Skip to main content
Log in

Ionic liquid-modified UiO-66-NH2 as sorbent of dispersive solid-phase extraction for rapid adsorption and enrichment of benzoylurea insecticides

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Ionic liquid (IL)-modified UiO-66-NH2 composite was prepared and used as sorbent of dispersed solid-phase extraction (dSPE) for extracting trace benzoylurea insecticides (BUs) from complex environmental matrices. The IL in framework endowed the prepared material had electropositive characteristics, which can produce interaction with electron rich guest molecules, such as BUs. The high thermal and chemical stability of UiO-66-NH2/IL enabled it to be reused for 16 times without significant reduction in adsorption performance. Due to the multiple forces including π-π, hydrogen bonding, and fluorine-fluorine interaction, UiO-66-NH2/IL showed good adsorption performance, short adsorption time (20 s) and rapid desorption ability (60 s) for BUs. Under the optimal conditions, the method exhibited wide linear range (0.02–500 ng mL-1) with correlation coefficient (R2) not worse than 0.9928, high enrichment factor (252–300), and low detection limit (0.005–0.4 ng mL-1). The dispersed solid phase extraction coupling with high-performance liquid chromatography-diode array detector (dSPE-HPLC-DAD) was successfully used to detection of BUs in real environmental samples and satisfactory recoveries were obtained (80.5%±2.4–118%±3.2). The results indicated that UiO-66-NH2/IL composite can be a potential sorbent for the preconcentration of trace insecticides in environmental samples.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Song C, Luo Y, Zheng J, Zhang W, Yu A, Zhang S, Ouyang G (2023) Facile and large-scale synthesis of trifluoromethyl-grafted covalent organic framework for efficient microextraction and ultrasensitive determination of benzoylurea insecticides. Chem Eng J 462:142220. https://doi.org/10.1016/j.cej.2023.142220

    Article  CAS  Google Scholar 

  2. Qin P, Zhu S, Li M, Mu M, Gao Y, Cai Z, Lu M (2023) Constructing cactus-like mixed dimensional MOF@MOF as sorbent for extraction of bisphenols from environmental water. Chin Chem Lett 34:108620. https://doi.org/10.1016/j.cclet.2023.108620

    Article  CAS  Google Scholar 

  3. Li M, Liu W, Meng X, Li S, Wang Q, Guo Y, Wu Y, Hao L, Yang X, Wang Z, Wang C, Wu Q (2022) Facile synthesis of magnetic hypercrosslinked polymer for the magnetic solid-phase extraction of benzoylurea insecticides from honey and apple juice samples. Food Chem 395:133596. https://doi.org/10.1016/j.foodchem.2022.133596

    Article  CAS  PubMed  Google Scholar 

  4. Han L, Qin P, Li M, Li D, Mu M, Gao Y, Zhu S, Lu M, Cai Z (2023) Hierarchically porous zirconium-based metal-organic frameworks for rapid adsorption and enrichment of sulfonamide antibiotics. Chem Eng J 456:140969. https://doi.org/10.1016/j.cej.2022.140969

    Article  CAS  Google Scholar 

  5. Xu G, Hou L, Liu C, Wang X, Liu L, Li N, Lin J-M, Zhao R-S (2021) Fabrication of a magnetic fluorinated covalent organic framework for the selective capture of benzoylurea insecticide residue in beverages. ACS Appl Mater Interfaces 13:51535–51545. https://doi.org/10.1021/acsami.1c15869

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Li D, Li M, Qin P, Zhu S, Gao Y, Mu M, Zhang N, Wang Y, Lu M (2022) Flower-like Co3O4/C3N5 composite as solid-phase microextraction coating for high-efficiency adsorption and preconcentration of polycyclic aromatic hydrocarbons and polychlorinated biphenyls in water. Chem Eng J 443:136293. https://doi.org/10.1016/j.cej.2022.136293

    Article  CAS  Google Scholar 

  7. Zang L, Ren Y, He M, Chen B, Hu B (2022) Fluorine-Functionalized Covalent-Organic-Framework-Coated Stir Bar for the Extraction of Benzoylurea Insecticides in Pear Juice and Beverage Followed by High-Performance Liquid Chromatography-Ultraviolet Detection. J Agric Food Chem 70:12689–12699. https://doi.org/10.1021/acs.jafc.2c03983

    Article  CAS  PubMed  Google Scholar 

  8. Su W, Hu X, Meng X, Xiang Y, Ye N (2021) Molybdenum disulfide-graphene oxide composites as dispersive solid-phase extraction adsorbents for the enrichment of four paraben preservatives in cosmetics. Microchim Acta 256:188. https://doi.org/10.1007/s00604-021-04908-9

