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Abstract
Electrochemical methods can be used not only for the sensitive analysis of proteins but also for deeper research into their 
structure, transport functions (transfer of electrons and protons), and sensing their interactions with soft and solid surfaces. 
Last but not least, electrochemical tools are useful for investigating the effect of an electric field on protein structure, the 
direct application of electrochemical methods for controlling protein function, or the micromanipulation of supramolecular 
protein structures. There are many experimental arrangements (modalities), from the classic configuration that works with 
an electrochemical cell to miniaturized electrochemical sensors and microchip platforms. The support of computational 
chemistry methods which appropriately complement the interpretation framework of experimental results is also important. 
This text describes recent directions in electrochemical methods for the determination of proteins and briefly summarizes 
available methodologies for the selective labeling of proteins using redox-active probes. Attention is also paid to the theo-
retical aspects of electron transport and the effect of an external electric field on the structure of selected proteins. Instead 
of providing a comprehensive overview, we aim to highlight areas of interest that have not been summarized recently, but, 
at the same time, represent current trends in the field.
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aa  amino acid
AdT  adsorptive transfer
AuNPs  gold nanoparticles
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CV  coefficient of variation
DFT  density functional theory
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DNA  deoxyribonucleic acid
DST  double-surface technique
ECL  electrochemiluminescence
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ET  electron transfer
GGA   generalized gradient approximation
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HSA  human serum albumin
LOD  limit of detection
MBA  4-mercaptophenylboronic acid
MD  molecular dynamics
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MIP  molecularly imprinted polymer
MT  microtubule
NDA  naphatalene-2,3-dicarboxyaldehyde
NEGF  non-equilibrium Green’s function theory
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rHuEPO  recombinant human erythropoietin
RPE1  retinal pigment cells
SNP  solid nanopore
U2OS  human osteosarcoma cells

Introduction

Proteins are structural, functional, and regulatory elements 
of cells and tissues. Current knowledge about proteins 
is closely connected with progress in structural biology 
research and development and the determination of the 
structure of a number of proteins [1], as well as in analytical 
instrumentations and methodologies. Interest in the electro-
chemical analysis of proteins was initiated only 6 years after 
J. Heyrovský’s invention of polarography [2] by discovering 
a new phenomenon manifested by the ability of proteins to 
catalyze hydrogen evolution at a dropping mercury electrode 
(DME). Circumstances leading to this significant discovery 
(in the absence or presence of cobalt ions), along with early 
polarographic investigations of proteins, are described in the 
literature [3, 4].

Later, the DME was gradually replaced with gold, silver, 
platinum, and graphite electrodes modified with various 
adsorbates to study a relatively small group of conjugated 
proteins, usually containing non-proteinaceous redox-active 
metal centers (prosthetic groups or cofactors) that provided 
fast reversible redox electrode processes. Great interest in 
this branch of protein electrochemistry (also called protein 
film voltammetry or protein film electrochemistry) was 
induced by a very important finding, showing that appreci-
able electron transport between the electrode and protein 
redox-active centers, which are not accessible to the elec-
trode surface, can be achieved using an effective electron 
transfer mediator [5, 6]. Mostly, proteins containing heme, 
iron-sulfur, or copper redox centers are investigated, and 
methodologies for their attachment onto a variety of con-
ducting surfaces and assemblies of them that are useful 
for probing biological redox processes have been recently 
reviewed [7–9].

The isolation and structural elucidation of key mem-
brane proteins, both transporters and receptors, gave 
a new impulse to electrochemical studies of proteins 
connected with the development of various biomimetic 
membranes or simple detergent and lipid layers [10, 
11]. Furthermore, due to advances in the construction 
of various electrochemical (bio)sensors and proteomic 
approaches [12, 13], labeling proteins with redox-active 
probes has been established, and electrochemilumines-
cence has been utilized for protein analysis [13]. Today’s 
trends are also directed toward the electrochemical sens-
ing of proteins at the atomic level and taking advantage 
of computational tools to study protein interactions with 

electrode surfaces and electron transfer phenomena in 
general [14]. Finally, it is worth mentioning that close 
attention has to be paid to the adsorption of proteins onto 
electrode surfaces, as well as to the structural and func-
tional changes that may occur in them when exposed to 
an electric field, to avoid misinterpretation of the results 
obtained, particularly in investigations of protein struc-
tures and interactions with other bio(macro)molecules 
or substances [15–18]. As for future trends in single-
molecule analysis and sequencing, the application of pro-
teins as nanopores, and nanopore technologies in general, 
are also very promising [19–22]. A schematic overview 
of general electrochemical approaches useful for protein 
studies is shown in Fig. 1.

This text does not aim to provide a comprehensive over-
view, but instead to point out individual trends, especially 
in research on the electroactivity of non-conjugated and 
membrane proteins. Furthermore, we aim to describe the 
effects that occur after the exposure of proteins to an electric 
field, and advanced computational tools are also highlighted. 
In addition, we summarize the basic strategies in protein 
microanalysis and labeling (or electrochemically promoted 
labeling) with redox-active probes. Particular attention is 
paid to areas not reviewed in this form in recent years.

For further study, we recommend the following compre-
hensive reviews on proteomics and glycomics [18], mem-
brane proteins [11], and on the electrochemical research of 
peptides [15]. Historical aspects in this regard have also been 
recently reported [31].

