
CNFs were fabricated by electrospinning and carbonization 
processes, respectively. The morphology and structure of 
2D-TMD NFs and CNFs were characterized, and their elec-
trochemical sensing features were investigated via different 
electrochemical techniques. The sensor has been effectively 
utilized for quantification in urine samples, demonstrating 
satisfactory recovery rates.

Experimental

Materials

Sodium molybdate dehydrate (Na2MoO4·2H2O) (Aldrich, 
>99%), polyacrylonitrile (PAN, 99%, Mw: 150,000 g/mol) 
(Sigma Aldrich, USA), N,N-dimethylformamide (DMF) 
(Sigma Aldrich, USA), selenium (Se) powder (Aldrich, 
99.9%), potassium ferricyanide(III) [K3Fe(CN)6] (Sigma-
Aldrich, 99 %), hydrazine hydrate (N2H4) (Sigma Aldrich, 
50–60%), pyrrole (PPy) (Fluka, >99%), cobalt (II) nitrate 
hexahydrate [Co(NO3)2·6H2O] (Merck, 98%), HCl (Sigma 
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Aldrich, 37%), sodium phosphate monobasic dihydrate 
(NaH2PO4∙2H2O) (Sigma Aldrich), sodium phosphate 
dibasic dihydrate (Na2HPO4∙2H2O) (Sigma Aldrich), and 
iron(III) chloride (FeCl3) (CentralChem, >99.9%) were 
commercially supplied and used as received.

Synthesis of MoSe2 nanosheets

A simple and cost-effective hydrothermal technique was 
utilized to synthesize MoSe2 nanosheets. Therefore, 2 
mmol of Na2MoO4·2H2O was dissolved in 40 mL of deion-
ized (DI) water and then subjected to magnetic stirring 
(500 rpm) for approximately 1 h. In another flask, 4 mmol 
Se powder was dissolved in a 20  mL N2H4 (50–60%) 

solution and stirred at 500 rpm for 1 h. After homogene-
ous solutions were obtained, two solutions were mixed and 
stirred (500 rpm) for another 0.5 h to obtain a homogene-
ous reaction mixture. In the next step, the homogeneous 
mixture was moved to a hydrothermal Teflon-lined stain-
less-steel autoclave. The autoclave was heated in a furnace 
at 200 °C for 20 h. After the reaction was completed and 
the autoclave was naturally cooled to room temperature, 
the product was centrifuged at 6000 rpm for 5 min, which 
was washed several times with excess DI water to remove 
unreacted precursors and side products. Then, the final 
product was dried in a vacuum oven at 60 °C for 24 h. This 
procedure is schematically presented in Fig. 1A.

Fig. 1   Schematic description of A synthetic hydrothermal procedure, B preparation of carbon nanofibers by electrospinning, and C fabrication 
of electrode and electrochemical detection
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Synthesis of MoSe2/PPy hybrids

Firstly, polypyrrole (PPy) was synthesized via an oxidative 
chemical polymerization (OCP). In a typical OCP process, 
7.1 g of FeCl3 powder was dispersed in 1 M HCl in an 
ice bath and stirred in an ice bath at 0–5 °C for 30 min to 
obtain an oxidant solution. Then, 6.1 mL of pyrrole mono-
mer was added to the prepared solution and refluxed for 
16 h at room temperature. After that, the obtained product 
was filtered and washed several times with methanol and 
acetone solutions. The final black product was dried at 60 
°C overnight in an oven. The preparation of the MoSe2/
PPy sample was carried out as described above for the 
synthesis of MoSe2 nanosheets, but 100 mg of ultrasoni-
cally dispersed PPy was added to the Mo-salt solution to 
prepare MoSe2/PPy.

Synthesis of cobalt‑doped MoSe2/PPy hybrids

The preparation of cobalt-doped MoSe2/PPy was carried 
out as described above for the preparation of MoSe2/PPy 
samples, but 0.2 mmol Co(NO3)2·6H2O was added to the 
Mo-salt/PPy solution to obtain Co/MoSe2/PPy. As a con-
trol, a Co/MoSe2 sample was also prepared in the same 
way without adding PPy.

