Skip to main content
Log in

A dual-channel sensor array for discrimination of biothiols based on manganese dioxide nanosheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A dual-signal sensor array for highly sensitive identification of biothiols is reported based on different optical responses of MnO2/curcumin (CUR) system to different biothiols. The addition of MnO2 nanosheets (MnO2 NSs) quenches the fluorescence of CUR, and the color of the mixture changes from yellow to brown. In the presence of reductive biothiols, MnO2 NSs are etched and lose their fluorescence quenching ability, resulting in an increase in the fluorescence intensity of CUR at 540 nm and a decrease in the absorbance at 430 nm. The sensor array generates specific response modes based on the varying reduction abilities of different biothiols, which can be distinguished by linear discriminant analysis (LDA). The sensor array successfully distinguished five biothiols (glutathione (GSH), dithiothreitol (DTT), cysteine (Cys), mercaptoethanol (ME), and homocysteine (Hcy)) across a wide concentration range (1 μM-100 μM) and biothiol mixtures with varing molar ratios.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this manuscript as no new data were created or analyzed in this study.

References

  1. Akrivi EA, Vlessidis AG, Kourkoumelis N, Giokas DL, Tsogas GZ (2022) Gold-activated luminol chemiluminescence for the selective determination of cysteine over homocysteine and glutathione. Talanta 245:123464

    Article  CAS  PubMed  Google Scholar 

  2. Kang YF, Qiao HX, Meng YL, Xin ZH, Ge LP, Dai MY, Xu JJ, Cun-Hui Zhang CH (2017) Selective detection of cysteine over homocysteine and glutathione by a simple and effective probe. Anal Methods 9:1707–1709

    Article  CAS  Google Scholar 

  3. Xiao QY, Shang F, Xu XC, Li QQ, Lu C, Lin JM (2011) Specific detection of cysteine and homocysteine in biological fluids by tuning the pH values of fluorosurfactant-stabilized gold colloidal solution. Biosens Bioelectron 30:211–215

    Article  CAS  PubMed  Google Scholar 

  4. Li H, Wang Z, Zhao J, Guan Y, Liu Y (2020) Dual colorimetric and ratiometric fluorescent responses for the determination of glutathione based on fluorescence quenching and oxidase-like activity of MnO2 nanosheets. ACS Sustain Chem Eng 8:16136–16142

    Article  CAS  Google Scholar 

  5. Yuan D, Liu JJ, Yan HH, Li CM, Huang CZ, Wang J (2019) Label-free gold nanorods sensor array for colorimetric detection and discrimination of biothiols in human urine samples. Talanta 203:220–226

    Article  CAS  PubMed  Google Scholar 

  6. Hakuna L, Escobedo JO, Lowry M, Barve A, McCallum N, Strongin RM (2014) A photochemical method for determining plasma homocysteine with limited sample processing. Chem Commun 50:3071–3073

    Article  CAS  Google Scholar 

  7. Chen C, Liu W, Xu C, Liu W (2015) A colorimetric and fluorescent probe for detecting intracellular GSH. Biosens Bioelectron 71:68–74

    Article  CAS  PubMed  Google Scholar 

  8. Li L, Wang Q, Chen Z (2019) Colorimetric detection of glutathione based on its inhibitory effect on the peroxidase-mimicking properties of WS2 nanosheets. Microchim Acta 186:257

    Article  Google Scholar 

  9. Sun T, Xia L, Huang J, Gu Y, Wang P (2018) A highly sensitive fluorescent probe for fast recognization of DTT and its application in one- and two-photon imaging. Talanta 187:295–301

    Article  CAS  PubMed  Google Scholar 

  10. Rohilla D, Chaudhary S, Kaur N, Shanavas A (2020) Dopamine functionalized CuO nanoparticles: a high valued “turn on” colorimetric biosensor for detecting cysteine in human serum and urine samples. Mater Sci Eng C Mater Biol Appl 110:110724

    Article  CAS  PubMed  Google Scholar 

  11. Zhang M, Wang L, Zhao Y, Wang F, Wu J, Liang G (2018) Using bioluminescence turn-on to detect cysteine in vitro and in vivo. Anal Chem 90(8):4951–4954

    Article  CAS  PubMed  Google Scholar 

  12. Stewart S, Ivy MA, Anslyn EV (2014) The use of principal component analysis and discriminant analysis in differential sensing routines. Chem Soc Rev 43:70–84

    Article  CAS  PubMed  Google Scholar 

  13. Ghasemi F, Hormozi-Nezhad MR, Mahmoudi M (2015) A colorimetric sensor array for detection and discrimination of biothiols based on aggregation of gold nanoparticles. Anal Chim Acta 882:58–67

    Article  CAS  PubMed  Google Scholar 

  14. Lin J, Wang Q, Wang X, Zhu Y, Zhou X, Wei H (2020) Gold alloy-based nanozyme sensor arrays for biothiol detection. Analyst 145:3916–3921

