Skip to main content
Log in

MnO2 nanoparticles decorated with Ag/Au nanotags for label-based SERS determination of cellular glutathione

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel stimulus-responsive surface-enhanced Raman scattering (SERS) nanoprobe has been developed for sensitive glutathione (GSH) detection based on manganese dioxide (MnO2) core and silver/gold nanoparticles (Ag/Au NPs). The MnO2 core is not only capable to act as a scaffold to amplify the SERS signal via producing “hot spots”, but also can be degraded in the presence of the target and thus greatly enhance the nanoprobe sensitivity for sensing of GSH. This approach enables a wide linear range from 1 to 100 µM with a 2.95 µM (3σ/m) detection limit. Moreover, the developed SERS nanoprobe represents great possibility in both sensitive detection of intracellular GSH and even can monitor the change of intracellular GSH level when the stimulant occurs. This sensing system not merely offers a novel strategy for sensitive sensing of GSH, but also provides a new avenue for other biomolecules detection.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article [and its supplementary information files].

References

  1. Wang D, Meng Y, Zhang Y, Wang Q, Lu W, Shuang S, Dong C (2022) A specific discriminating GSH from Cys/Hcy fluorescence nanosensor: the carbon dots-MnO2 nanocomposites. Sens Actuators B: Chem 367:132135

    CAS  Google Scholar 

  2. Wang X, Li H, Liu C, Hu Y, Li M, Wu Y (2021) Simple turn-on fluorescent sensor for discriminating Cys/Hcy and GSH from different fluorescent signals. Anal Chem 93(4):2244–2253

    CAS  PubMed  Google Scholar 

  3. Shen Y, Yue J, Shi W, Xu W, Xu S (2020) Target-triggered hot spot dispersion for cellular biothiol detection via background-free surface-enhanced Raman scattering tags. Biosens Bioelectron 151:111957

    CAS  PubMed  Google Scholar 

  4. Zhou Z, Li P, Liu Z, Wu C, Zhang Y, Li H (2022) Construction of a unique fluorescent probe for rapid and highly sensitive detection of glutathione in living cells and zebrafish. Talanta 243:123364

    CAS  PubMed  Google Scholar 

  5. Chen H, Tang Y, Gui J, Li P, Zhu X, Wu C, Yin P, Liu M, Zhang Y, Yao S (2023) Detection and bioimaging of glutathione in cells via a turn-on near-infrared fluorescent nanoprobe composed of Ag2S quantum dots and CoOOH nanosheets. ACS Appl Nano Mater 6(3):1870–1879

    CAS  Google Scholar 

  6. Song Z, Dai X, Li M, Teng H, Song Z, Xie D, Luo X (2018) Biodegradable nanoprobe based on MnO2 nanoflowers and graphene quantum dots for near infrared fluorescence imaging of glutathione in living cells. Microchim Acta 185:482

    Google Scholar 

  7. Yuan D, Ding L, Sun Z, Li X (2018) MRI/Fluorescence bimodal amplification system for cellular GSH detection and tumor cell imaging based on manganese dioxide nanosheet. Sci REP-UK 8:1747

    Google Scholar 

  8. Wang Y, Jiang L, Leng Q, Wu Y, He X, Wang K (2016) Electrochemical sensor for glutathione detection based on mercury ion triggered hybridization chain reaction signal amplification. Biosens Bioelectron 77:914–920

    CAS  PubMed  Google Scholar 

  9. Zhong Q, Chen Y, Su A, Wang Y (2018) Synthesis of catalytically active carbon quantum dots and its application for colorimetric detection of glutathione. Sens Actuators B: Chem 273:1098–1102

    CAS  Google Scholar 

  10. Yao C, Wang J, Zheng A, Wu L, Zhang X, Liu X (2017) A fluorescence sensing platform with the MnO2 nanosheets as an effective oxidant for glutathione detection. Sens Actuators B: Chem 252:30–36

    CAS  Google Scholar 

  11. Li Y, Jiang L, Zou Y, Song Z, Jin S (2021) Highly reproducible SERS sensor based on self-assembled Au nanocubic monolayer film for sensitive and quantitative detection of glutathione. Appl Surf Sci 540(2):148381