Preparation of 2D‑TMD@NFs

As-synthesized MoSe2, MoSe2/PPy, Co/MoSe2/PPy, and 
Co/MoSe2 were used as precursor materials for the prepa-
ration of electrospun nanofibers. PAN was used as a poly-
mer support for NF preparation. The precursor 2D-TMD 
material/PAN (mass ratio 2:50) NFs were fabricated via 
a facile and low-cost electrospinning technique. The PAN 
polymer was dispersed in 20 mL of DMF for 2 h at 500 
rpm under 50 °C for thorough mixing. Then, 25% of 
MoSe2-based materials were added to the homogeneously 
dispersed PAN (10 wt%) polymer solution. These mixtures 
were stored in an ultrasonic bath for 10 min and magneti-
cally stirred at 500 rpm for 2 h under 50 °C. Black precur-
sor-based electrospun fibers were fabricated using a Spell-
man high-voltage power source (Spellman High Voltage 
Electronics Corporation, USA) and syringe pump (New 
Era Pump Systems, Inc., USA). The black MoSe2-based/
PAN solution was taken into a 10 mL syringe integrated 
with a grounded needle with a 0.41 mm diameter and size 
of 21 G. Afterward, the working voltage, tip collector dis-
tance, and flow rate of the electrospinning were fixed at 
14.5 kV, 17 cm, and 1.5 mL/min, respectively. A fiber 
network consisting of all materials was obtained on an 
aluminum foil used as a collector (Fig. 1B).

Carbonization of 2D‑TMD@NFs

For use as sensor electrodes, spun MoSe2-based composite 
fibers were exposed to heat treatments to carbonize the PAN. 
To obtain high-performance CNFs, the films underwent sta-
bilization and carbonization in a tubular quartz furnace. The 
as-spun NFs were first annealed in air at 260 °C for oxidative 
stabilization for 2 h, followed by heating to 600 °C under 
continuous N2 flow at a rate of 5 °C min−1 for 2 h. After that, 
all samples were cooled down spontaneously in the presence 
of N2 through the oven (Fig. 1B).

Characterization of 2D‑TMD@NFs and 2D‑TMD@
CNFs

The morphologies of MoSe2, MoSe2/PPy, Co/MoSe2, and 
Co/MoSe2/PPy NFs and their CNFs were investigated by 
scanning electron microscopy (SEM) with a FEI Quanta 
FEG 250 Model (USA) and high-resolution transmission 
electron microscopy (HRTEM) with a JEOL-2100 operated 
at 200 kV. To determine the valence state of the elements 
of the NFs and CNFs, X-ray photoelectron spectroscopy 
(XPS) measurements were implemented by NEXSA-G2, 
monochromated high-performance XPS spectrometer 
(Thermo Fisher Scientific, UK) with a monochromatic Al 
Kα (1486.68 eV) X-ray source.

Electrochemical characterization of 2D‑TMD@CNFs

The electrochemical properties of the modified electrodes 
were determined by cyclic voltammetry (CV), differential 
pulse voltammetry (DPV), and electrochemical impedance 
spectroscopy (EIS). All electrochemical experiments were 
performed using an SP-200 electrochemical analyzer (Bio-
Logic Inst., France) fitted with a conventional three-elec-
trode configuration and a 5 mL cylindrical electrolyte cell. 
MoSe2@CNF-, MoSe2/PPy@CNF-, Co/MoSe2@CNF-, and 
Co/MoSe2/PPy@CNF-coated GCEs with 3-mm diameters 
were used as working electrodes. Additionally, Ag/AgCl 
(1 M KCl) and platinum wire were used as the reference 
electrode and counter electrode, respectively. For electrode 
modification, 4 mg of 2D-TMD-CNF was dispersed in 1 mL 
of DMF and sonicated for 1 h to form a homogenous dis-
persion. Then, 10 μL from this dispersion was drop-coated 
on the smooth GCE surface and naturally dried in air at 
room temperature. To verify the electrochemical behaviors 
of the modified electrodes, CV and EIS were recorded in 
5.0 mM [Fe(CN6)]3−/4− containing 0.1 M KCl solution. The 
CV measurements were obtained at a scan rate of 50 m Vs−1 
in a potential range from 0.0 to 0.5 V. EIS was recorded in 
the range of 100 mHz to 100 kHz at a voltage of 0.25 V. 
Electrochemical studies to identify DA, AA, and UA were 
performed using the DPV method in a potential range from 
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−0.2 to +0.5 V in 0.1 M PBS (pH = 7.0) solution. A sche-
matic of the arrangement is shown in Fig. 1C.