    Article  CAS  PubMed  Google Scholar 

  15. Wu Y, Liu X, Wu Q, Yi J, Zhang G (2017) Carbon nanodots-based fluorescent turn-on sensor array for biothiols. Anal Chem 89:7084–7089

    Article  CAS  PubMed  Google Scholar 

  16. Chen S, Li Z, Xue R, Huang Z, Jia Q (2022) Confining copper nanoclusters in three dimensional mesoporous silica particles: fabrication of an enhanced emission platform for “turn off-on” detection of acid phosphatase activity. Anal Chim Acta 1192:339387

    Article  CAS  PubMed  Google Scholar 

  17. Liu Z, Xu K, Sun H, Yin S (2015) One-step synthesis of single-layer MnO2 nanosheets with multi-role sodium dodecyl sulfate for high-performance pseudocapacitors. Small 11:2182–2191

    Article  CAS  PubMed  Google Scholar 

  18. Yang LM, Guo H, Hou T, An B, Li F (2023) Portable multi-amplified temperature sensing for tumor exosomes based on MnO2/IR780 nanozyme with high photothermal effect and oxidase-like activity. Chin Chem Lett 2023:107607

    Article  Google Scholar 

  19. Wu JH, Yang QT, Li Q, Li HY, Li F (2021) Two dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticide without interferences of H2O2 and color. Anal Chem 93:4084–4091

    Article  CAS  PubMed  Google Scholar 

  20. Anothumakkool B, Kurungot S (2014) Electrochemically grown nanoporous MnO2 nanowalls on a porous carbon substrate with enhanced capacitance through faster ionic and electrical mobility. Chem Commun 50:7188–7190

    Article  CAS  Google Scholar 

  21. Shi S, Xu C, Dong Q, Wang Y, Zhu S, Zhang X, Tak Chow Y, Wang X, Zhu L, Zhang G, Xu D (2021) High saturation magnetization MnO2/PDA/Fe3O4 fibers for efficient Pb(II) adsorption and rapid magnetic separation. Appl Surf Sci 541:148379

  22. Ge J, Zhao Y, Gao X, Li H, Jie G (2019) Versatile electrochemiluminescence and photoelectrochemical detection of glutathione using Mn(2+) substitute target by DNA-walker-induced allosteric switch and signal amplification. Anal Chem 91:14117–14124

    Article  CAS  PubMed  Google Scholar 

  23. Wu JH, Lv WX, Yang QT, Li HY, Li F (2021) Label-free homogeneous electrochemical detection of MicroRNA based on target-induced anti-shielding against the catalytic activity of two-dimension nanozyme. Biosens Bioelectron 171:112707

    Article  CAS  PubMed  Google Scholar 

  24. Chen J, Meng H, Tian Y, Yang R, Du D, Li Z, Qu L, Lin Y (2019) Recent advances in functionalized MnO2 nanosheets for biosensing and biomedicine applications. Nanoscale Horiz 4:321–338

    Article  CAS  PubMed  Google Scholar 

  25. Dong ZZ, Lu L, Ko CN, Yang C, Li S, Lee MY, Leung CH, Ma DL (2017) A MnO2 nanosheet-assisted GSH detection platform using an iridium(iii) complex as a switch-on luminescent probe. Nanoscale 9:4677–4682

    Article  CAS  PubMed  Google Scholar 

  26. Kai K, Yoshida Y, Kageyama H, Saito G, Ishigaki T, Furukawa Y, Kawamata J (2008) J Am Chem Soc 130:15938–15943

    Article  CAS  PubMed  Google Scholar 

  27. Zhang G, Ren L, Yan Z, Kang L, Lei Z, Xu H, Shi F, Liu ZH (2017) Rational design and controllable preparation of holey MnO2 nanosheets. Chem Commun 53:2950–2953

    Article  CAS  Google Scholar 

  28. Yan Q, Ding XY, Chen ZH, Xue SF, Han XY, Lin ZY, Yang M, Shi G, Zhang M (2018) pH-regulated optical performances in organic/inorganic hybrid: A dual-mode sensor array for pattern-recognition-based biosensing. Anal Chem 90:10536–10542

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All authors gratefully acknowledge the financial support of Scientific Research Project of Beijing Educational Committee (KM202010028007), the Natural Science Foundation of China (52171157), and the Outstanding Youth Science Foundation Project of Henan Province (222300420063).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yumin Leng, Kai Li or Zhengbo Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 955 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Z., Jiang, C., Liu, C. et al. A dual-channel sensor array for discrimination of biothiols based on manganese dioxide nanosheets. Microchim Acta 190, 294 (2023). https://doi.org/10.1007/s00604-023-05883-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05883-z

Keywords

Navigation