Skip to main content
Log in

An insight into fluorescence and magnetic resonance bioimaging using a multifunctional polyethyleneimine-passivated gadocarbon dots nanoconstruct assembled with AS1411

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A nanoassembly of PEI-passivated Gd@CDs, a type of aptamer, is presented which was designed and characterized in order to target specific cancer cells based on their recognition of the receptor nucleolin (NCL), which is overexpressed on the cell membrane of breast cancer cells for fluorescence and magnetic resonance imaging and treatment. Using hydrothermal methods, Gd-doped nanostructures were synthesized, then modified by a two-step chemical procedure for subsequent applications: the passivating of Gd@CDs with branched polyethyleneimine (PEI) (to form Gd@CDs-PEI1 and Gd@CDs-PEI2), and using AS1411 aptamer (AS) as a DNA-targeted molecule (to generate AS/Gd@CDs-PEI1 and AS/Gd@CDs-PEI2). Consequently, these nanoassemblies were constructed as a result of electrostatic interactions between cationic Gd@CDs-passivated PEI and AS aptamers, offering efficient multimodal targeting nanoassemblies for cancer cell detection. It has been demonstrated through in vitro studies that both types of AS-conjugated nanoassemblies are highly biocompatible, have high cellular uptake efficiency (equivalent concentration of AS: 0.25 μΜ), and enable targeted fluorescence imaging in nucleolin-positive MCF7 and MDA-MB-231 cancer cells compared to MCF10-A normal cells. Importantly, the as-prepared Gd@CDs, Gd@CDs-PEI1, and Gd@CDs-PEI2 exhibit higher longitudinal relaxivity values (r1) compared with the commercial Gd-DTPA, equal to 5.212, 7.488, and 5.667 mM−1s−1, respectively. Accordingly, it is concluded that the prepared nanoassemblies have the potential to become excellent candidates for cancer targeting and fluorescence/MR imaging agents, which can be applied to cancer imaging and personalized nanomedicine.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Rosenkrans ZT, Ferreira CA, Ni D, Cai W (2021) Internally responsive nanomaterials for activatable multimodal imaging of cancer. Adv Healthc Mater 10:2000690. https://doi.org/10.1002/adhm.202000690

    Article  CAS  Google Scholar 

  2. Cao Y, Xu L, Kuang Y et al (2017) Gadolinium-based nanoscale MRI contrast agents for tumor imaging. J Mater Chem B 5:3431–3461. https://doi.org/10.1039/c7tb00382j

    Article  CAS  PubMed  Google Scholar 

  3. Zylke JW (2020) Erratum: Comparison of abbreviated breast MRI vs digital breast tomosynthesis for breast cancer detection among women with dense breasts undergoing screening. JAMA 323(8):746–756. https://doi.org/10.1001/jama.2020.2991

    Article  Google Scholar 

  4. Walia S, Chandrasekaran AR, Chakraborty B, Bhatia D (2021) Aptamer-programmed DNA nanodevices for advanced, targeted cancer theranostics. ACS Appl Bio Mater 2:5392–5404. https://doi.org/10.1021/acsabm.1c00413

    Article  CAS  Google Scholar 

  5. Chen T, Ren L, Liu X et al (2018) DNA nanotechnology for cancer diagnosis and therapy. Int J Mol Sci 19:1671. https://doi.org/10.3390/ijms19061671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ravichandran G, Rengan AK (2020) Aptamer-mediated nanotheranostics for cancer treatment: a review. ACS Appl Nano Mater 3:9542–9559. https://doi.org/10.1021/acsanm.0c01785

    Article  CAS  Google Scholar 

  7. Lin M, Zhang J, Wan H et al (2021) Rationally designed multivalent aptamers targeting cell surface for biomedical applications. ACS Appl Mater Interfaces 13:9369–9389. https://doi.org/10.1021/acsami.0c15644