Results and discussion

Characterization of 2D‑TMD@CNF nanocomposites

2D-TMD@CNF materials were prepared and applied in 
three steps. The first step was fabricating the 2D-TMD 
nanosheets through a hydrothermal reaction, and the sec-
ond step involved producing CNFs by electrospinning and 
heat treatment. The final step was preparing the 2D-TMD@
CNF-based working electrode and determining the elec-
trochemical sensor behaviors and responses to biological 
molecules (Fig. 1).

SEM was performed to characterize the surface morphol-
ogy and composition of the Co/MoSe2/PPy carbon nanofib-
ers (Fig. 2). Figure 2A shows that Co/MoSe2/PPy@NF pos-
sessed a smooth surface morphology with diameters ranging 
from 395 to 469 nm. To determine the detailed structural 
properties, Co/MoSe2/PPy@NFs were further examined 

by transmission electron microscopy (TEM), as shown in 
Fig. 2B, C. The TEM images also exhibited the nanosheet 
morphology, with clear lattice fringes of 0.33 and 0.29 nm. 
The EDX-elemental mapping images show that the elemen-
tal composition of the Co/MoSe2/PPy carbon nanofibers is 
carbon (C), nitrogen (N), cobalt (Co), molybdenum (Mo), 
and selenium (Se) (Fig. 2G–L). The distribution elements of 
Mo, Co, N, and Se are identical to those of carbon, consist-
ent with the uniform Co/MoSe2/PPy sheets implanted on 
CNFs. Energy-dispersive X-ray spectroscopy (EDX) spectra 
of the Co/MoSe2/PPy NF and CNF samples are also pre-
sented in Fig. S1, which further confirmed the coexistence 
of C, N, Co, Mo, and Se in the obtained samples. The SEM 
images in Fig. 2D demonstrate that Co/MoSe2/PPy@CNF 
exhibits a relatively porous and rough surface with diameters 
ranging from 850 nm to 1 μm. The TEM images (Fig. 2E, 
F) show that the layered Co/MoSe2/PPy nanosheets with 
0.33 nm spaced crystal plane (002) were extensively grown 
in carbon-based spun networks. Thus, the TEM results of the 
Co/MoSe2/PPy@NF and Co/MoSe2/PPy@CNF samples are 
consistent with the SEM-EDX mapping results. Addition-
ally, the SEM images of PAN, MoSe2, MoSe2@PPy, and Co/

Fig. 2   Characterizations of 
Co/MoSe2/PPy@NF and Co/
MoSe2/PPy@CNF. A SEM 
images of Co/MoSe2/PPy@NF. 
B, C TEM image of Co/MoSe2/
PPy@NF. D SEM images of 
Co/MoSe2/PPy@CNF. E, F 
TEM image of Co/MoSe2/
PPy@CNF. G–L Correspond-
ing elemental mappings for all 
elements, C, N, Se, Mo, and Co
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MoSe2 NFs and their CNFs are presented in the Supporting 
Information (Fig. S2 and S3). An obvious change in sur-
face morphology was observed in 2D-TMD-based NFs and 
their CNFs. The electrospun PAN NFs (Fig. S2A) are uni-
form in size and exhibit a smooth surface and a cross-linked 
or network morphology. Figure S2B-C shows that MoSe2 
nanosheets were deposited locally on the NF surfaces. As 
shown in Fig. S2-D, the MoSe2 nanosheets were embed-
ded in the fibers synthesized from the Co/MoSe2 nanolayer 
structures.