    Article  CAS  Google Scholar 

  9. Han L, Liu X, Zhang X, Li M, Li D, Qin P, Tian S, Lu M, Cai Z (2022) Preparation of multivariate zirconia metal-organic frameworks for highly efficient adsorption of endocrine disrupting compounds. J Hazard Mater 424:127559. https://doi.org/10.1016/j.jhazmat.2021.127559

    Article  CAS  PubMed  Google Scholar 

  10. Wang R, Tong W, Wu Y, Chen Z, Lin Z, Cai Z (2023) Facile synthesis of hollow microtubular COF as enrichment probe for quantitative detection of ultratrace quinones in mice plasma with APGC-MS/MS. Microchim Acta 190:72. https://doi.org/10.1007/s00604-023-05639-9

    Article  CAS  Google Scholar 

  11. Kamalabadi M, Madrakian T, Afkhami A, Ghoorchian A (2021) Crystal violet-modified HKUST-1 framework with improved hydrostability as an efficient adsorbent for direct solid-phase microextraction. Microchim Acta 188:305. https://doi.org/10.1007/s00604-021-04966-z

    Article  CAS  Google Scholar 

  12. Gao R, Ye N, Kou X, Shen Y, Yang H, Wu T, Ouyang G (2022) Hierarchically mesoporous Ce-based MOFs with enhanced alkaline phosphatase-like activity for phosphorylated biomarker sensing. Chem Commun 58:12720–12723. https://doi.org/10.1039/D2CC04895G

    Article  CAS  Google Scholar 

  13. Yin J, Fu W, Zhang J, Liu X, Zhang X, Wang C, Li H (2023) UiO-66 (Zr)-based porous ionic liquids for highly efficient extraction coupled catalytic oxidative desulfurization. Chem Eng J 470:144290. https://doi.org/10.1016/j.cej.2023.144290

    Article  CAS  Google Scholar 

  14. Zhang X, Yang Y, Qin P, Han L, Zhu L, Duan S, Lu M, Cai Z (2022) Facile preparation of nano-g-C3N4/UiO-66-NH2 composite as sorbent for high-efficient extraction and preconcentration of food colorants prior to HPLC analysis. Chin Chem Lett 33:903–906. https://doi.org/10.1016/j.cclet.2021.07.003

    Article  CAS  Google Scholar 

  15. Marwani H-M, Alsafrani A-E, Asiri A-M, Rahman M-M (2016) Silica-gel particles loaded with an ionic liquid for separation of Zr (IV) prior to its determination by ICP-OES. Sensors 16:1001. https://doi.org/10.3390/s16071001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang W, Yang S, Ren B, Lu X, Jia C (2023) Study on ionic liquids based novel method for separation and purification of silkworm pupa protein. Chin Chem Lett 34:107474. https://doi.org/10.1016/j.cclet.2022.04.072

    Article  CAS  Google Scholar 

  17. Ding X, Wang Y, Wang Y, Pan Q, Chen J, Huang Y, Xu K (2015) Preparation of magnetic chitosan and graphene oxide-functional guanidinium ionic liquid composite for the solid-phase extraction of protein. Anal Chim Acta 861:36–46. https://doi.org/10.1016/j.aca.2015.01.004

    Article  CAS  PubMed  Google Scholar 

  18. Bi X, Xie M, Zhang C, Lin J-M, Zhao R-S (2021) Composite SPE Paper Membrane Based on the Functional Superstructure of Metal-Organic Frameworks and Ionic Liquids for Detection of Tetracycline-like Antibiotics. ACS Appl Mater Interfaces 14:2102–2112. https://doi.org/10.1021/acsami.1c22033

    Article  CAS  PubMed  Google Scholar 

  19. Liu H, Jin P, Zhu F, Nie L, Qiu H (2021) A review on the use of ionic liquids in preparation of molecularly imprinted polymers for applications in solid-phase extraction. Trends Anal Chem 134:116132. https://doi.org/10.1016/j.trac.2020.116132

    Article  CAS  Google Scholar 

  20. Mu M, Zhu S, Gao Y, Zhang N, Wang Y, Lu M (2023) Construction of hierarchically porous metal-organic framework HP-UiO-66-30% for sensitive determination of benzoylurea insecticides. Talanta 260:24540. https://doi.org/10.1016/j.talanta.2023.124540

    Article  CAS  Google Scholar 

  21. Dong H, Li Y, Liang X, Wang S, Wang L, Guo Y (2020) Magnetic 3D hierarchical Ni/NiO@C nanorods derived from metal-organic frameworks for extraction of benzoylurea insecticides prior to HPLC-UV analysis. Microchim Acta 187:88. https://doi.org/10.1007/s00604-019-4013-5