    Article  CAS  PubMed  Google Scholar 

  8. Kaur H, Bruno JG, Kumar A, Sharma TK (2018) Aptamers in the therapeutics and diagnostics pipelines. Theranostics 8:4016–4032. https://doi.org/10.7150/thno.25958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Geng Z, Cao Z, Liu R et al (2021) Aptamer-assisted tumor localization of bacteria for enhanced biotherapy. Nat Commun 12:1–12. https://doi.org/10.1038/s41467-021-26956-8

    Article  CAS  Google Scholar 

  10. He S, Gao F, Ma J et al (2021) Aptamer-PROTAC conjugates (APCs) for tumor-specific targeting in breast cancer. Chemie - Int Ed 60:23299–23305. https://doi.org/10.1002/anie.202107347

    Article  CAS  Google Scholar 

  11. Gregório AC, Lacerda M, Figueiredo P et al (2018) Meeting the needs of breast cancer: a nucleolin’s perspective. Crit Rev Oncol Hematol 125:89–101. https://doi.org/10.1016/j.critrevonc.2018.03.008

    Article  PubMed  Google Scholar 

  12. Pichiorri F, Palmieri D, De Luca L et al (2013) In vivo NCL targeting affects breast cancer aggressiveness through miRNA regulation. J Exp Med 210:951–968. https://doi.org/10.1084/jem.20120950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dam DHM, Culver KSB, Odom TW (2014) Grafting aptamers onto gold nanostars increases in vitro efficacy in a wide range of cancer cell types. Mol Pharm 11:580–587. https://doi.org/10.1021/mp4005657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mehrnia SS, Hashemi B, Mowla SJ et al (2021) Radiosensitization of breast cancer cells using AS1411 aptamer-conjugated gold nanoparticles. Radiat Oncol 16:1–12. https://doi.org/10.1186/s13014-021-01751-3

    Article  CAS  Google Scholar 

  15. Li S, Jiang Q, Liu S et al (2018) A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat Biotechnol 36:258–264. https://doi.org/10.1038/nbt.4071

    Article  CAS  PubMed  Google Scholar 

  16. Shen CL, Lou Q, Liu KK et al (2020) Chemiluminescent carbon dots: synthesis, properties, and applications. Nano Today 35:100954. https://doi.org/10.1016/j.nantod.2020.100954

    Article  CAS  Google Scholar 

  17. Li M, Chen T, Gooding JJ, Liu J (2019) Review of carbon and graphene quantum dots for sensing. ACS Sensors 4:1732–1748. https://doi.org/10.1021/acssensors.9b00514

    Article  CAS  PubMed  Google Scholar 

  18. Park Y, Yoo J, Lim B et al (2016) Improving the functionality of carbon nanodots: Doping and surface functionalization. J Mater Chem A 4:11582–11603. https://doi.org/10.1039/c6ta04813g

    Article  CAS  Google Scholar 

  19. Pirsaheb M, Mohammadi S, Salimi A (2019) Current advances of carbon dots based biosensors for tumor marker detection, cancer cells analysis and bioimaging. TrAC - Trends Anal Chem 115:83–99. https://doi.org/10.1016/j.trac.2019.04.003

    Article  CAS  Google Scholar 

  20. Kim S, Choi Y, Park G et al (2017) Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res 10:503–519. https://doi.org/10.1007/s12274-016-1309-1

    Article  CAS  Google Scholar 

  21. Sciortino L, Sciortino A, Popescu R et al (2018) Tailoring the emission color of carbon dots through nitrogen-induced changes of their crystalline structure. J Phys Chem C 122:19897–19903. https://doi.org/10.1021/acs.jpcc.8b04514

    Article  CAS  Google Scholar 

  22. Hua XW, Bao YW, Wu FG (2018) Fluorescent carbon quantum dots with intrinsic nucleolus-targeting capability for nucleolus imaging and enhanced cytosolic and nuclear drug delivery. ACS Appl Mater Interfaces 10:10664–10677. https://doi.org/10.1021/acsami.7b19549