XPS measurements were performed to investigate 
the chemical composition and oxidation states of the 
atoms in Co/MoSe2/PPy@CNFs (Fig.  3). The XPS 
spectrum shows signals in the C1s, O1s, Mo3d, Se3d, 
Co2p, Na1s, and N1s and Mo3p regions (Fig.  3A). 
The high-resolution spectra and further deconvolution 
revealed an overlap of the N1s signal and Mo3p signal 
(Fig. 3C) as well as overlap of the Mo3d and Se3s sig-
nals (Fig. 3E). The peak at 399.7 eV in the N1s spectra 
can be assigned to the C≡N group of PAN and 397.8 eV 
to a nitrogen atom within the pyrrole core as a building 
block of PPy [39]. In addition, after deconvolution, a 
small peak at 401.1 eV can be assigned to the forma-
tion of the C-N+ form as a result of doping by Co2+ or 
eventually graphitic N [40]. A complex Mo3d spectrum 
can result from multiple forms of molybdenum pre-
sent in Mo6+, Mo5+, Mo4+, Mo, and MoSe2, in which 

all species show two peaks for Mo3d1/2 and Mo3d3/2. 
Molybdenum present in higher oxidation states can 
be attributed to surface oxidation, which occurs upon 
exposure to air or during the carbonization process [40, 
41]. The Se3d spectrum showed a peak correspond-
ing to Mo-Se bonds (Fig. 3F) and generally involves 
two peaks at 54.1 eV (Se3d3/2) and 54.9 eV (Se3d1/2) 
[42, 43]. Additionally, the Se–O peak at 58.7 eV can 
be assigned to SeO2 formed from the exposure of Co/
MoSe2/PPy@CNFs to air [44, 45]. A small peak at 58.3 
eV corresponding to the Se-O bond was visible in the 
Se3d spectra of MoSe2@CNF (Fig. S4 and Table S1) 
and MoSe2/PPy@CNF (Fig. S4). A small intensity XPS 
signal was visible in the Co2p spectra, complicating 
the spectrum interpretation (Fig. 3D). The predominant 
signal can be assigned to Co2p1/2 and Co2p3/2 of CoO 
species [46], which can result from surface oxidation 
during the carbonization process. A small signal vis-
ible at ~778.5 eV could be attributed to the Co-Se bond 
[47, 48]. The C1s spectrum (Fig. 3B) contains multi-
ple peaks corresponding to C=C, C-C, C-O/C-N, and 
C=O/C≡N bonds at 284.4, 284.8, 286.0, and 287.2 eV, 
respectively, with an additional shoulder, which can 
be due to the presence of O-C=O species (288.4 eV) 
[49, 50] and CO3 species (290 eV) [51]. The chemical 
composition and oxidation states of all atoms are listed 
in the Supplementary Information (Table S1).

Fig. 3   XPS spectra of Co/MoSe2/PPy@CNFs: A survey spectrum in comparison with Co/MoSe2/PPy@NF, B C1s spectrum, C N1s and Mo3p 
region, D Co2p spectrum, E Mo3d spectrum, and F Se3d spectrum
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Electrochemical results

To determine the electrochemical behaviors of the 
2D-TMD@CNF-coated electrodes, CV was applied in 
5.0 mM [Fe (CN6)]3−/4− containing 0.1 M KCl for a poten-
tial range from −0.2 to +0.5 V at a scan rate of 50 mV/s. 
As clearly seen in Fig. 4A, all electrodes demonstrated 
well-separated redox peaks associated with the ferri/fer-
rocyanide couple. The Co/MoSe2/PPy@CNF (1.58 mA/
cm2/−1.45 mA/cm2)-modified GCE exhibited higher anodic/
cathodic peak currents compared to those of CNF (0.05 mA/
cm2/−0.04 mA/cm2), MoSe2@CNF (1.08 mA/cm2/−1.01 
mA/cm2), MoSe2/PPy@CNF (0.62 mA/cm2/−0.54 mA/
cm2), and Co/MoSe2@CNF (0.22 mA/cm2/−0.23 μA). The 
improved electrochemical properties of GCE-Co/MoSe2/
PPy@CNF could be attributed to the larger electroactive 
surface area and higher conductivity due to the incorpo-
ration of PPy and Co into the 2D-nanostructured MoSe2 
nanolayers. In addition, electroactive surface areas of GCE-
CNF, GCE-MoSe2@CNF, GCE-MoSe2/PPy@CNF, GCE-
Co/MoSe2@CNF, and GCE-Co/MoSe2/PPy@CNF were 
determined from cyclic voltammograms using the Randles-
Sevcik equation [52].