Intrinsic electroactivity of proteins

Over the last few decades, significant progress in the elec-
trochemical analysis of proteins has been made using con-
stant-current chronopotentiometric stripping (CPS) in com-
bination with mercury-containing electrodes (reviewed in 
[17, 18, 25, 27]). Under conditions close to physiological, 
proteins containing Arg, Lys, Cys, or His amino acid (aa) 
residues [32–34] produce a well-developed peak (so-called 
peak H) due to the catalytic hydrogen evolution reaction 
(CHER) [18, 35]. Methods based on CPS peak H can be 
applied for the label-free reagentless structure-sensitive 
analysis of practically any protein, since proteins that do 
not contain any of these residues, if any, are extremely rare. 
An important condition for obtaining protein peak H is the 
accessibility of the catalytically active aa residues for the 
electrode process. In a native folded protein, aa residues 
buried in the interior of the molecule and/or those located 
far from the electrode surface can remain catalytically silent. 
On the other hand, they may become involved in CHER after 
the protein’s denaturation [25, 36]. Even the first works uti-
lizing CPS peak H demonstrated the possibility of studying 
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local and global changes in protein structures [25, 36] due to 
the ability of surface-attached proteins to retain their folded 
structures close to the potential of zero charge, but undergo 
time-dependent denaturation/unfolding at negatively charged 
surfaces [17, 37, 38]. The denaturation of surface-attached 
proteins can be minimized by adjusting the duration of the 
protein exposure to the electric field to milliseconds [39], as 
well as other experimental conditions, such as solution tem-
perature [37] and ionic strength [40]. The high sensitivity of 
the CPS peak H to structural changes in proteins can be uti-
lized not only for monitoring protein denaturation [41–43], 
oligomerization and aggregation [44, 45], posttranslational 
modifications [46–48], oxidative damage [49, 50], and sin-
gle-aa replacements [51, 52] but also for investigating pro-
tein interactions with DNA [53–55], peptides [56], and other 
proteins [57–60]. CPS peak H appeared to be particularly 
useful for analyzing water-soluble and membrane proteins 
[11, 61–65]. All these analyses are based on utilizing the 

different accessibilities of electroactive residues, which is 
influenced by the adsorption and/or structural stability of the 
given protein or its complex. Peak H appears at highly nega-
tive potentials close to –1.7 V (vs. Ag|AgCl|3M KCl). At 
such negative electrode potentials, an extremely high electric 
field  (109 V/m) [66] can affect the electric double-layer with 
adsorbed biomolecules. Moreover, it can cause DNA melt-
ing, protein denaturation, complex disaggregation, etc. [18].

CPS peak H was also utilized to study proteins in complex 
media [53] as well as to analyze clinical samples, such as 
human serum albumin (HSA) samples isolated from blood 
serum [67]. The surface distribution of aa residues active in 
CHER in the HSA molecule is shown in Fig. 2A–C. HSA 
isolated from healthy volunteers gave a CPS peak H which 
decreased after modification of the sample with methylgly-
oxal (MGO); see Fig. 2D. MGO is a reactive metabolite that 
is able to modify the same aa residues that are involved in 
the CHER. Based on the results of this study, the coefficient 

Fig. 1  Overview of protein electrochemical approaches. (A) Pro-
tein sensors based on biorecognition elements [12, 13]. (B) Protein 
chemisorption via metal-binding aa (Cys and His) residues, with 
consequent metal complex reduction [23]. (C) Enzyme electrode-
generated redox-active reaction product [24]. (D) Protein/lipid layer/
electrode architecture and derived approaches [11]. (E) Protein film 
voltammetry and bioelectrocatalysis applications [5, 6]. (F) Oxida-
tion of protein aa residues, mainly Tyr and Trp [25]. (G) Proteins 
and MIP technology [26]. (H) ECL methods [12] and labeling with 
redox-active probes (more details in the “Electroactive redox labels in 

protein sensing” section). (I) Catalytic hydrogen evolution reaction of 
proteins [27]. (J) Protein surface adsorption, desorption, and reorien-
tation processes [28]. (K) Electrochemical impedance analysis [29]. 
(L) Electric field effects both in bulk and at the interface, as discussed 
in the “Electro-manipulation of protein structure and function” sec-
tion. (M) Protein behavior at the electrified interface of two immisci-
ble liquids [30]. (N) Nanopores as a selective barrier for proteins and 
peptides and (O) protein nanopore working as a selective barrier (or 
environment) for various analytes [20–22]



 Microchim Acta (2023) 190:442

1 3

442 Page 4 of 21

of variation for the native albumin samples was estimated to 
be 8.5%, while that for the inter-individual binding capacity 
variations, evaluated using the artificial-glycation/carbonyla-
tion approach, was 23.2 % (Fig. 2E). Recently, interactions 
of HSA with fatty acids and their nitro-derivatives were also 
investigated using CPS peak H [68, 69]. In addition to hang-
ing mercury drop electrode (HMDE), CPS analysis in com-
bination with an Ag-amalgam electrode microdevice can be 
effectively applied for CHER monitoring, which was dem-
onstrated in bovine serum albumin sensing; see Fig. 3 [70].

In addition to proteins, also some peptides, oligo- and 
poly-nucleotides, and oligo- and polysaccharides have been 
found to be catalytically active in the hydrogen evolution 

reaction at mercury-containing electrodes (reviewed in 
the literature [15, 17, 18, 27]). Nevertheless, despite some 
attempts to better understand CHER at the fundamental level 
[32–35, 71–74], methodologies utilizing CHER are still 
mostly based on empirical findings, and further research is 
necessary to exploit the full potential of this electrocatalytic 
phenomenon in the research of various bio(macro)molecules 
and their mutual interactions.

Besides the electrocatalytic reduction occurring at 
mercury-containing electrodes, the oxidation reactions of 
proteins at carbon electrodes have also been found to be 
useful for their label-free analysis [18, 25, 75–77]. Even 
though some aa’s, namely Trp, Tyr, Cys, His, and Met, are 

Fig. 2  Surface models of HSA 
(1BJ5) with electrocatalytically 
active aa residues highlighted: 
Lys-brown, His-cyan, Arg-blue, 
Cys-green, and Cys34-red. The 
left (A) and right (B) images 
are mutually rotated by 180° 
along the vertical axis for each 
panel. (C) Free Cys34 (red 
highlighted) is visible from the 
top image. (D) CPS records 
(peaks H) of native (red line) 
and artificially glycated with 
methylglyoxal (blue line) HSA 
isolated from the blood serum 
of a healthy subject; see ref. 
[67]. The black line indicates 
blank – supporting electrolyte. 
(E) Coefficient of variation 
(CV) for CPS response of native 
albumin samples and after their 
artificial glycation