    CAS  Google Scholar 

  12. Shu Y, Gao J, Chen J, Yan J, Sun J, Jin D, Xu Q, Hu X (2021) A near-infrared fluorescent sensor based on the architecture of low-toxic Ag2S quantum dot and MnO2 nanosheet for sensing glutathione in human serum sample. Talanta 221:121475

    CAS  PubMed  Google Scholar 

  13. He X, Ge C, Zheng X, Tang B, Chen L, Li S, Wang L, Zhang L, Xu Y (2020) Rapid identification of alpha-fetoprotein in serum by a microfluidic SERS chip integrated with Ag/Au Nanocomposites. Sens Actuators B: Chem 317:128196

    CAS  Google Scholar 

  14. Kneipp J, Kneipp H, Kneipp K (2008) SERS-a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37(5):1052–1060

    CAS  PubMed  Google Scholar 

  15. Tang J, Chen W, Ju H (2019) Rapid detection of pesticide residues using a silver nanoparticles coated glass bead as nonplanar substrate for SERS sensing. Sens Actuators B: Chem 287:576–583

    CAS  Google Scholar 

  16. Wang T, Dong P, Zhu C, Gao W, Sha P, Wu Y, Wu X (2021) Fabrication of 2D titanium carbide MXene/Au nanorods as a nanosensor platform for sensitive SERS detection. Ceram Int 47(21):30082–30090

    CAS  Google Scholar 

  17. Zhu Y, Wu J, Wang K, Xu H, Qu M, Gao Z, Guo L, Xie J (2021) Facile and sensitive measurement of GSH/GSSG in cells by surface-enhanced Raman spectroscopy. Talanta 224:121852

    CAS  PubMed  Google Scholar 

  18. Dai X, Song Z, Song W, Zhang J, Fan G, Wang W, Luo X (2020) Shell-switchable SERS blocking strategy for reliable signal-on SERS sensing in living cells: detecting an external target without affecting the internal Raman molecule. Anal Chem 92(16):11469–11475

    CAS  PubMed  Google Scholar 

  19. Dai X, Lu L, Zhang X, Song Z, Song W, Chao Q, Li Q, Wang W, Chen J, Fan G (2021) MnO2 shell-isolated SERS nanoprobe for the quantitative detection of ALP activity in trace serum: relying on the enzyme-triggered etching of MnO2 shell to regulate the signal. Sens Actuators B: Chem 334:129605

    CAS  Google Scholar 

  20. Li P, Zhou B, Ge M, Jing X, Yang L (2022) Metal coordination induced SERS nanoprobe for sensitive and selective detection of histamine in serum. Talanta 237:122913

    CAS  PubMed  Google Scholar 

  21. Su S, Zhang C, Yuwen L, Chao J, Zuo X, Liu X, Song C, Fan C, Wang L (2014) Creating SERS hot spots on MoS2 nanosheets with in situ grown gold nanoparticles. ACS Appl Mater Interfaces 6(21):18735–18741

    CAS  PubMed  Google Scholar 

  22. Yun BJ, Koh W (2020) Highly-sensitive SERS-based immunoassay platform prepared on silver nanoparticle-decorated electrospun polymeric fibers. J Ind Eng Chem 82:341–348

    CAS  Google Scholar 

  23. Liao W, Liu K, Chen Y, Hu J, Gan Y (2021) Au-Ag bimetallic nanoparticles decorated silicon nanowires with fixed and dynamic hot spots for ultrasensitive 3D SERS sensing. J Alloys Compd 868:159136

    CAS  Google Scholar 

  24. Wang K, Sun D, Pu H, Wei Q (2019) Shell thickness-dependent Au@Ag nanoparticles aggregates for high-performance SERS applications. Talanta 195:506–515

    CAS  PubMed  Google Scholar 

  25. Peña-Rodríguez O, Pal U (2011) Enhanced plasmonic behavior of bimetallic (Ag-Au) multilayered spheres. Nanoscale Res Lett 6:279