where A is the electrode surface area (cm2), D is the dif-
fusion coefficient (7.6 × 10−6 cm2 s−1), n is the number of 

Ip =
(

2.69 × 105
)

A D
1∕2

n
3∕2

v
1∕2

C

electrons involved in the process (n = 1), C is the concen-
tration of [Fe(CN)6]3−/4− (5 × 10−6 M), ν is the scan rate 
(0.05 V s−1), and Ip is the intensity of peak current (A). 
The electroactive surface area values of GCE-CNF, GCE-
MoSe2@CNF, GCE-MoSe2/PPy@CNF, GCE-Co/MoSe2@
CNF, and GCE-Co/MoSe2/PPy@CNF were calculated to 
be 0.0171, 0.4105, 0.2352, 0.0863, and 0.599 cm2, respec-
tively. The findings suggest that the utilization of GCE-Co/
MoSe2/PPy@CNF results in a significantly expanded elec-
troactive surface area. Thus, Co, PPy, and MoSe2 emerge 
as beneficial materials for enhancing the electron transfer 
efficiency and sensitivity of electrode systems. In addition, 
EIS was performed to define the electronic transfer char-
acteristics of all GCE-CNF electrodes in 0.1 M KCl con-
taining 5 mM [Fe (CN)6]3−/4− with a frequency range of 
100 mHz–100 kHz and an applied potential of 0.25 V. Fig-
ure 4B represents the Nyquist plots of CNF, MoSe2@CNF, 
MoSe2/PPy@CNF, Co/MoSe2@CNF, and Co/MoSe2/
PPy@CNF, and the inset figure shows the corresponding 
equivalent circuit. Nyquist curves in EIS, consisting of 
semicircular parts at high frequencies and straight lines at 
low frequencies, are related to the electrochemical kinetic 
control step, in which the semicircular radius indicates the 
charge transfer resistance. The semicircle area is related 
to the charge transfer (Rct) limited operation, and the 
diameter of this semicircle could be used to determine 
the interfacial electron transport property of the electrode 
[53]. The Rct values were estimated to be 135 Ω (GCE-
MoSe2@CNF), 250 Ω (GCE-MoSe2/PPy@CNF), 1200 

Fig. 4   A CVs of various elec-
trodes in 5 mM [Fe(CN6)]3−/4− 
containing 0.1 M KCl. B EIS 
curves and corresponding 
equivalent circuit (inset) of 
various electrodes in 5 mM 
[Fe(CN6)]3−/4− containing 0.1 
M KCl. Rct is the charge transfer 
resistance, Rs is the resistance 
of the electrolyte solution, Cdl 
is the double-layer capaci-
tance, and Zw is the Warburg 
impedance. C CVs and D 
DPVs of various electrodes in 
0.1 M PBS solution containing 
1.48 mM AA, 0.19 mM DA, 
and 0.74 mM UA
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Ω (Co/MoSe2@CNF), and 30 Ω (Co/MoSe2/PPy@CNF). 
The Rct value of the Co/MoSe2/PPy@CNF-modified elec-
trode clearly exhibited a relatively better electron trans-
fer rate than that of CNF, MoSe2@CNF, MoSe2/PPy@
CNF, and Co/MoSe2@CNF, which corresponds well with 
the CV results. The relatively better charge transfer fea-
ture of GCE-Co/MoSe2/PPy@CNF can be attributed to 
the increased surface area and electrical conductivity of 
the interface material. The electrocatalytic activities of 
GCE electrodes modified with various 2D-TMD-based 
CNF materials were obtained by CV and DPV in 0.1 M 
PBS containing 1.48 mM AA, 0.19 mM DA, and 0.74 mM 
UA. Figure 4C shows the voltammograms, which were 
performed between −0.3 and 0.7 V at a scan rate of 50 
mV/s. There was no obvious peak separation for AA, DA, 
and UA on the CNF-, MoSe2@CNF-, MoSe2/PPy@CNF-, 
and Co/MoSe2@CNF-modified GCEs. On the other hand, 
GCE-Co/MoSe2/PPy@CNF possessed the best electrocat-
alytic activity with well-separated peak potentials toward 
AA, DA, and UA. The higher electrocatalytic activity of 
the Co/MoSe2/PPy@CNF-modified electrode could be 
attributed to the incorporation of PPy and Co, which leads 
to more catalytic active sites on the MoSe2 nanolayers and 
improved conductivity. The electrocatalytic activities of 
the 2D-TMD@CNF-modified GCE electrodes were also 
investigated through DPV measurements, which is gener-
ally a much more sensitive analytical technique than CV. 
From Fig. 4D, only two oxidation peaks were acquired for 
GCE-CNF (DA, 0.18 V; UA, 0.34 V), GCE-MoSe2@CNF 
(DA, 0.26 V; UA, 0.36 V), and GCE-Co/MoSe2@CNF 
(DA, 0.23 V; UA, 0.34 V), which indicated that the AA 
and DA overlapped. For the MoSe2/PPy@CNF-modified 
electrode, three oxidation peaks were observed at 0.05 V, 
0.23 V, and 0.34 V, defining the oxidation potentials of 
AA, DA, and UA, respectively. Although the UA oxidation 
peak current on the GCE-MoSe2/PPy@CNF sufficiently 
provides high detection sensitivity, the AA and DA oxida-
tion peak currents are too low to generate high detection 
sensitivities. Compared with other modified electrodes, 
GCE-Co/MoSe2/PPy@CNF demonstrated the best electro-
catalytic activities and well-separated oxidation potentials 
at 0.03 V, 0.19 V, and 0.32 V with high peak currents 
for AA, DA, and UA, respectively. Notably, the enhanced 
peak currents and large peak potential separations on the 
GCE-Co/MoSe2/PPy@CNF electrode provided an efficient 
sensing platform for the simultaneous detection of AA, 
DA, and UA.