    Article  CAS  Google Scholar 

  22. Zhang N, Li D, Mu M, Lu M (2022) Partially fluorinated UiO-66-NH2(Zr): Positive effect of the fluorine moiety on the adsorption capacity for environmental pollutants of metal-organic frameworks. Chem Eng J 448:137467. https://doi.org/10.1016/j.cej.2022.137467

    Article  CAS  Google Scholar 

  23. Li S, Ma J, Ji X, Ostovan A, Li J, Yu J, Wang X, Sun X, Chen L (2023) Nitrogen-doped metal-organic framework derived porous carbon/polymer membrane for the simultaneous extraction of four benzotriazole ultraviolet stabilizers in environmental water. J Chromatogr A 1695:463929

    Article  CAS  PubMed  Google Scholar 

  24. Guo J, Fan X, Wang J, Yu S, Laipan M, Ren X, Zhang C, Zhang L, Li Y (2021) Highly efficient and selective recovery of Au(III) from aqueous solution by bisthiourea immobilized UiO-66-NH2: Performance and mechanisms. Chem Eng J 425:130588

    Article  CAS  Google Scholar 

  25. Lv S, Liu J, Li C, Zhao N, Wang Z, Wang S (2019) A novel and universal metal-organic frameworks sensing platform for selective detection and efficient removal of heavy metal ions. Chem Eng J 375:122111. https://doi.org/10.1016/j.cej.2019.122111

    Article  CAS  Google Scholar 

  26. Jamshidifard S, Koushkbaghi S, Hosseini S, Rezaei S, Karamipour A, Jafarirad A, Irani M (2019) Incorporation of UiO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb (II), Cd (II) and Cr (VI) ions from aqueous solutions. J Hazard Mater 368:10–20. https://doi.org/10.1016/j.jhazmat.2019.01.024

    Article  CAS  PubMed  Google Scholar 

  27. Wang Z, Zhou H, Meng C, Xiong W, Cai Y, Hu P, Pang H, Yuan H (2020) Enhancing ion transport: function of ionic liquid decorated MOFs in polymer electrolytes for all-solid-state lithium batteries. ACS Appl Energy Mater 3:4265–4274. https://doi.org/10.1021/acsaem.9b02543

    Article  CAS  Google Scholar 

  28. Zeeshan M, Nozari V, Keskin S, Uzun A (2019) Structural factors determining thermal stability limits of ionic liquid/MOF composites: imidazolium ionic liquids combined with CuBTC and ZIF-8. Ind Eng Chem Res 58:14124–14138. https://doi.org/10.1021/acs.iecr.9b02415

    Article  CAS  Google Scholar 

  29. Huang T, Lei X, Wang S, Lin C, Wu X (2023) Ionic liquid assisted in situ growth of nano-confined ionic liquids/metal-organic frameworks nanocomposites for monolithic capillary microextraction of microcystins in environmental waters. J Chromatogr A 1692:63849. https://doi.org/10.1016/j.chroma.2023.463849

    Article  CAS  Google Scholar 

  30. Shen Y, Yin J, Cai B, Wang Z, Dong Y, Xu X, Zeng H (2020) Lead-free, stable, high-efficiency (52%) blue luminescent FA3Bi2Br9 perovskite quantum dots. Nanoscale Horiz 5:580–585. https://doi.org/10.1039/C9NH00685K

    Article  CAS  PubMed  Google Scholar 

  31. Liu C, Huang X, Meng Z, Qian H, Liu X, Lu R, Zhou W, Gao H, Xu D (2020) Study on the adsorption mechanism of benzoylurea insecticides onto modified hyperbranched polysilicon materials. RSC Adv 10:28664–28673. https://doi.org/10.1039/D0RA04068A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jia Y, Wang Y, Yan M, Wang Q, Xu H, Wang X, Zhou H, Hao Y, Wang M (2020) Fabrication of iron oxide@MOF-808 as a sorbent for magnetic solid phase extraction of benzoylurea insecticides in tea beverages and juice samples. J Chromatogr A 1615:460766. https://doi.org/10.1016/j.chroma.2019.460766

    Article  CAS  PubMed  Google Scholar 

  33. Hou Y, Deng J, He K, Chen C, Yang Y (2020) Covalent organic frameworks-based solid-phase microextraction probe for rapid and ultrasensitive analysis of trace per-and polyfluoroalkyl substances using mass spectrometry. Anal Chem 92:10213–10217. https://doi.org/10.1021/acs.analchem.0c01829

