Skip to main content
Log in

Electrochemical determination of vanillin using 2D/2D heterostructure based on ZnCr-layered double hydroxide and g-CN

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A ZnCr-LDH@g-CN composite was synthesized through a one-pot hydrothermal method to fabricate an effective sensor for detecting vanillin. The prepared material was investigated by using structural and physical studies. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) with applied potential (Epa =  + 0.68 V vs Ag/AgCl) were used to examine the electrochemical behavior of vanillin. The fabricated electrode exhibited a linear detection range of 0.001–143.2 μM, a low detection limit of 0.9 nM, sensitivity of 4.72 µA µM−1 cm−2, selectivity, stability, reproducibility (RSD = 4.40%), and repeatability (RSD = 4.46%). The optimized sensor was successfully applied to detect vanillin in real samples, including ice cream, chocolate, and water, and their recovery was 98.46–99.80%. Overall, the ZnCr-LDH@g-CN composite sensor offers a promising solution for precise vanillin detection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Joseph XB, Kogularasu S, Wang SF, Sheu JK (2021) Hydrothermal-dependent synthesis of exfoliated nickel cobaltite layers for simultaneous determination of IARC group 2B, 3B carcinogens. ACS Appl Nano Mater 4(11):12788–12797. https://doi.org/10.1021/acsanm.1c03498

    Article  CAS  Google Scholar 

  2. Joseph XB, Ezhilarasi JC, Wang SF, Elanthamilan E, Sriram B, Merlin JP (2021) Fabrication of Co 3 O 4 nanoparticle-decorated porous activated carbon electrode for the electrochemical detection of 4-nitrophenol. New J Chem 45(39):18358–18365. https://doi.org/10.1039/D1NJ02642A

    Article  CAS  Google Scholar 

  3. Nixon EJ, Sakthivel R, ALOthman ZA, Ganesh PS, Chung RJ (2023) Lanthanum nickelate spheres embedded acid functionalized carbon nanofiber composite: an efficient electrocatalyst for electrochemical detection of food additive vanillin. Food Chem 409:135324. https://doi.org/10.1016/j.foodchem.2022.135324

    Article  CAS  PubMed  Google Scholar 

  4. Monnappa AB, Manjunatha JGG, Bhatt AS, Nagarajappa H (2021) Sensitive and selective electrochemical detection of vanillin at graphene based poly (methyl orange) modified electrode. J Sci: Adv Mater Devices 6(3):415–424. https://doi.org/10.1016/j.jsamd.2021.05.002

    Article  CAS  Google Scholar 

  5. Fu L, Xie K, Wu D, Wang A, Zhang H, Ji Z (2020) Electrochemical determination of vanillin in food samples by using pyrolyzed graphitic carbon nitride. Mater Chem Phys 242:122462. https://doi.org/10.1016/j.matchemphys.2019.122462

    Article  CAS  Google Scholar 

  6. Kogularasu S, Sriram B, Wang SF, Sheu JK (2022) Superlattice stacking by confinement of the layered double hydroxide/vanadium carbide hybrid composite. The effect on interlayer anions (SO42–and CO32–) for comparing the electrochemical sensing of a food adulterant. ACS Sustain Chem Eng 10(46):15115–15123. https://doi.org/10.1021/acssuschemeng.2c04457

    Article  CAS  Google Scholar 

  7. Thirumalraj B, Jaihindh DP, Alaswad SO, Sudhakaran MSP, Selvaganapathy M, Alfantazi A, Choe H, Kwon K (2022) Fabricating BiOCl/BiVO4 nanosheets wrapped in a graphene oxide heterojunction composite for detection of an antihistamine in biological samples. Environ Res 212:113636. https://doi.org/10.1016/j.envres.2022.113636

    Article  CAS  PubMed  Google Scholar 

  8. Priscillal IJD, Wang SF (2022) Coral reef-like zinc niobate nanostructures decorated functionalized carbon nanofiber as electrode modifier for detection of oxidative stress biomarker: 3-nitro-L-tyrosine. Mater Today Chem 25:100970. https://doi.org/10.1016/j.mtchem.2022.100970

    Article  CAS  Google Scholar 

  9. Vinoth S, Wang SF (2023) Rhombohedral type of LaCoO 3 with carbon nanofiber composite as an electrocatalyst enables the amperometry detection of vanillin in food samples. New J Chem 47(19):9229–9238. https://doi.org/10.1039/D3NJ01222K