To determine the reaction kinetics and the effect of dif-
ferent scan rates (10–250 mV/s) on the electrocatalytic 
oxidations of AA (2.14 mM), DA (0.19 mM), and UA 
(0.74 mM) on the Co/MoSe2/PPy@CNF-modified GCE 
electrode, CV was employed in 0.1 M PBS (pH 7.0) and 
is shown in Fig. 5A. The anodic and cathodic oxidation 

peak currents for AA, DA, and UA increased linearly with 
the square root of the scan rates (Fig. 5A inset). These 
relationships were defined by the regression equations of 
the anodic for AA, DA, and UA as follows:

These results disclose that the oxidation of AA, DA, 
and UA on GCE-Co/MoSe2/PPy@CNF was a diffusion-
controlled process [54]. Figure 5B shows the DPV curves 
of the Co/MoSe2/PPy@CNF-modified electrode in buffer 
solutions with different pH values (from 5.5 to 8.5) con-
taining 2.14 mM AA, 0.19 mM DA, and 0.74 mM UA. 
Compared with other pH values, pH 7.0 appeared to be the 
optimal pH value for AA, DA, and UA detection, show-
ing the best electrocatalytic activity and well-separated 
oxidation potential.

Simultaneous detection of AA, DA, and UA on GCE-Co/
MoSe2/PPy@CNF was carried out through DPV. Figure 6A 
displays the DPV curves for increasing concentrations of 
AA, DA, and UA in 0.1 M PBS (pH 7.0). Clearly, the oxi-
dation peak locations of AA (0.03 V), DA (0.19 V), and 
UA (0.32 V) maintain peak-to-peak potential separation as 
their concentrations are gradually increased. Figure 6B–D 
represents the corresponding calibration curves acquired 
from DPVs for linear concentration ranges of 30–3212 μM 
for AA, 1.2–536 μM for DA, and 10–1071 μM for UA. Fur-
thermore, the calibration graphs showed the following linear 
regression equations and determination coefficients:

According to the slope (S) of the regression equations and 
standard deviation (Sb) of the mean values of 10 DPVs of 
the blank solution, LODs were calculated to be 6.32, 0.45, 
and 0.81 μM for AA, DA, and UA, respectively, by using 