    Article  CAS  PubMed  Google Scholar 

  23. Corr SA, Byrne SJ, Tekoriute R et al (2008) Linear assemblies of magnetic nanoparticles as MRI contrast agents. J Am Chem Soc 130:4214–4215. https://doi.org/10.1021/ja710172z

    Article  CAS  PubMed  Google Scholar 

  24. Hou X, Hu Y, Wang P et al (2017) Modified facile synthesis for quantitatively fluorescent carbon dots. Carbon N Y 122:389–394. https://doi.org/10.1016/j.carbon.2017.06.093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li T, Murphy S, Kiselev B et al (2015) A new interleukin-13 amino-coated gadolinium metallofullerene nanoparticle for targeted MRI detection of glioblastoma tumor cells. J Am Chem Soc 137:7881–7888. https://doi.org/10.1021/jacs.5b03991

    Article  CAS  PubMed  Google Scholar 

  26. Du F, Zhang M, Gong A et al (2017) Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors. Biomaterials 121:109–120. https://doi.org/10.1016/j.biomaterials.2016.07.008

    Article  CAS  PubMed  Google Scholar 

  27. Gao A, Kang YF, Yin XB (2017) Red fluorescence-magnetic resonance dual modality imaging applications of gadolinium containing carbon quantum dots with excitation independent emission. New J Chem 41:3422–3431. https://doi.org/10.1039/c7nj00597k

    Article  CAS  Google Scholar 

  28. Sun YP, Zhou B, Lin Y et al (2006) Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc 128:7756–7757. https://doi.org/10.1021/ja062677d

    Article  CAS  PubMed  Google Scholar 

  29. Sarrami P, Karbasi S, Farahbakhsh Z, Bigham A, Rafienia M (2022) Fabrication and characterization of novel polyhydroxybutyrate-keratin/nanohydroxyapatite electrospun fibers for bone tissue engineering applications. Int J Biol Macromol 220:1368–1389. https://doi.org/10.1016/j.ijbiomac.2022.09.117

    Article  CAS  PubMed  Google Scholar 

  30. Han Z, Wu X, Roelle S et al (2017) Targeted gadofullerene for sensitive magnetic resonance imaging and risk-stratification of breast cancer. Nat Commun 137:7881–7888. https://doi.org/10.1038/s41467-017-00741-y

    Article  CAS  Google Scholar 

  31. Kong T, Zhou R, Zhang Y et al (2020) AS1411 aptamer modified carbon dots via polyethylenimine-assisted strategy for efficient targeted cancer cell imaging. Cell Prolif 53:1–9. https://doi.org/10.1111/cpr.12713

    Article  Google Scholar 

  32. Jiao M, Wang Y, Wang W et al (2022) Gadolinium doped red-emissive carbon dots as targeted theranostic agents for fluorescence and MR imaging guided cancer phototherapy. Chem Eng J 440:135965. https://doi.org/10.1016/j.cej.2022.135965

    Article  CAS  Google Scholar 

  33. Liu D, Jin F, Shu G et al (2019) Enhanced efficiency of mitochondria-targeted peptide SS-31 for acute kidney injury by pH-responsive and AKI-kidney targeted nanopolyplexes. Biomaterials 211:57–76. https://doi.org/10.1016/j.biomaterials.2019.04.034

    Article  CAS  PubMed  Google Scholar 

  34. Caravan P, Ellison JJ, McMurry TJ, Lauffer RB (1999) Gadolinium (III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99:2293–2352

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Mo Y, Liu X et al (2016) Synthesis, characterisation and preliminary investigation of the haemocompatibility of polyethyleneimine-grafted carboxymethyl chitosan for gene delivery. Mater Sci Eng C 62:173–182. https://doi.org/10.1016/j.msec.2016.01.050