Fig. 3  Cross-section (A) and 
upper view (B) of electrode 
wells. (A) Schematic represen-
tation of CPS analysis of bovine 
serum albumin (BSA) in the 
well of an array. (C) Chronopo-
tentiogram of 5 μM BSA (red, 
solid line) adsorbed from 20 
μl drop for accumulation time 
of 60 s from background elec-
trolyte, McIlvaine buffer, pH 7 
(black, dashed line). (D) Final 
electrode array on insulating 
pad. Reprinted with permis-
sion from [70]. Copyright 2010 
American Chemical Society
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oxidizable at carbon electrodes [18, 78–80], it is predomi-
nantly Tyr and Trp residues that have yielded well-developed 
oxidation peak/s with proteins [78]. Peptides and small pro-
teins yielded separated peaks of Tyr and Trp residues [75, 
81]. However, larger proteins, in most cases, only produced 
a single peak. The well-developed Tyr and/or Trp peak/s, 
in contrast to the poor or absent peaks of Met, His, and Cys 
residues in proteins, could be due to the stronger interac-
tions of Tyr and Trp residues with the electrode surface than 
those of other electroactive residues, as a theoretical study 
showed [82]. A well-developed His peak was observed for 
oncoprotein AGR2 modified with a His-tag [80], since the 
six linked His residues on its terminus are more accessi-
ble for oxidation than those buried inside the protein struc-
ture. Aa residues of proteins are more exposed after protein 
denaturation. Denaturation of the AGR2 protein led to the 
appearance of a negligible His peak and an increase in the 
Tyr and Trp peak [80]. Severalfold higher Tyr and Trp peaks 
for denatured forms than those for native ones were also 
reported for other proteins [78, 83–85]. Oxidation of the Tyr 
and/or Trp residues was also found to be useful for studying 
the oligomerization and aggregation of alpha-synuclein and 
amyloid peptides [86–88]. Similarly, the posttranslational 
modification of peptide and protein Tyr and Trp residues, 
such as phosphorylation [89] and nitration [90], as well as 
oxidative damage [50] and ligand binding [69, 91], had an 
impact on the oxidation responses of Trp or Tyr residues.

Electroactive redox labels in protein sensing

Protein labeling is generally performed via Lys residues 
with N-hydroxysuccinimide-activated esters, sulfonyl chlo-
rides, or iso(thio)cyanates. Another option is Cys labeling  

by Michael reaction or reactions that target electron-rich Tyr 
or Trp residues [92, 93]. The electrochemically promoted 
Tyr-modification of peptides and proteins with labeled 
urazoles was studied at the low potential of +0.36 V (vs. 
Ag|AgCl|sat. KCl). Under these conditions, the urazole 
anchors could be activated without oxidizing the sensi-
tive aa residues in the protein. Protocols were successfully 
performed in the electrosynthesis of peptides and proteins, 
such as oxytocin, angiotensin, BSA, and epratuzumab. An 
electrochemically promoted labeling approach was also 
developed for Tyr-containing proteins with phenothiazine 
derivatives [94]. The electro-oxidation of phenothiazine pro-
duces a nitrogen radical cation, which reacts with the ortho 
position of the Tyr phenol. Two proteins, which contain Tyr 
on the protein surface, insulin, and myoglobin, were modi-
fied with phenothiazine [94]. Similar to the electrochemi-
cally promoted Tyr-click reaction, a bioconjugation reaction 
for selective Trp labeling in peptides and proteins has been 
developed (Fig. 4A) [100].

Boronic acid functionalized compounds have been 
utilized for biosensing glycoproteins. A schematic repre-
sentation of the interaction of glycoprotein with modified 
boronic acid is shown in Fig. 4B. Boronic acids interact 
with 1,2- or 1,3-diols of saccharide to create five/six-
membered cyclic complexes and also interact with Lewis 
bases to form boronate anions [101]. An amperometric 
sensor was constructed for monitoring fructosyl valine, 
the glycosylated part of hemoglobin, based on soluble 
ferrocenylboronic acid [102]. The glycosylated part of 
hemoglobin was investigated at the carbon electrode via 
a ferrocene moiety. An electrochemical method for glyco-
protein detection based on 4-mercaptophenylboronic acid 
(MBA)/biotin-modified gold nanoparticles (AuNPs) was 
used for the study of recombinant human erythropoietin 

Fig. 4  Schematic representation 
of protein/peptide labeling. (A) 
Labeling based on electro-
chemically promoted Tyr-click-
chemistry, (B) electrochemical 
sensing of glycoprotein using 
boronic acid or osmium com-
plexes, and (C) derivatization 
approaches for electrochemical 
detection; see refs. [76, 95–99]. 
For other details, including 
abbreviations, see the “Electro-
active redox labels in protein 
sensing” section
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(rHuEPO) as a model protein. In more detail, rHuEPO 
was first captured by an electrode covered with anti-
rHuEPO aptamer and then derivatized with MBA-
biotin-AuNPs. The MBA-biotin-AuNPs interact with 
streptavidin-conjugated alkaline phosphatase to produce 
electroactive p-aminophenol [7]. Electrochemical biosen-
sors based on MBA-capped AuNPs were also used for 
monitoring a prostate-specific antigen and avidin. A sub-
picomolar limit of detection of avidin/prostate-specific 
antigen was achieved [103].

There have been several studies focused on utilizing 
osmium complexes for the electrochemical analysis of 
peptides and proteins. A complex composed of osmium 
tetraoxide and 2,2´-bipyridine was used for the labeling 
and electrochemical detection of Trp residues of salmon 
and human luteinizing hormone [104], avidin, streptavi-
din, and lysozyme [105]. Osmium(VI) complexes (ligands: 
2,2′-bipyridine and N,N,N′,N′-tetramethylethylenediamine) 
were also used for labeling the sugar part of glycoproteins 
with an electrochemical detection endpoint. This approach 
was applied to determine RNase B and avidin, with the limit 
of detection (LOD) ranging between 25 and 50 nM. Elec-
trochemical signals were monitored at a pyrolytic graphite 
electrode by adsorptive transfer stripping square-wave vol-
tammetry [106, 107].