    Article  CAS  Google Scholar 

  10. Bharathi P, Wang SF (2023) Integration of bismuth sulfide/functionalized halloysite nanotube composite: an electrochemical tool for diethofencarb analysis. Chemosphere 310:136834. https://doi.org/10.1016/j.chemosphere.2022.136834

    Article  CAS  PubMed  Google Scholar 

  11. Thirumalraj B, Sriram B, Muthukutty B, Zheng L, Wang SF, Choe H, Kwon K (2023) Layered metal chalcogenide of SnSe nanosheets integrated with 2D-hexagonal boron nitride for accurate and low-level detection of nitrofurazone. Chem Eng J 455:140521. https://doi.org/10.1016/j.cej.2022.140521

    Article  CAS  Google Scholar 

  12. Joseph XB, Stanley MM, Wang SF, George M (2022) Growth of 2D-layered double hydroxide nanorods heterojunction with 2D tungsten carbide nanocomposite: improving the electrochemical sensing of norfloxacin. J Ind Eng Chem 110:434–446. https://doi.org/10.1016/j.jiec.2022.03.019

    Article  CAS  Google Scholar 

  13. Veeramani V, Madhu R, Chen SM, Veerakumar P, Syu JJ, Liu SB (2015) Cajeput tree bark-derived activated carbon for the practical electrochemical detection of vanillin. New J Chem 39(12):9109–9115. https://doi.org/10.1039/C5NJ01634G

    Article  CAS  Google Scholar 

  14. Pushpanjali PA, Manjunatha JG, Tigari G, Fattepur S (2020) Poly (niacin) based carbon nanotube sensor for the sensitive and selective voltammetric detection of vanillin with caffeine. Anal Bioanal Electrochem 12(4):553–568

    CAS  Google Scholar 

  15. Kokulnathan T, Wang TJ, Ahmed F, Arshi N (2023) Fabrication of flower-like nickel cobalt-layered double hydroxide for electrochemical detection of carbendazim. Surf Interfaces 36:102570. https://doi.org/10.1016/j.surfin.2022.102570

    Article  CAS  Google Scholar 

  16. Kokulnathan T, Wang TJ, Ahmed F, Kumar S (2023) Deep eutectic solvents-assisted synthesis of NiFe-LDH/Mo2C nanocomposite for electrochemical determination of nitrite. J Mol Liq 369:120785. https://doi.org/10.1016/j.molliq.2022.120785

    Article  CAS  Google Scholar 

  17. Joseph XB, Baby JN, Wang SF, Sriram B, George M (2021) Interfacial superassembly of Mo2C@ NiMn-LDH frameworks for electrochemical monitoring of carbendazim fungicide. ACS Sustain Chem Eng 9(44):14900–14910. https://doi.org/10.1021/acssuschemeng.1c05056

    Article  CAS  Google Scholar 

  18. Li Y, Zhang L, Xiang X, Yan D, Li F (2014) Engineering of ZnCo-layered double hydroxide nanowalls toward high-efficiency electrochemical water oxidation. J Mater Chem A 2(33):13250–13258. https://doi.org/10.1039/C4TA01275E

    Article  CAS  Google Scholar 

  19. Kokulnathan T, Wang TJ, Ahmed F, Alshahrani T (2023) Hydrothermal synthesis of ZnCr-LDH/tungsten carbide composite: a disposable electrochemical strip for mesalazine analysis. Chem Eng J 451:138884. https://doi.org/10.1016/j.cej.2022.138884

    Article  CAS  Google Scholar 

  20. Sriram B, Baby JN, Hsu YF, Wang SF, George M, Veerakumar P, Lin KC (2021) Electrochemical sensor-based barium zirconate on sulphur-doped graphitic carbon nitride for the simultaneous determination of nitrofurantoin (antibacterial agent) and nilutamide (anticancer drug). J Electroanal Chem 901:115782. https://doi.org/10.1016/j.jelechem.2021.115782

    Article  CAS  Google Scholar 

  21. Vinoth S, Wang SF (2022) Modification of glassy carbon electrode with manganese cobalt oxide-cubic like structures incorporated graphitic carbon nitride sheets for the voltammetric determination of 2,4,6-trichlorophenol. Microchim Acta 189(5):205. https://doi.org/10.1007/s00604-022-05305-6

    Article  CAS  Google Scholar 

  22. Murugan E, Dhamodharan A (2021) Separate and simultaneous determination of vanillin, theophylline and caffeine using molybdenum disulfide embedded polyaniline/graphitic carbon nitrite nanocomposite modified glassy carbon electrode. Diam Relat Mater 120:108684.41. https://doi.org/10.1016/j.diamond.2021.108684

