Skip to main content
Log in

A novel molecular imprinted QCM sensor based on MoS2NPs-MWCNT nanocomposite for zearalenone determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract   

Zearalenone (ZEN) is a mycotoxin that has a carcinogenic effect and is often found at a high rate in frequently consumed foods. In this study, a characteristic molecular imprinted quartz crystal microbalance (QCM) sensor based on molybdenum disulfide nanoparticle (MoS2NPs)-multiwalled carbon nanotube (MWCNT) nanocomposite (MoS2NPs-MWCNTs) is presented for selective determination of ZEA in rice samples. Firstly, molybdenum disulfide nanoparticle (MoS2NP)-multiwalled carbon nanotube nanocomposites were characterized by using microscopic, spectroscopic, and electrochemical techniques. Then, ZEA-imprinted QCM chip was prepared in the presence of methacryloylamidoglutamicacid (MAGA) as monomer, N,N′-azobisisobutyronitrile (AIBN) as initiator, and ZEA as target molecule by using UV polymerization. The sensor revealed a linearity toward ZEA in the range 1.0–10.0 ng L−1 with a detection limit (LOD) of 0.30 ng L−1. The high repeatability, reusability, selectivity, and stability of the developed sensor enable reliable ZEA detection in rice samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References 

  1. Wu Z, Pu H, Sun D-W (2021) Fingerprinting and tagging detection of mycotoxins in agri-food products by surface-enhanced Raman spectroscopy: principles and recent applications. Trends Food Sci Technol 110:393–404

    Article  CAS  Google Scholar 

  2. Hassan MM, Zareef M, Xu Y, Li H, Chen Q (2021) SERS based sensor for mycotoxins detection: challenges and improvements. Food Chem 344:128652

    Article  CAS  PubMed  Google Scholar 

  3. Labuda R, Parich A, Berthiller F, Tančinová D (2005) Incidence of trichothecenes and zearalenone in poultry feed mixtures from Slovakia. Int J Food Microbiol 105(1):19–25

    Article  CAS  PubMed  Google Scholar 

  4. Marroquín-Cardona AG, Johnson NM, Phillips TD, Hayes AW (2014) Mycotoxins in a changing global environment – a review. Food Chem Toxicol 69:220–230

    Article  PubMed  Google Scholar 

  5. Rodríguez-Carrasco Y, Moltó JC, Mañes J, Berrada H (2014) Development of a GC–MS/MS strategy to determine 15 mycotoxins and metabolites in human urine. Talanta 128:125–131

    Article  PubMed  Google Scholar 

  6. Keskin E, Eyupoglu OE (2023) Determination of mycotoxins by HPLC, LC-MS/MS and health risk assessment of the mycotoxins in bee products of Turkey. Food Chem 400:134086

    Article  CAS  PubMed  Google Scholar 

  7. Abreu DCP, Vargas EA, da Silva Oliveira FA, Madureira FD, Gomes MB, Bazzana MJF, Saczk AA (2023) Validation and estimation of uncertainty of an LC-MS/MS method for the simultaneous determination of 34 mycotoxins in cocoa beans. Food Chem 399:133902

    Article  CAS  PubMed  Google Scholar 

  8. Pohanka M (2018) Overview of piezoelectric biosensors, immunosensors and DNA sensors and their applications. Materials 11(3):448

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kadirsoy S, Atar N, Yola ML (2020) Molecularly imprinted QCM sensor based on delaminated MXene for chlorpyrifos detection and QCM sensor validation. New J Chem 44(16):6524–6532

    Article  CAS  Google Scholar 

  10. Verma D, Chauhan D, Das Mukherjee M, Ranjan KR, Yadav AK, Solanki PR (2021) Development of MWCNT decorated with green synthesized AgNps-based electrochemical sensor for highly sensitive detection of BPA. J Appl Electrochem 51(3):447–462

    Article  CAS  Google Scholar 

  11. Agüí L, Yáñez-Sedeño P, Pingarrón JM (2008) Role of carbon nanotubes in electroanalytical chemistry: a review. Anal Chim Acta 622(1):11–47

    Article  PubMed  Google Scholar 

  12. Lahiff E, Lynam C, Gilmartin N, O’Kennedy R, Diamond D (2010) The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors. Anal Bioanal Chem 398(4):1575–1589