    Article  CAS  PubMed  Google Scholar 

  34. Mojiri A, Zhou J-L, Robinson B, Ohashi A, Ozaki N, Kindaichi T, Vakili M Pesticides in aquatic environments and their removal by adsorption methods. Chemosphere 253:126646. https://doi.org/10.1016/j.chemosphere.2020.126646

  35. Elfikrie N, Ho Y-B, Zaidon S-Z, Juahir H, Tan E-S-S (2020) Occurrence of pesticides in surface water, pesticides removal efficiency in drinking water treatment plant and potential health risk to consumers in Tengi River Basin, Malaysia. Sci Total Environ 712:136540. https://doi.org/10.1016/j.scitotenv.2020.136540

    Article  CAS  PubMed  Google Scholar 

  36. Chiaia-Hernandez A-C, Keller A, Wächter D, Steinlin C, Camenzuli L, Hollender J, Krauss M (2017) Long-term persistence of pesticides and TPs in archived agricultural soil samples and comparison with pesticide application. Environ Sci Technol 51:10642–10651. https://doi.org/10.1021/acs.est.7b02529

    Article  CAS  PubMed  Google Scholar 

  37. Han X, Chen J, Li Z, Qiu H (2019) Combustion fabrication of magnetic porous carbon as a novel magnetic solid-phase extraction adsorbent for the determination of non-steroidal anti-inflammatory drugs. Anal Chim Acta 1078:78–89. https://doi.org/10.1016/j.aca.2019.06.022

    Article  CAS  PubMed  Google Scholar 

  38. Yuan Y, Wu Y, Wang H, Tong Y, Sheng X, Sun Y, Zhou Q (2020) Simultaneous enrichment and determination of cadmium and mercury ions using magnetic PAMAM dendrimers as the adsorbents for magnetic solid phase extraction coupled with high performance liquid chromatography. J Hazard Mater 386:121658. https://doi.org/10.1016/j.jhazmat.2019.121658

    Article  CAS  PubMed  Google Scholar 

  39. Niu M, Li Z, He W, Zhou W, Lu R, Li J, Gao H, Zhang S, Pan C (2020) Attapulgite modified magnetic metal-organic frameworks for magnetic solid phase extraction and determinations of benzoylurea insecticides in tea infusions. Food Chem 317:126425. https://doi.org/10.1016/j.foodchem.2020.126425

    Article  CAS  PubMed  Google Scholar 

  40. Yang M, Wu X, Xi X, Zhang P, Yang X, Lu R, Zhou W, Zhang S, Gao H, Li J (2016) Using β-cyclodextrin/attapulgite-immobilized ionic liquid as sorbent in dispersive solid-phase microextraction to detect the benzoylurea insecticide contents of honey and tea beverages. Food Chem 197:1064–1072. https://doi.org/10.1016/j.foodchem.2015.11.107

    Article  CAS  PubMed  Google Scholar 

  41. Li S, Liu W, Wang Q, Xu M, An Y, Hao L, Wang C, Wu Q, Wang Z (2022) Constructing magnetic covalent organic framework EB-COF@Fe3O4 for sensitive determination of five benzoylurea insecticides. Food Chem 382:132362. https://doi.org/10.1016/j.foodchem.2022.132362

    Article  CAS  PubMed  Google Scholar 

  42. Li Z, Wei Y, Wei J, Chen K, He Y, Wang M (2022) Monodispersed CaCO3@ hydroxyapatite/magnetite microspheres for efficient and selective extraction of benzoylurea insecticides in tea beverages samples. J Hazard Mater 433:128754. https://doi.org/10.1016/j.jhazmat.2022.128754

    Article  CAS  PubMed  Google Scholar 

  43. Wang C, Ma X, Wang C, Wu Q, Wang Z (2014) Poly (vinylidene fluoride) membrane based thin film microextraction for enrichment of benzoylurea insecticides from water samples followed by their determination with HPLC. Chin Chem Lett 25:1625–1629. https://doi.org/10.1016/j.cclet.2014.06.018

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by the National Natural Science Foundation of China (22076038 and 22106038). The project has also been supported by Henan key scientific research programs to Universities and Colleges (22ZX003), and Natural Science Foundation of Henan Province (202300410044).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ning Zhang or Minghua Lu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 7818 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Gao, Y., Mu, M. et al. Ionic liquid-modified UiO-66-NH2 as sorbent of dispersive solid-phase extraction for rapid adsorption and enrichment of benzoylurea insecticides. Microchim Acta 190, 446 (2023). https://doi.org/10.1007/s00604-023-06020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-06020-6

Keywords

Navigation