The most commonly used detectors coupled to separation 
techniques in proteomics are mass spectrometry and laser-
induced fluorescence detection. An alternative to the above-
mentioned detectors is electrochemical detection, especially 
amperometric and pulse amperometric detection [95]. The 
direct detection of a redox-active aa on carbon electrodes 
or the utilization of metal-based solid electrodes is limited 
by the LOD [76]. The most commonly used derivatization 
agents in terms of aa’s and peptides are o-phthaldialdehyde 
(OPA) and naphatalene-2,3-dicarboxyaldehyde (NDA) in 
the presence of a nucleophile (sulfur derivatives or  CN−), 
reviewed in the literature [95]. Other agents utilized in the 
derivatization of aa’s are 6-aminoquinolyl-N-hydroxysuc-
cinimidyl carbamate (6-AQC) [96, 97] and p-nitrophenol-
2,5-dihydroxyphenylacetate bis-tetrahydropyranyl ether [98, 
99]. The protein interaction with the most common derivati-
zation agents is demonstrated in Fig. 4C.

A peptide-1 probe (RNRCKGTDVQAW) was designed as 
an electroactive label of daunomycin for ovalbumin protein 
recognition. The peak current of the daunomycin moiety 
decreased with increasing concentration of ovalbumin due 
to the interaction between ovalbumin and the electroactive 
peptide probe. Differential pulse voltammograms of dau-
nomycin and labeled peptides in the presence or absence of 
ovalbumin were obtained using a glassy carbon electrode. 
According to this protocol, the concentrations of ovalbumin 
in the egg whites were measured with a detection limit at 
the  10−11 M level.

An electrochemical sensor was also developed [108] for 
monitoring the following protein kinases: sarcoma-related 
kinase, extracellular signal-regulated kinase 1, and cyclin 
A-dependent kinase 2. The approach is based on the ability 
of kinases to transfer a redox-labeled phosphoryl group, the 
specific substrate for the protein kinase, to surface-bound 
peptides. Voltammetric and electrochemical impedance 
spectroscopic detection was enabled due to 5′-γ-ferrocenoyl-
ATP, a co-substrate for peptide phosphorylation. The labe-
ling strategies are schematically summarized in Fig. 4.

Nano/micro materials in protein 
electrochemistry: double‑surface technique

In the last decade, there has been a significant increase in 
published studies in which the authors use a variety of nano- 
and micromaterial technologies for the study and sensitive 
electrochemical analysis of proteins. Very often, these are 
applications of carbon or metal nanoparticles, which are 
used to decorate the surfaces of the electrodes, often com-
plex multi-layer or multi-component modifications [109]. 
These systems are effectively applied to increase the work-
ing (active) surface of the sensor, improve the sensitivity/
selectivity of the determination, or increase the electron 
transfer rate between the protein and the electrode, e.g., in 
the development of enzyme electrodes or biofuel cells [110]. 
On the other hand, a certain disadvantage of these proce-
dures could be the poor reproducibility of the preparation 
of such complex electrode architectures. In fact, for funda-
mental research, it is usually best to use an unmodified (bare) 
electrode with a well-defined and reproducible surface. In 
addition, the preparation of complicated (e.g., sandwich 
configuration) structures on the surfaces of electrodes goes 
against the main added value of electrochemical determina-
tions, which is the simplicity (“elegance”) of the experimen-
tal setup, possibly even the minimal financial demands of 
performing such analysis or research; see a recent historical 
review [111].

One of the other possibilities where we can use nano/
micro technologies in the electrochemistry of biomacro-
molecules is the concept of the double-surface technique 
(DST) [112, 113]. This is based on the application of micro-
particles or a selected nano/micro material (“first surface”) 
for the manipulation or purification of the investigated pro-
teins before their adsorption onto the electrode detection 
surface (“second surface”) and subsequent electrochemical 
analysis. After the release of the protein from the first sur-
face, the adsorptive transfer (AdT) technique [114] can be 
used. This method allows the protein to be adsorbed onto 
the surface of the electrode from microliter volumes, and 
after washing the electrode, the biopolymer-modified elec-
trode is inserted into an electrochemical cell containing an 
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already pure supporting electrolyte. For DST purposes, mag-
netic nano- or micromaterials can be beneficial. Originally, 
these approaches were applied to the study of DNA inter-
actions and hybridization. In this particular case, magnetic 
beads (magnetoseparation) were used [115, 116]. DNA was 
bound (anchored) to their surface, most often via a terminal 
oligo(A) sequence or a biotinylated terminus to the oligo(T) 
chain or (strept)avidin immobilized on the surface of mag-
netic beads, e.g., ref. [117]. The immobilized DNA (but 
also RNA) can be easily purified (washing step) and further 
incubated. The washing is based on the repetitive magnetic 
attraction of the beads to the wall of the plastic microtube 
and the consequent resuspension step, which allows multiple 
purification cycles [115]. Subsequently, the target biopoly-
mer is released from the magnetic carrier and dissolved in 
a buffer or medium that is fully compatible and optimized 
for analysis.

This technique is applicable to the research of protein-
DNA interactions [118, 119] and can also be used for the 
electrochemical analysis of proteins, both labeled and unla-
beled, according to the approaches mentioned above in the 
text. In such cases, proteins can be bound to magnetic parti-
cles using antibodies or aptamers (Fig. 5) [120].