    Article  CAS  PubMed  Google Scholar 

  13. Merkoçi A, Pumera M, Llopis X, Pérez B, del Valle M, Alegret S (2005) New materials for electrochemical sensing VI: carbon nanotubes. TrAC Trends Anal Chem 24(9):826–838

    Article  Google Scholar 

  14. Huang K-J, Wang L, Li J, Liu Y-M (2013) Electrochemical sensing based on layered MoS2–graphene composites. Sensor Actuat B-Chem 178:671–677

    Article  CAS  Google Scholar 

  15. Li J, Yang Z, Tang Y, Zhang Y, Hu X (2013) Carbon nanotubes-nanoflake-like SnS2 nanocomposite for direct electrochemistry of glucose oxidase and glucose sensing. Biosens Bioelectron 41:698–703

    Article  PubMed  Google Scholar 

  16. Li Y, Xu C-Y, Hu P, Zhen L (2013) Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 7(9):7795–7804

    Article  CAS  PubMed  Google Scholar 

  17. Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y, Lu G, Zhang Q, Chen X, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6(1):74–80

    Article  CAS  PubMed  Google Scholar 

  18. Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78

    Article  CAS  Google Scholar 

  19. Yola ML, Atar N (2017) A review: molecularly imprinted electrochemical sensors for determination of biomolecules/drug. Curr Anal Chem 13(1):13–17

    Article  CAS  Google Scholar 

  20. Yola ML (2022) Carbendazim imprinted electrochemical sensor based on CdMoO4/g-C3N4 nanocomposite: application to fruit juice samples. Chemosphere 301:134766

    Article  CAS  PubMed  Google Scholar 

  21. Karaman C, Karaman O, Atar N, Yola ML (2022) A molecularly imprinted electrochemical biosensor based on hierarchical Ti2Nb10O29 (TNO) for glucose detection. Microchim Acta 189:24

  22. Yadav AK, Verma D, Solanki PR (2021) Electrophoretically deposited L-cysteine functionalized MoS2@MWCNT nanocomposite platform: a smart approach toward highly sensitive and label-free detection of gentamicin. Mater Today Chem 22:100567

    Article  CAS  Google Scholar 

  23. Liu Y-R, Hu W-H, Li X, Dong B, Shang X, Han G-Q, Chai Y-M, Liu Y-Q, Liu C-G (2016) One-pot synthesis of hierarchical Ni2P/MoS2 hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction. Appl Surf Sci 383:276–282

    Article  CAS  Google Scholar 

  24. Huang K-J, Liu Y-J, Wang H-B, Wang Y-Y, Liu Y-M (2014) Sub-femtomolar DNA detection based on layered molybdenum disulfide/multi-walled carbon nanotube composites, Au nanoparticle and enzyme multiple signal amplification. Biosens Bioelectron 55:195–202

    Article  CAS  PubMed  Google Scholar 

  25. Lee C, Yan H, Brus LE, Heinz TF, Hone J, Ryu S (2010) Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 4(5):2695–2700

    Article  CAS  PubMed  Google Scholar 

  26. Yola ML, Atar N (2019) Simultaneous determination of beta-agonists on hexagonal boron nitride nanosheets/multi-walled carbon nanotubes nanocomposite modified glassy carbon electrode. Mater Sci Eng C-Mater Biol Appl 96:669–676

    Article  CAS  PubMed  Google Scholar 

  27. Silambarasan K, Archana J, Harish S, Navaneethan M, Ganesh RS, Ponnusamy S, Muthamizhchelvan C, Hara K (2020) One-step fabrication of ultrathin layered 1T@2H phase MoS2 with high catalytic activity based counter electrode for photovoltaic devices. J Mater Sci Technol 51:94–101

    Article  CAS  Google Scholar 

  28. Yilmaz E, Baghban N, Soylak M (2023) Solid-phase extraction (SPE) of salmon sperm DNA using a polyaniline@molybdenum(IV) sulfide@multiwalled carbon nanotubes (MWCNTs) nanocomposite with spectrophotometric detection. Anal Lett 56(10):1632–1645

    Article  CAS  Google Scholar 

  29. Xu Q, Wang S-F (2005) Electrocatalytic oxidation and direct determination of L-tyrosine by square wave voltammetry at multi-wall carbon nanotubes modified glassy carbon electrodes. Microchim Acta 151(1):47–52