AA ∶ Ipa(μA) = (111.0963 ± 2.5621) v1∕2(V∕s)1∕2

− 0.0631 ± 0.0288; R2 = 0.9953

DA ∶ Ipa(μA) = (180.2670 ± 4.8743) v1∕2(V∕s)1∕2

− 0.2776 ± 0.0547; R2 = 0.9935

UA ∶ Ipa(μA) = (215.2017 ± 5.5286) v1∕2 (V∕s)1∕2

− 0.4068 ± 0.0619; R
2 = 0.9937

AA ∶ �Ipa(mA) =
(

0.019 ± 3.099 × 10−4
)

CAA(mM)

+ 0.644 ± 5.885 × 10−4; R2 = 0.996

DA ∶ �I
pa
(mA) =

(

0.213 ± 4.512 × 10−3
)

CDA(mM)

+ 0.548 ± 1.271 × 10−3;R2 = 0.993

UA ∶ �Ipa(mA) =
(

0.098 ± 2.401 × 10−3
)

CUA(mM)

+ 0.512 ± 1.441 × 10−3;R2 = 0.992
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the 3Sb/S equation [55]. Compared with other electrodes 
modified with various TMD- and CNF-based materials, the 
Co/MoSe2/PPy@CNF-modified GCE exhibits good and 
comparable analytical performance for the simultaneous 
determination of AA, DA, and UA (Table 1).

The mechanism for the simultaneous and selective deter-
mination of AA, DA, and UA on the Co/MoSe2/PPy@CNF 
can be described as follows: Co-doping into MoSe2 in the 
presence of conducting polymer increases the catalytic 
active centers and also leads to the formation of anionic Se 
vacancies, which facilitate the oxidation reactions of AA, 
DA, and UA [29, 62]. For DA, the electrocatalytic reaction 
may involve the conversion of catechol group to o-quinone 

[63]. DA becomes negatively charged by losing protons 
during this reaction. The anionic defects on the Co/MoSe2/
PPy@CNF may combine these protons, thus increasing the 
positive charges on the electrode. The positively charged 
surface of the electrode is able to interact with the analytes 
to increase the amount of adsorption. For UA, the catalytic 
mechanism is related to the oxidation of the bridging double 
bond into -OH followed by dehydration [64]. In the case 
of AA, the hydroxyl groups on the furan ring can be easily 
oxidized to carbonyl groups and AA is converted to dehy-
droascorbic acid [65]. Along with their oxidation mecha-
nism, AA, DA, and UA with different structures have dif-
ferent interaction mechanisms on the Co/MoSe2/PPy@CNF 

Fig. 5   A CV curves of GCE-Co/MoSe2/PPy@CNF in 0.1 M PBS 
(pH 7.0) containing 2.14 mM AA, 0.19- mM DA, and 0.74 mM UA 
at different scan rates from 10 to 250 mV/s. Inset figure shows anodic 

peak currents vs. square roots of scan rates. B DPVs of 2.14 mM AA, 
0.19  mM DA, and 0.74  mM UA at GCE-Co/MoSe2/PPy@CNF at 
various pH values (from 5.5 to 8.5). The scan rate was 50 mV s−1

Fig. 6   A DPVs of GCE-Co/
MoSe2/PPy@CNF in 0.1 M 
PBS (pH 7.0) containing vari-
ous concentrations of AA, DA, 
and UA. Calibration plots of B 
AA, C DA, and D UA obtained 
from their anodic peak currents 
versus concentrations
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electrode. For example, AA, DA, and UA may have different 
π-π interactions with PPy in the hybrid structure [54]. The 
above discussions clearly indicate that different interactions 
result in separation of the oxidation peak potentials and pro-
vide the possibility for simultaneous detection of the mixture 
of AA, DA, and UA.