    PubMed  PubMed Central  Google Scholar 

  26. Yu J, Ma Y, Yang C, Zhang H, Liu L, Su J, Gao Y (2018) SERS-active composite based on rGO and Au/Ag core-shell nanorods for analytical applications. Sens Actuators B: Chem 254:182–188

    CAS  Google Scholar 

  27. Xue H, Yu M, He K, Liu Y, Cao Y, Shui Y, Li J, Farooq M, Wang L (2020) A novel colorimetric and fluorometric probe for biothiols based on MnO2 NFs-rhodamine B system. Anal Chim Acta 1127:39–48

    CAS  PubMed  Google Scholar 

  28. Liu W, Zhang K, Zhuang L, Liu J, Zeng W, Shi J, Zhang Z (2019) Aptamer/photosensitizer hybridized mesoporous MnO2 based tumor cell activated ROS regulator for precise photodynamic therapy of breast cancer. Colloids Surf B 184:110536

    CAS  Google Scholar 

  29. Nawaz F, Xie Y, Cao H, Xiao J, Zhang X, Li M, Duan F (2015) Catalytic ozonation of 4-nitrophenol over an mesoporous α-MnO2 with resistance to leaching. Catal Today 258:595–601

    CAS  Google Scholar 

  30. Poudel BK, Gupta B, Ramasamy T, Thapa RK, Pathak S, Oh KT, Jeong J, Choi H, Yong CS, Kim JO (2017) PEGylated thermosensitive lipid-coated hollow gold nanoshells for effective combinational chemo-photothermal therapy of pancreatic cancer. Colloids Surf B 160:73–83

    CAS  Google Scholar 

  31. Zhang H, Lin X, Wang A, Zhao Y, Chu H (2015) Fluorescence enhancement of europium complexes by core-shell Ag@SiO2 nanoparticles. Spectrochim Acta, Part A 151:716–722

    CAS  Google Scholar 

  32. Pham TTH, Vu XH, Dien ND, Trang TT, Van Truong N, Thanh TD, Tan PM, Ca NX (2020) The structural transition of bimetallic Ag-Au from core/shell to alloy and SERS application. RSC Adv 10:24577–24594

    Google Scholar 

  33. Han L, Liu SG, Liang JY, Li NB, Luo HQ (2019) Free-label dual-signal responsive optical sensor by combining resonance Rayleigh scattering and colorimetry for sensitive detection of glutathione based on ultrathin MnO2 nanoflakes. Sens Actuators B: Chem 288:195–201

    CAS  Google Scholar 

  34. Li Y, Zhang L, Zhang Z, Liu Y, Chen J, Liu J, Du P, Guo H, Lu X (2021) MnO2 nanospheres assisted by cysteine combined with MnO2 nanosheets as a fluorescence resonance energy transfer system for “switch-on” detection of glutathione. Anal Chem 93(27):9621–9627

    CAS  PubMed  Google Scholar 

  35. Ścibior D, Skrzycki M, Podsiad M, Czeczot H (2008) Glutathione level and glutathione-dependent enzyme activities in blood serum of patients with gastrointestinal tract tumors. Clin biochem 41:852–858

    PubMed  Google Scholar 

  36. Lu Z, Lu Y, Fan C, Sun X, Zhang M, Lu Y (2018) A two-separated-emission fluorescent probe for simultaneous discrimination of Cys/Hcy and GSH upon excitation of two different wavelengths. J Mater Chem B 6(48):8221–8227

    CAS  PubMed  Google Scholar 

  37. Zhang Y, Shao X, Wang Y, Pan F, Kang R, Peng F, Huang Z, Zhang W, Zhao W (2015) Dual emission channels for sensitive discrimination of Cys/Hcy and GSH in plasma and cells. Chem Commun 51(20):4245–4248

    CAS  Google Scholar 

  38. Hu Q, Sun H, Zhou X, Gong X, Xiao L, Liu L, Yang Z (2020) Bright-yellow-emissive nitrogen-doped carbon nanodots as a fluorescent nanoprobe for the straightforward detection of glutathione in food samples. Food Chem 325:126946