Electro‑manipulation of protein structure 
and function

An electric field (EF) acts as a direct force on charged 
groups in the proteins, and an EF can also act on a protein 
indirectly through its action on the charges of the surround-
ing ions and solvent. The presence of ions and (polarizable) 
solvent also decreases the effective EF strength by Coulom-
bic screening [121]. The most trivial effect is the net transla-
tion (electrophoretic) force on a protein (see Fig. 6) used in a 
variety of separation and detection techniques. An EF, even 
an intrinsic protein EF, also naturally acts on electrostatic 
interactions (including Coulomb interactions) in the pro-
tein [122] and on protein-solvent interactions. The electric 
double-layer around the protein, a simplified picture of the 
complex charge distribution at the interface of the protein 
and solvent [123], can be potentially also perturbed by an 
external EF affecting the balance of the forces of the protein. 

The charge distribution on the protein itself forms an effec-
tive dipole, on which the EF acts as a torque, leading to the 
rotation of the protein [124, 125]. Electric forces can also 
cause overall deformation [126] of the protein, leading to a 
change in the secondary structure and, provided the electric 
force is high enough, ultimately to unfolding [127–129]. All 
the above-mentioned effects of EF on protein structure can 
lead to a plethora of functional effects.

Electric fields in the form of short (nanosecond-micro-
second) intense pulses (pulsed electric field, PEF) are of 
particular interest for the electro-manipulation of proteins 
for several reasons. First, very high electric fields (>units 
and tens of MV/m) are strong enough to affect the protein 
structure [126]. Second, intense electric pulses of nanosec-
ond-microsecond duration can only carry a small amount 
of energy, so they cause little to no heating. Appropriate 
guidance by theories and models is needed to rationally 
guide the formulation of hypotheses for experiments. Com-
putational molecular dynamics (MD) simulation is such a 
modeling tool, furthermore with the ultimate spatial and 
temporal resolution, so far unmatched by any experimental 
technique. Hence, MD simulations enable exploration of the 
effects of an EF on molecules and proteins at the atomistic 
level and with time resolution down to femtoseconds [130, 
131]. Using MD simulations, it has been demonstrated that 
an intense EF can rotate the protein, affect (i) the protein’s 
secondary and tertiary structure [132–134], (ii) the radius 
of the gyration [135–137], (iii) dipole moment [138, 139], 
and ultimately lead to unfolding [140, 141]. At the level of 
peptide and protein ensembles, the EF causes disaggrega-
tion and the detachment of subunits from multimeric protein 
complexes [142, 143].

Here, we highlight effects which most commonly appear 
in the literature analyzing the effect of an intense EF on pro-
teins in silico. One of the direct effects of EF on proteins is 
the rotation of the protein by a torque exerted by the EF. The 
dipole moment of a protein arises from the charge distribu-
tion in the protein, and the effects of EFs on protein dipole 
moments have been extensively studied using MD simula-
tions [130, 143–146]. Myoglobin polarization under pulsed/
static EFs exhibited a fast transition with high-intensity 
EFs and an increase in dipole moment with lower-intensity 
EFs, despite minimal impact on the protein’s structure or 

Fig. 5  Electrochemical sensing of aptamer-protein interactions. (A) 
Attachment of biotinylated anti-lysozyme aptamer to streptavidin-
modified magnetic microbeads. (B) Binding of target protein. (C) 

Alkaline-induced release of captured protein. (D) Magnetic separa-
tion step. (E) CPS detection of released protein in connection with 
adsorptive accumulation [120]
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geometry [140]. Tubulin proteins, with a high charge and 
dipole moment, exhibited polarization-induced changes in 
shape and orientation under EFs, influencing binding sites 
and potential applications in protein-drug interactions and 
ion channels [133]. Recent work has highlighted the non-
linear effects of high-intensity continuous-wave EFs and 
emphasized the importance of operating within a “weak field 
condition intensity range” in MD simulations to avoid signif-
icant non-linear and saturation effects [147, 148]. Manipulat-
ing protein orientation through their dipole moment using 
EFs also has promising implications in the X-ray imaging 
of single molecules, allowing structure determination with 
smaller sets of diffraction data [149]. Simulations demon-
strated an “orientation window” of field strengths in which 
proteins maintained intact structures, while longer exposure 
times shifted the window toward lower fields, suggesting 
“orientation before destruction” [125, 149].

Other substantial effects of a strong EF on proteins are 
the change in the protein’s secondary structure and unfold-
ing. For example, extensive MD simulations on myoglobin 
showed that both static and nanosecond pulsed EFs disrupt 
about 70% of its α-helical secondary structure [140]. How-
ever, EF intensities below 100 MV/m have no observable 
impact on the secondary structure or geometry of myoglobin 
[140]. Insulin’s response to EFs varied based on the type 

and intensity, with 500 MV/m causing more significant 
disruption than static fields of the same intensity [150]. 
Studies on hen egg white lysozyme revealed denaturation 
under oscillating EFs, while high field strengths induced 
similar unfolding pathways [144, 145]. MD simulations of 
the SOD1 enzyme showed that 100 MV/m had no effect on 
secondary structures, 500 MV/m caused partial denatura-
tion, and 700 MV/m led to complete unfolding [151]. The 
unfolding of ubiquitin protein using static EFs exhibited an 
intensity-dependent speed, with medium and high strengths 
inducing rapid unfolding, where deliberate unfolding using 
EFs provided valuable insights into protein stability [141]. 
There is also growing experimental evidence for a variety 
of these simulation predictions. For example, it was demon-
strated that an intense EF affects the secondary structure of 
BSA [152], whey proteins [153], and lysozyme [154] using 
circular dichroism spectroscopy.

At the level of larger protein structures and polymers, it 
was shown, for example, that an intense EF can significantly 
affect the microtubule (MT) lattice. It was found that a nano-
second-scale intense electric field can induce a longitudinal 
opening of the cylindrical shell of the MT lattice, modifying 
the structure of the MT. This effect is field strength- and 
temperature-dependent and occurs on the cathode side [143]. 
MD simulations suggest that a high EF strength (at least 

Fig. 6  Electric field exerts effects on protein via force on electrically 
charged groups. The effects can be primary in character, such as elec-
trophoretic linear motion, rotation, change in secondary structure, 
and protein shape. These primary effects then translate to secondary 

effects on protein electrostatic and mechanical properties, multivalent 
interaction between the proteins, as well as protein function. For more 
details, see the main text
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tens or even a few hundreds of MV/m) is required to affect 
protein structures.