    Article  CAS  Google Scholar 

  36. He J, Peng T, Peng Y et al (2020) Molecularly engineering triptolide with aptamers for high specificity and cytotoxicity for triple-negative breast cancer. J Am Chem Soc 142:2699–2703. https://doi.org/10.1021/jacs.9b10510

    Article  CAS  PubMed  Google Scholar 

  37. Mansouri N, Jalal R, Akhlaghinia B et al (2020) Design and synthesis of aptamer AS1411-conjugated EG@TiO2@Fe2O3nanoparticles as a drug delivery platform for tumor-targeted therapy. New J Chem 44:15871–15886. https://doi.org/10.1039/c9nj06445a

    Article  CAS  Google Scholar 

  38. Qi L, Gao X (2008) Quantum dot - amphipol nanocomplex for intracellular delivery and real-time imaging of siRNA. ACS Nano 2:1403–1410. https://doi.org/10.1021/nn800280r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cheng M, Cui YX, Wang J, Zhang J, Zhu LN, Kong DM (2019) G-quadruplex/porphyrin composite photosensitizer: a facile way to promote absorption redshift and photodynamic therapy efficacy. ACS Appl Mater Interfaces 11:13158–13167

    Article  CAS  PubMed  Google Scholar 

  40. Reyes-Reyes EM, Teng Y, Bates PJ (2010) A new paradigm for aptamer therapeutic AS1411 action: uptake by macropinocytosis and its stimulation by a nucleolin-dependent mechanism role of macropinocytosis in AS1411 uptake and mechanism. Cancer Res 70:8617–8629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Futami K, Kimoto M, Lim YWS, Hirao I (2019) Genetic alphabet expansion provides versatile specificities and activities of unnatural-base DNA aptamers targeting cancer cells. Mol Ther - Nucleic Acids 14:158–170. https://doi.org/10.1016/j.omtn.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  42. Gilleron J, Querbes W, Zeigerer A et al (2013) Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol 31:638–646. https://doi.org/10.1038/nbt.2612

    Article  CAS  PubMed  Google Scholar 

  43. Thoo L, Fahmi MZ, Zulkipli IN et al (2017) Interaction and cellular uptake of surface-modified carbon dot nanoparticles by J774.1 macrophages. Cent Eur J Immunol 42:324–330. https://doi.org/10.5114/ceji.2017.70978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Xu Y, Jia XH, Yin XB et al (2014) Carbon quantum dot stabilized gadolinium nanoprobe prepared via a one-pot hydrothermal approach for magnetic resonance and fluorescence dual-modality bioimaging. Anal Chem 86:12122–12129. https://doi.org/10.1021/ac503002c

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Alireza Zomorodipour for providing them with the MCF10-A and MAD-MB-231 cell lines.

Author information

Authors and Affiliations

Authors

Contributions

Zohreh Farahbakhsh: conceptualization, investigation, methodology, formal analysis, resources, validation, writing—original draft, software, visualization. Mohammadreza Zamani: conceptualization, resources, writing—review and editing, project administration, supervision. Vahid Nasirian: investigation, resources, writing—review and editing. Laleh Shariati: investigation, writing—review and editing. Saeed Kermani: MR imaging processing. Mohsen Shie Karizmeh: photoshop software, visualization. Mohammad Rafienia: conceptualization, resources, writing—review and editing, project administration, supervision.

Corresponding author

Correspondence to Mohammad Rafienia.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

The online version contains supplementary material available at https://doi.org/10.1007/. (DOCX 3703 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farahbakhsh, Z., Zamani, M., Nasirian, V. et al. An insight into fluorescence and magnetic resonance bioimaging using a multifunctional polyethyleneimine-passivated gadocarbon dots nanoconstruct assembled with AS1411. Microchim Acta 190, 275 (2023). https://doi.org/10.1007/s00604-023-05853-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05853-5

Keywords

Navigation