There are diverse substances that coexist with AA, DA, 
and UA in real samples, which can disturb the electro-
chemical signals of the analytes. Therefore, DPV meas-
urements were applied to determine the selectivity of the 
developed sensor by adding these substances at higher 
concentrations into the mixed solution of AA, DA, and 
UA. Figure 7 shows that 1.0 mM NaNO3, NaCl, KCl, 
MgSO4, NH4Cl, glucose, and citric acid did not influ-
ence the analytical signals of 0.58 mM AA, 0.03 mM DA, 
and 0.19 mM UA, indicating the selectivity of the sensor. 
Furthermore, reproducibility is a significant parameter in 
the development of electrochemical sensors. Therefore, 
DPV was also applied for five freshly different electrodes 
arranged under the same circumstances. These electrodes 
show 6.5, 3.0, and 2.8% of the relative standard devia-
tion (RSD) for AA, DA, and UA, respectively, indicat-
ing convincing reproducibility. The stability of the Co/
MoSe2/PPy@CNF electrode was also studied by storing 
the electrode in a refrigerator for a period of 10 days. DPV 
measurements showed that the electrode retained the ini-
tial concentrations of AA, DA, and UA by 87.2%, 85.6%, 
and 92.0%, respectively. Such a decrease is attributed to 
the dissolution of some part of the materials from the elec-
trode surface.

Determination of DA, AA, and UA in a human urine 
sample

The feasibility of the suggested Co/MoSe2/PPy@CNF-
modified GCE electrode is verified through practical 

application for the determination of AA, DA, and UA in 
human serum samples by DPV via a standard addition 
method. Before the measurement, a fresh urine sample was 
diluted to 100 times with 0.1 M PBS solution (pH 7) and 
spiked with known concentration of 30 μM of AA, DA, 
and UA, respectively. From the obtained DPVs, recoveries 
for AA, DA, and UA were calculated as between 94.0 and 
105.5% and RSDs were between 0.9 and 7.4% by measure-
ments (Table S2). These analysis results indicated that the 
proposed GCE-modified electrode can be applied success-
fully into the simultaneous detection of AA, DA, and UA 
in real samples.

Conclusion

In this contribution, 2D-TMD@CNF nanocomposites were 
prepared successfully as electrode modifiers and used to 
produce an electrochemical sensor for the simultaneous 
detection of AA, DA, and UA. Owing to the excellent elec-
trocatalytic activity of metal-doped 2D-TMD/polymer-based 

Table 1   Comparison of Co/MoSe2/PPy@CNF for AA, DA, and UA detection with other similar electrodes

Electrode Linear range (μM) LOD (μM) Ref

AA DA UA AA DA UA

MoS2/PEDOT 20–140 1–80 2–25 5.83 0.52 0.95 [56]
rGO/PPy-Pt 0.8–2.1 0.03–1.4 0.1–0.35 0.12 0.071 0.16 [8]
Ti-C-Tx/GCE 100−1000 0.5–50 0.5–4; 100–1500 4.64 0.06 0.075 [54]
AuNPs@MoS2-NSs 2–300 5–200 20–400 3 1 5 [57]
3D MoS2-PANI/rGO 50–5.0 × 103 5–500 1–500 22.70 0.70 0.36 [58]
NCNF 50~3000 1~10

10~200
5~200 50 0.5 1 [59]

CB-CNT/PI 1000–24,000 3–300 5–500 154 1.86 3 [60]
Fe3O4/Co3O4/mC@g-C3N4/GCE 500–8000 1–70 5–100 12.55 0.21 0.18 [61]
Co/MoSe2/PPy@CNF 30–3212 1.2–536 10–1071 6.32 0.45 0.81 This work

Fig. 7   DPVs of GCE-Co/MoSe2/PPy@CNF in 0.1-M PBS contain-
ing 1.0 mM interfering substances in the presence of 0.58 mM AA, 
0.03 mM DA, and 0.19 mM UA
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nanocomposites, along with the high surface area and poros-
ity properties of CNF structures, an electrode constructed 
Co/MoSe2/PPy@CNF was able to individually and simul-
taneously detect AA, DA, and UA. Additionally, the Co/
MoSe2/PPy@CNF-modified electrode provided separated 
oxidation peaks for AA, DA, and UA with better current 
responses. The limit of detection aligned with established 
scientific literature, affirming the capability of the fabricated 
electrode to accurately quantify all three analytes. Further-
more, successful detection of these analytes within authen-
tic urine samples was achieved. The results clearly showed 
that the electrode constructed with new types of 2D-TMD@
CNF-based hybrid materials can be evaluated for real-time 
prevention and diagnosis of diseases as electrochemical 
sensing platforms that simultaneously detect AA, DA, and 
UA.
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