    Article  CAS  Google Scholar 

  23. Rad TS, Khataee A, Rad SS, Arefi-Oskoui S, Gengec E, Kobya M, Yoon Y (2022) Zinc-chromium layered double hydroxides anchored on carbon nanotube and biochar for ultrasound-assisted photocatalysis of rifampicin. Ultrason Sonochem 82:105875. https://doi.org/10.1016/j.ultsonch.2021.105875

    Article  CAS  Google Scholar 

  24. Konari M, Heydari-Bafrooei E, Dinari M (2021) Efficient immobilization of aptamers on the layered double hydroxide nanohybrids for the electrochemical proteins detection. Int J Biol Macromol 166:54–60. https://doi.org/10.1016/j.ijbiomac.2020.10.063

    Article  CAS  PubMed  Google Scholar 

  25. Kogularasu S, Sriram B, Wang SF, Sheu JK (2022) Sea-urchin-like Bi2S3 microstructures decorated with graphitic carbon nitride nanosheets for use in food preservation. ACS Appl Nano Mater 5(2):2375–2384. https://doi.org/10.1021/acsanm.1c04055

    Article  CAS  Google Scholar 

  26. Radha A, Wang SF (2022) Bismuth sulfide microstructures decorated with functionalized boron nitride composite for electrochemical detection of sulfadiazine. Microchim Acta 189(11):429. https://doi.org/10.1007/s00604-022-05518-9

    Article  CAS  Google Scholar 

  27. Sriram B, Kogularasu S, Hsu YF, Wang SF, Sheu JK (2022) Fabrication of praseodymium vanadate nanoparticles on disposable strip for rapid and real-time amperometric sensing of arsenic drug roxarsone. Inorg Chem 61(41):16370–16379. https://doi.org/10.1021/acs.inorgchem.2c02388

    Article  CAS  PubMed  Google Scholar 

  28. Hui J, Ruiyi L, Zhenzhong D, Xiaoyan G, Junshan X, Jinsong S, Zaijun L (2023) Platinum nanoparticle-graphene quantum dot nanocage as a promising Schottky heterojunction electrocatalyst for electrochemical detection of vanillin in baby milk powder. Microchem J 186:108320. https://doi.org/10.1016/j.microc.2022.108320

    Article  CAS  Google Scholar 

  29. Chen Y, Sun Y, Waterhouse GI, Gao H, Xu Z (2023) Highly selective molecularly imprinted gel-based electrochemical sensor with CuS@ COOH-MWCNTs signal amplification for simultaneous detection of vanillin and tartrazine in foods. Sensors and Actuators B: Chem 377:133045. https://doi.org/10.1016/j.snb.2022.133045

    Article  CAS  Google Scholar 

  30. Pradeepa E, Nayaka YA, Manjushree NR (2023) Sensitive and selective determination of vanillin in the presence of dopamine and uric acid using low-cost and trouble-free pencil graphite electrode modified with methyl orange. Mater Chem Phys 296:127180. https://doi.org/10.1016/j.matchemphys.2022.127180

    Article  CAS  Google Scholar 

  31. Nag S, Das D, Roy RB (2023) Voltammetry application of molecularly imprinted polyacrylamide as vanillin receptor in desserts. IEEE Sens J. https://doi.org/10.1109/JSEN.2023.3235933

    Article  Google Scholar 

  32. Manikandan VS, Boateng E, Durairaj S, Chen A (2022) Electrochemical sensing of vanillin based on fluorine-doped reduced graphene oxide decorated with gold nanoparticles. Foods 11(10):1448. https://doi.org/10.3390/foods11101448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Roostaee M, Sheikhshoaie I (2022) A novel, sensitive and selective nanosensor based on graphene nanoribbon–cobalt ferrite nanocomposite and 1-methyl-3-butylimidazolium bromide for detection of vanillin in real food samples. J Food Meas Charact 16:523–532. https://doi.org/10.1007/s11694-021-01180-6

Download references

Funding

This work was supported by the Ministry of Science and Technology (MOST-108–2221-E-027–063) and the National Taipei University of Technology (NTUT) through their financial encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sea-Fue Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12241 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gopi, S., Wang, SF. Electrochemical determination of vanillin using 2D/2D heterostructure based on ZnCr-layered double hydroxide and g-CN. Microchim Acta 190, 423 (2023). https://doi.org/10.1007/s00604-023-05985-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05985-8

Keywords

Navigation