It is often difficult to achieve such values of field strength 
while being able to observe the behavior of proteins at the 
same time. To address this challenge, there is an ongoing 
development of new technological platforms (Fig. 7) which 
integrate planar electromagnetic chips into advanced light 
microscopy and spectroscopy systems [157–159]. These 
chips enable the controlled delivery of intense short electric 
pulses to protein samples, while the microscopes make it 
possible to observe the response of proteins to the EF in situ, 
in real time, and in a biologically relevant chemical environ-
ment. For instance, the delivery of 6 MV/m 11 ns pulses to 
biosamples on such a chip integrated into a structured illumi-
nation microscope has been recently demonstrated [156]. In 
that study, it was shown that these electric pulses can remodel 
the cellular microtubule network in rat basophilic leukemia 
(RBL) cells. In a follow-up work, it was revealed that the 
pulsed EF (PEF) also exerts similar effects on the microtu-
bule network in human osteosarcoma (U2OS) cells as well 
as retinal pigment (RPE1) cells [160]. Furthermore, several 
works showed that μs and ns electric pulses affect the micro-
tubule cytoskeleton in a variety of cells; see more in a recent 
review [161]. These effects of intense PEF delivered in short 
pulses on the microtubule network in cells are very promis-
ing for potential therapeutic applications, but the inevitable 
side effects of ns PEF on cellular complexity and the cell 
membrane obscure the mechanism of action. In short, the 
effects observed on microtubules in cells could be an effect 

of downstream signaling due to the primary action of PEF 
on the membrane (causing electroporation) or on membrane 
voltage-gated ion channels.

Therefore, there is an ongoing effort to understand the 
effects of PEF on well-defined reconstituted systems, such as 
giant unilamellar vesicles [162], vesicles with actin [163], or 
isolated protein structures [164–166]. For example, a study 
was conducted to examine the direct impact of PEF on tubu-
lin [109]. There, nanosecond PEF was applied to isolated 
unpolymerized tubulin, and it changed the tubulin’s self-
assembly capability. The change was reversible or irrevers-
ible, depending on the pulse parameters.

We foresee that the combination of chips enabling 
pulsed electric/electromagnetic field delivery with a variety 
of advanced spectroscopy and microscopy systems might 
enable breakthroughs in several fields:

• physical chemistry and electrochemistry: providing 
insight into the mechanisms of action of an electric field 
on non-covalent interactions in proteins,

• spectroscopy: aligning dipolar proteins with an elec-
tric field enables enhanced signals in X-ray scattering 
for single-molecule imaging, microwave, THz, and IR 
spectroscopy,

• structural biology: an electric field represents a physical 
handle for protein unfolding,

• physical biochemistry: the controlled activation of pro-
teins in solution or a gaseous phase to probe the protein’s 
stability under different conditions,

Fig. 7  (A) Total-internal reflectance fluorescence (TIRF) micros-
copy platform with chip (adapted from [155]) (B) demonstrates the 
capability of the chip – detachment of antibody-bound microtubules 
from a surface and their translocation and concentration. (C, D) TIRF 
microscopy images before and after the application of 100× 5 μs, 2.5 
MV/m s electric pulses fired at 10 Hz frequency, microtubules are 

red-labeled fibers. (E) Coplanar waveguide–based chip platform on 
structured illumination microscope (SIM), adapted from [156]. (F) 
Cells are placed on a tapered gap between the ground and the central 
conductor. (G, H) SIM images of control cell and cell treated with 
4000× 10 ns, 6 MV/m electric pulses fired at 100 Hz
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• biotechnology: controlling the enzymatic activity of pro-
teins in bulk,

• bioelectromagnetics: understanding in broad terms how 
an electric field affects biological systems at the molecu-
lar level,

• biosensing and analytics: controlling mass transport in 
biosensor applications.

Theory and computation of electron transfer 
in proteins

Electron transfer (ET) at heterogeneous bio/metallic inter-
faces is traditionally studied by electrochemical methods, for 
example, protein film voltammetry [167–170]. Redox-active 
biomolecules such as metalloproteins are adsorbed onto the 
electrode surfaces, where their charge-transfer properties 
are probed by measuring current-voltage responses [171, 
172]. Besides fundamental studies focused on the electronic 
behavior of the biomolecules, many interesting applications 
exploiting the natural biocompatibility, high selectivity, 
and enzymatic activity of suitable redox proteins have been 
developed, including manufacturing accurate biosensors, 
fuel cells, or enzyme-based biocatalysts [173–177]. Moti-
vated by the efficient ET capabilities of metalloproteins, 
these biomolecules have started to be also incorporated into 
vacuum-based nanoelectronics, where solid-state protein 
junctions are created between metal contacts to form devices 
such as bio-based transistors or memristors [178–181]. How-
ever, unexpected quantum phenomena emerged at such bio/
metallic interfaces, which soon attracted the attention of the 
broader research community [182, 183].

In aqueous solutions, redox-active proteins are known to 
transfer charge by the so-called incoherent hopping mecha-
nism, theoretically described by the Marcus theory [184, 
185]. The electron is localized to a redox site, where it stays 
for a long enough time to allow the relaxation of the molecu-
lar environment to the perturbed electrostatic potential. The 
energy needed to overcome the free energy barriers sepa-
rating the individual redox sites is provided by the fluctu-
ating electrostatic fields arising from the thermal motions 
of the protein and nearby hydration layers. Therefore, the 
hopping mechanism is strongly temperature-dependent. 
However, when single-protein junctions began to be probed 
by scanning tunneling microscopy or its electrochemical 
variant [186–189], unexpectedly high electric currents were 
detected, exhibiting practically no dependence on tempera-
ture [190]. Surprisingly, these data indicated that electrons 
could coherently tunnel through the protein, which is a fun-
damentally different charge-transport mechanism not typical 
for soft biomatter. Even more puzzlingly, the redox activity 
of the proteins, necessary for ET in their native environ-
ments, was shown to not affect the protein conductance 

when incorporated into metallic solid-state junctions [191, 
192].