    CAS  PubMed  Google Scholar 

  39. Zhu J, Xia T, Cui Y, Yang Y, Qian G (2019) A turn-on MOF-based luminescent sensor for highly selective detection of glutathione. J Solid State Chem 270:317–323

    CAS  Google Scholar 

  40. Su P, Zhu Z, Tian Y, Liang L, Wu W, Cao J, Cheng B, Liu W, Tang Y (2020) A TAT peptide-based ratiometric two-photon fluorescent probe for detecting biothiols and sequentially distinguishing GSH in mitochondria. Talanta 218:121127

    CAS  PubMed  Google Scholar 

  41. Zhang B, Zou H, Qi Y, Zhang X, Sheng R, Zhang Y, Sun R, Chen L, Lv R (2021) Assembly of polyoxometalates/polydopamine nanozymes as a multifunctional platform for glutathione and Escherichia coli O157: H7 detection. Microchem J 164:106013

    CAS  Google Scholar 

  42. Sun R, Lv R, Zhang Y, Du T, Li Y, Chen L, Qi Y (2022) Colorimetric sensing of glucose and GSH using core-shell Cu/Au nanoparticles with peroxidase mimicking activity. RSC Adv 12:21875–21884

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhao X, Wu K, Lyu H, Zhang X, Liu Z, Fan G, Zhang X, Zhu X, Liu Q (2019) Porphyrin functionalized Co(OH)2/GO nanocomposites as an excellent peroxidase mimic for colorimetric biosensing. Analyst 144(7):5284–5291

    CAS  PubMed  Google Scholar 

  44. Jiang C, Zhang C, Song J, Ji X, Wang W (2021) Cytidine-gold nanoclusters as peroxidase mimetic for colorimetric detection of glutathione (GSH), glutathione disulfide (GSSG) and glutathione reductase (GR). Spectrochim Acta, Part A 250:119316

    CAS  Google Scholar 

  45. Chen X, Batist G (1998) Sensitization effect of L-2-oxothiazolidine-4-carboxylate on tumor cells to melphalan and the role of 5-oxo-L-prolinase in glutathione modulation in tumor cells. Biochem Pharmacol 56(6):743–749

    CAS  PubMed  Google Scholar 

  46. Russo A, DeGraff W, Friedman N, Mitchell JB (1986) Selective modulation of glutathione levels in human normal versus tumor cells and subsequent differential response to chemotherapy drugs. Cancer Res 46(6):2845–2848

    CAS  PubMed  Google Scholar 

  47. Gao G, Jiang Y, Jia H, Yang J, Wu F (2018) On-off-on fluorescent nanosensor for Fe3+ detection and cancer/normal cell differentiation via silicon-doped carbon quantum dots. Carbon 134:232–243

    CAS  Google Scholar 

  48. Nur G, Nazıroğlu M, Deveci HA (2017) Synergic prooxidant, apoptotic and TRPV1 channel activator effects of alpha-lipoic acid and cisplatin in MCF-7 breast cancer cells. J Recept Sig Transd 37(6):569–577

    CAS  Google Scholar 

  49. Wang C, Yun G, Sen HAZY, Ying W, Yang H (2022) MnO2 coated Au nanoparticles advance SERS detection of cellular glutathione. Biosens Bioelectron 215:114388

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work supported by the Natural Science Foundation of Hebei Province (Nos. H2020206416, H2022206320, B2021206005), the Youth Top Talent Project of Hebei Province Higher Education (No. BJ2021050), Chunyu Project Outstanding Youth Fund of Hebei Medical University (No. CYYQ2021003), and the National Natural Science Foundation of China (No. 82204097).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanyan Zhu or Jing Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.33 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Quan, C., Ren, T. et al. MnO2 nanoparticles decorated with Ag/Au nanotags for label-based SERS determination of cellular glutathione. Microchim Acta 190, 341 (2023). https://doi.org/10.1007/s00604-023-05870-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05870-4

Keywords

Navigation