    Article  CAS  Google Scholar 

  30. Bölükbaşı ÖS, Yola BB, Boyacıoğlu H, Yola ML (2022) A novel paraoxon imprinted electrochemical sensor based on MoS2NPs@MWCNTs and its application to tap water samples. Food Chem Toxicol 163:112994

    Article  PubMed  Google Scholar 

  31. Ansari S, Ansari MS, Satsangee SP, Alam MG, Jain R (2023) Electrochemical sensing platform based on ZrO2/BiVO4 nanocomposite for gastro-prokinetic drug in human blood serum. J Nanostructure Chem 13(3):361–375

    Article  CAS  Google Scholar 

  32. Ansari S, Ansari MS, Satsangee SP, Jain R (2021) Bi2O3/ZnO nanocomposite: synthesis, characterizations and its application in electrochemical detection of balofloxacin as an anti-biotic drug. J Pharm Anal 11(1):57–67

    Article  PubMed  Google Scholar 

  33. Ansari S, Ansari MS, Satsangee SP, Jain R (2019) WO3 decorated graphene nanocomposite based electrochemical sensor: a prospect for the detection of anti-anginal drug. Anal Chim Acta 1046:99–109

    Article  CAS  PubMed  Google Scholar 

  34. Ansari S, Ansari MS, Devnani H, Satsangee SP, Jain R (2018) CeO2/g-C3N4 nanocomposite: a perspective for electrochemical sensing of anti-depressant drug. Sensor Actuat B-Chem 273:1226–1236

    Article  CAS  Google Scholar 

  35. Devnani H, Ansari S, Satsangee SP, Jain R (2017) ZrO2-graphene-chitosan nanocomposite modified carbon paste sensor for sensitive and selective determination of dopamine. Mater Today Chem 4:17–25

    Article  Google Scholar 

  36. Guo Z, Gao L, Yin L, Arslan M, El-Seedi HR, Zou X (2023) Novel mesoporous silica surface loaded gold nanocomposites SERS aptasensor for sensitive detection of zearalenone. Food Chem 403:134384

    Article  CAS  PubMed  Google Scholar 

  37. Ma P, Guo H, Ye H, Zhang Y, Wang Z (2023) Aptamer-locker probe coupling with truncated aptamer for high-efficiency fluorescence polarization detection of zearalenone. Sensor Actuat B-Chem 380:133356

    Article  CAS  Google Scholar 

  38. Ma L, Zhang X, Peng Y, Chen W, Xiao Y, Fang H, Yang H, Zhou Y (2023) Based on intervening PCR for detection of alkaline phosphatase and zearalenone. Microchem J 186:108314

    Article  CAS  Google Scholar 

  39. Guan Y, Ma J, Neng J, Yang B, Wang Y, Xing F (2023) A novel and label-free chemiluminescence detection of zearalenone based on a truncated aptamer conjugated with a G-quadruplex DNAzyme. Biosensors 13(1):118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wu S, Zhang X, Chen W, Zhang G, Zhang Q, Yang H, Zhou Y (2023) Alkaline phosphatase triggered ratiometric fluorescence immunoassay for detection of zearalenone. Food Control 146:109541

    Article  CAS  Google Scholar 

  41. Kumar VS, Kummari S, Catanante G, Gobi KV, Marty JL, Goud KY (2023) A label-free impedimetric immunosensor for zearalenone based on CS-CNT-Pd nanocomposite modified screen-printed disposable electrodes. Sensor Actuat B-Chem 377:133077

    Article  CAS  Google Scholar 

  42. Zhang Q, Zhang X, Zhang G, Chen W, Wu S, Yang H, Zhou Y (2023) Multicolor immunosensor for detection of zearalenone based on etching Au NBPs mediated by HRP. J Food Compost Anal 115:105014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Lütfi Yola.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1515 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çapar, N., Polat, İ., Yola, B.B. et al. A novel molecular imprinted QCM sensor based on MoS2NPs-MWCNT nanocomposite for zearalenone determination. Microchim Acta 190, 262 (2023). https://doi.org/10.1007/s00604-023-05842-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-023-05842-8

Keywords

Navigation