Knowledge of the adsorption structure of a protein on 
electrode surfaces at atomistic and electronic resolutions 
is essential for understanding the ET at the interfaces [9, 
193, 194]. However, such details are hardly obtainable by 
experimental measurements. Therefore, computer simula-
tions are often utilized to elucidate the structural data and 
the transport mechanism. Classical MD based on empirical 
potentials is used to predict representative adsorption struc-
tures on model surfaces, where image-charge interactions 
at the highly polarizable metal surfaces or covalent inter-
actions (i.e., chemisorption) must be treated with special 
care [195–202]. Adsorption of the proteins into the desired 
conformation on the surface is often controlled by chemi-
cal modifications (for example, by introducing a reactive 
group to the biomolecular structure by protein engineering 
methods or coating the surface with suitable linkers) and 
can be enhanced by the application of external fields [195, 
203–205].

The electron localization typical for the hopping mech-
anism enables the application of combined quantum-
mechanical/molecular mechanical (QM/MM) methods or 
their semi-empirical variants, such as the perturbed matrix 
method (PMM), where only the redox sites undergoing the 
oxidation/reduction processes are treated at the quantum 
level of theory, while the rest of the system is described by 
less-demanding empirical potentials [14, 206–208]. These 
methods are used to sample vertical ionization energy on 
the MD trajectories of oxidized/reduced systems, from 
which redox potentials and reorganization free energies are 
obtained by reconstructing Marcus parabolic free energy 
surfaces (Fig. 8A). The system response to the change in 
charge is often linear, which simplifies the calculation of 
these ET parameters [209–211]. The electronic coupling ele-
ments needed for determining the transfer rate constants can 
be obtained by different approaches, of which the most pop-
ular are the generalized Mulliken-Hush method [212, 213], 
fragment charge and energy difference techniques [214, 
215], or DFT-based approaches such as FODFT [216, 217], 
CDFT [218–221], and POD [222–225]. For the interfacial 
ET between the electrode and the molecule, Marcus-Hush-
Chidsey integrals have to be evaluated to obtain the rate 
constants [226, 227]. These are then brought together into 
a kinetic master equation for the site populations (Fig. 8B). 
By solving the equation, either by iterative techniques or the 
kinetic Monte Carlo method, the desired electronic flux is 
obtained [228–230].

Investigation of the coherent tunneling processes in pro-
tein junctions is, from the computational point of view, a 
much more challenging task. Transport at molecular junc-
tions between metal contacts is usually studied within the 
framework of non-equilibrium Green’s function theory 
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(NEGF) combined with tight-binding models or DFT 
[231–234]. Although this approach is formally accurate, in 
practice, it is only applicable to small systems because of 
its high computational demand. Studies of protein junctions 
are scarce because they require a full quantum description of 
relatively large proteins and electrode contacts. Such large-
scale DFT calculations were recently demonstrated on the 
blue-copper protein azurin [235] and the small-tetraheme 
cytochrome [236, 237]. In the latter case, the tunneling cur-
rents were computed within the Landauer-Büttiker formal-
ism (Fig. 8C), where the transmission function was treated 
in the Breit-Wigner approximation [238–240], regarding the 
transferred electrons as independent. Despite these neces-
sary simplifications, the computed current-voltage curves 
agree well with experimental data, and the visualized con-
duction channels (Fig. 8D) helped with understanding the 
incoherent tunneling transport in such large molecules [236, 
237].

Knowledge of the correct ET mechanism for the specific 
system is thus crucial for interpreting the measured data and 
performing computer simulations. While electron hopping 
is typical for electrochemical interfaces at one electrode, the 
tunneling mechanism can occur in protein junctions with 

two electrode contacts. The key factor controlling the ET 
mechanism in bio/metallic junctions is the electronic level 
alignment between the electrode and the molecule [182]. 
When there is a significant difference between the molecular 
redox states and the electrode Fermi level, the electron (hole) 
injection/ejection at the interface becomes the limiting step 
for the hopping mechanism, substantially lowering its effi-
ciency, and the electronic charge is transported by coherent 
tunneling. For weakly adsorbed systems, which is usually 
the case with proteins, the alignment can be computationally 
estimated, for example, by the DFT+Σ technique, in which 
the Kohn-Sham DFT states obtained in generalized gradient 
approximation (GGA) are corrected for self-interaction error 
and missing image-charge interactions [241, 242]. These 
corrections can reach magnitudes of up to 1 eV and are 
essential for quantitative calculations of the interfacial ET 
[197]. However, as molecular electronics is a rapidly devel-
oping research field, new methods and approaches are being 
designed and optimized for these kinds of calculations.

Besides these fundamental concerns about the transport 
mechanism, the geometrical arrangements of the interfaces 
involving proteins and their electronic structures are affected 
by local EFs, as discussed in the previous section. These 

Fig. 8  (A) Marcus parabolic free energy surfaces of initial (AR) and 
final (AP) charge states with indicated driving force (ΔA), reorganiza-
tion free energies (λ), and electronic coupling element (Hab); (B) four-
site hopping model and Marcus formula for electron transfer rate con-

stant kij; (C) schematic illustration of Landauer integration formula 
for tunneling current I(V); (D) small-tetraheme cytochrome junction 
between gold contacts with conduction channel shown as orange and 
green lobes
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are dominated by their intrinsic components stemming from 
the structural and chemical composition, for example, by 
the location of various charged or polarized atomic groups 
[243–247]. The intrinsic fields are thus highly localized, ori-
ented, and relatively strong. Therefore, they typically control 
the adsorption orientations and confinement [195, 248, 249]. 
On the other hand, the external fields, induced by applied 
bias potentials, are considerably weaker; however, they can 
vary over time. In computations, these fields are involved 
via a Lorentz force acting on the partial atomic charge in 
classical simulations or affecting the electronic density in 
quantum calculations, thus polarizing the affected structures 
[130]. While the structural field effects are usually studied 
by non-equilibrium MD techniques, NEGF can be utilized 
to capture electronic transport [231–234, 250]. Neverthe-
less, these approaches are computationally demanding and 
hardly applicable for large protein models, requiring more 
approximative treatments, as explained above.

The structure and functionalization of the electrode 
surfaces at nanoscales thus play a crucial role in protein 
electrochemistry. The electrode material, its surface facet 
orientation, and the surface dipole induced by reconstruc-
tion and termination processes determine the work func-
tion [251, 252] of the specific electrode and, as a result, the 
efficiency of the charge transfer mediated by the adsorbed 
biomolecules [182, 197, 237, 253]. Atomistic computer sim-
ulations can be employed to explore these effects and sug-
gest key parameters for the desired adsorption and transport 
properties of specific systems. For example, suitable protein 
mutations with simultaneous surface functionalization by 
molecular linkers can be designed in silico to achieve the 
desired adsorption of enzymes onto biologically active sur-
faces [254, 255]. Furthermore, the incorporation of metallic 
nanoparticles at the surfaces has become popular in the last 
few decades due to their ability to induce locally enhanced 
fields. These techniques are often combined with plasma-
polymeric surface coatings, ensuring good adsorption of 
both the nanoparticles as well as the proteins [256–259]. 
However, detailed knowledge of the atomistic details of 
these complex interfaces is required for further tuning and 
control of measurements and devices. Although such details 
are hard to obtain experimentally, they can be provided by 
computer simulations, which have proven to be useful tools 
for such applications.

Conclusions and further prospects

Investigation of the intrinsic electroactivity of proteins is 
based on the reduction or oxidation of individual aa resi-
dues in their structure. These redox-active aa residues can 
be located on the surface of proteins, where they are fully 
accessible to the electrode surface. If another substance 

interacts with the surface of the protein, these aa residues 
can be modified (covalent bond) or blocked (non-covalent 
association), and the exchange of electrons between the 
protein and the electrode surface cannot take place. This 
can be clearly observed electrochemically at the surfaces 
of both mercury and carbon electrodes. Metal electrodes 
(such as gold or mercury) can also be used to investigate the 
oxidation or chemical modification of Cys residues, which 
is crucial to the function and structure of a whole range of 
proteins or peptides [18, 25]. In addition, a selective elec-
trochemical method for analyzing His residues has recently 
been developed and demonstrated on various model peptides 
and proteins [23]. For these purposes, a mercury electrode 
was used, which is a very effective tool not only for the sen-
sitive analysis of proteins but also for the analysis of their 
interactions and structural changes, such as aggregation, 
folding, or oxidative damage. In this sense, the monitor-
ing of protein interactions and structural changes is based 
on electrochemically active aa residues inside the protein 
structure. These aa residues can be exposed to the surface 
of the electrode due to a structural (relaxation) change, e.g., 
unfolding. Today, the discontinuation of mercury electrodes 
in electrochemical research is a global trend that we perceive 
very negatively (for more details, see the literature [17, 260, 
261]) since liquid mercury electrodes with an atomically 
smooth surface are excellent for evaluating and character-
izing the electrochemical behavior of various compounds. 
Today, the electrochemistry of proteins and peptides is also 
increasingly connected with research on membrane sys-
tems and research on membrane proteins and their interac-
tions [11, 15]. One of the important prerequisites in this 
research field is the fact that membranes can be anchored to 
electrode surfaces. Also, very often, the components of the 
lipid bilayer are not electrochemically active and thus do 
not directly interfere with the analysis of proteins that are 
reconstituted in these membranes. In our opinion, studies 
of the effect of the electric field on the structure and inter-
molecular interactions of proteins with other molecules or 
conductive (or biomimetic) surfaces are interesting research 
areas. In this review, we demonstrated this on cytoskeletal 
proteins using chip technologies and computational methods 
[133, 143, 155, 156, 160]. Intense short electrical pulses 
can modulate the network of non-covalent interactions of 
proteins and their components and thus interfere with their 
self-assembly processes, which can be utilized in protein 
molecular manipulation approaches.

In addition, we also point out the importance of computer 
simulations of processes associated with the structure of 
peptides and proteins immobilized on an electrically charged 
surface [190, 209, 210, 236]. Simultaneously, the simulation 
of electron transfer significantly helps to understand the bio-
logical function of redox-active proteins. In addition to ET, 
electrochemical research is also interested in proton transfer 
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in proteins and research on other proton-dependent processes 
[262–264]. It would be beneficial to combine approaches 
based on the analysis of intrinsic electroactivity with 
approaches targeting ET at non-protein redox-active centers 
of the metalloproteins [91]. Also, the infrequent application 
of advanced computing techniques prevents an expansion 
of the interpretive framework of experimental studies. As 
for protein labeling, electrochemiluminescence approaches 
are considered to have a lot of potential [12, 13]. In general, 
the combination of optical (spectral) detection methods (in 
situ spectroelectrochemistry [265]), microscopic techniques, 
and electrochemistry (including electrochemical impedance 
spectroscopy [266]) has considerable potential for the future.

In this review, we have shown selected applications in 
protein electroanalysis. However, it is important to not only 
describe the advantages but also take into account the exper-
imental difficulties and obstacles that can limit the applica-
tion of electrochemistry in the research of protein interac-
tions, both protein-low-molecular-weight-ligand interactions 
and protein-protein-DNA or -membrane interactions. In this 
sense, it is very important to understand the importance of 
adsorption effects and “protein surface denaturation” phe-
nomena [267], which can lead to artifacts in interaction stud-
ies. At the same time, it is important to pay close attention 
to the influence of the electric field on the native structure 
of proteins for the correct interpretation of electrochemi-
cal data [18]. The above could help to orient oneself in the 
above-mentioned areas and, at the same time, see all the 
possibilities that electrochemistry offers for protein research 
and bioanalysis.
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