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Abstract
An aptamer-functionalized stir bar sorptive extraction (SBSE) coating is described for the first time devoted to selective isola-
tion and preconcentration of an allergenic food protein, concavanalin A (Con A), followed by matrix-assisted laser desorption/
ionization mass spectrometry (MALDI-TOF-MS) determination. For this purpose, the polytetrafluoroethylene surface of 
commercial magnetic stir bars was properly modified and vinylized to immobilize a thiol-modified aptamer against Con A 
via straightforward “thiol-ene” click chemistry. The aptamer-functionalized stir bar was employed as SBSE sorbent to isolate 
Con A, and several parameters that can affect the extraction efficiency were investigated. Under the optimized conditions, 
Con A was extracted and desorbed during 30 and 45 min, respectively, at 25 °C and 600 rpm. The SBSE MALDI-TOF-MS 
method provided limits of detection of 0.5 μg  mL−1 for Con A. Furthermore, the SBSE coating was highly selective to Con 
A compared to other lectins. The developed method was successfully applied to the determination of low levels of Con A 
in several food matrices (i.e., white beans as well as chickpea, lentils, and wheat flours). Recoveries ranged from 81 to 97% 
with relative standard deviations below 7%. The aptamer-based stir bars presented suitable physical and chemical long-term 
stability (1 month) and a reusability of 10 and 5 extraction cycles with standards and food extracts, respectively. The devel-
oped aptamer-affinity extraction devices open up the possibility of developing novel highly selective SBSE coatings for the 
extraction of proteins and peptides from complex samples.
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Introduction

Food allergy has become an important and global health 
problem, being considered as the “second wave” of the 
allergy epidemic [1]. Within food allergens, dietary lectins 

pose a potential threat to consumers, and some of them have 
been included in regulations for labeling allergenic ingre-
dients in foods [2, 3]. However, there is a variety of foods 
where different allergenic lectins are present, which are not 
regulated or labeled. For this reason, it is crucial the devel-
opment of reliable analytical methods to detect and quantify 
allergenic protein components in foods. These methods need 
to meet high analytical demands (such as selectivity and sen-
sitivity, among others) and, in most cases, an efficient sam-
ple treatment is crucial. In this context, microextraction tech-
niques have opened new possibilities for sample preparation 
in the last decades due to their well-known advantages [4]. 
Some of them have been applied for purification of proteins 
and peptides such as (micro) solid-phase extraction (SPE) 
[5, 6], liquid-phase microextraction [7], solid-phase micro-
extraction (SPME) [8], and magnetic solid-phase extraction 
(MSPE) [9, 10], among others. However, some of these sor-
bents show limited selectivity or small active surface area, 
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which reduce the ability to efficiently extract large biomol-
ecules, such as proteins. Besides, most of these extraction 
microdevices (such as pipette tips, microcartridges, and fib-
ers) are prone to be clogged or fouled with complex food 
samples, hindering an appropriate operation.

Stir bar sorptive extraction (SBSE) has been successfully 
applied to effectively extract low levels of small organic 
compounds in complex samples [11]. However, it is regretful 
that there are no reports devoted to the application of SBSE 
to large biomolecules, such as proteins. This can be due to 
the potential fouling of the SBSE coating resulting from pro-
tein adsorption during extraction and the lack of selectivity 
of most of the available commercial or home-made coatings, 
which are typically based on polydimethylsiloxane (PDMS). 
In the last years, efforts have been paid to demonstrate the 
applicability in SBSE of molecular biorecognition elements, 
such as antibodies, molecularly imprinted polymers (MIPs), 
or aptamers. Among them, antibodies showed high cost of 
production, as well as stability and cross-reactivity issues. 
Regarding MIPs, notable challenges still remain, related to 
preparation against large biomolecules or non-specific bind-
ing, among others.

Recently, single-stranded DNA or RNA aptamers have 
appeared as a new generation of affinity ligands for different 
bioanalytical purposes [12, 13]. Due to their advantages such 
as high selectivity and affinity, great reproducibility, superior 
stability, versatile target binding, and low cost of synthe-
sis and modification, they represent a promising alternative 
to antibodies or other biorecognition elements. In the last 
years, several aptamer-based sorbents have been success-
fully developed for the selective extraction of a wide range 
of compounds, from small molecules to biomacromolecules, 
such as proteins, or even biological entities (e.g., cells) [12, 
14–17]. However, there are few reports focused on the devel-
opment of aptamer-functionalized SBSE coatings, being all 
of them addressed to small organic compounds, specifically 
persistent organic pollutants [18, 19].

In order to fill the gap of SBSE devices dedicated to 
proteins, an aptamer-based SBSE coating for isolating and 
enriching proteins from complex samples is here devel-
oped, using the lectin Con A as model allergen protein 
[20, 21]. To our knowledge, this is the first application of 

aptamer-functionalized stir bars addressed to the extraction 
of proteins. For preparation of the aptamer-based SBSE 
coating, the surface of a commercial polytetrafluoroethylene 
(PTFE) stir bar was firstly vinylized to assure the subsequent 
covalent attachment of a thiol-aptamer against the target pro-
tein (Fig. 1). Then, the resulting aptamer-based stir bar coat-
ing was characterized and evaluated as SBSE sorbent for the 
extraction of Con A. For detection of the extracted proteins, 
matrix-assisted laser desorption/ionization mass spectrom-
etry (MALDI-TOF-MS) was selected, due to its potential 
for accurate identification and determination. The developed 
SBSE MALDI-TOF-MS method was validated and applied 
to the isolation, identification, and determination of Con A 
in food matrices at the typical health-based intake limits 
established as reference doses for allergenic proteins [22].

Experimental

The details of reagents and materials, instrumentation, prep-
aration of aptamer-functionalized stir bars, and food sample 
pretreatment are given in the Electronic Supporting Material 
(ESM).

SBSE protocol

The SBSE unit was firstly conditioned with 1 mL of water 
for 5 min. Water was discarded and a certain sample volume 
was added. The sample volume was set at 1 mL for Con A 
standard solutions or 0.5 mL for food protein extracts, and 
the extraction was performed during 30 min at 600 rpm and 
25 °C. After that, the stir bar was washed with 0.5 mL of 
water for 5 min to remove non-retained compounds, and elu-
tion was carried out using 100 or 50 μL (in the case of Con 
A standard solutions or food protein extracts, respectively) 
of 100 mM  NH4OH (pH 11.2) for 45 min at 600 rpm and 25 
°C. The eluate was subjected to MALDI-TOF-MS analysis. 
After each extraction, the stir bar was regenerated by wash-
ing with the eluent (100 mM  NH4OH) and water (0.5 mL for 
5 min at 600 rpm and 25 °C, each one). Then, it was stored 
in water at 4 °C until the next extraction cycle.
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Fig. 1  Preparation scheme of the aptamer-functionalized PTFE stir bar
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MALDI‑TOF‑MS

Mass spectra were recorded in mid mass positive mode 
within a range of 5000–30,000 m/z. Data acquisition and 
data processing were performed using the 4000 Series 
 ExplorerTM and Data Explorer® software (Applied Bio-
systems), respectively. Sample-MALDI matrix mixtures 
were freshly prepared as described in a previous work [23]. 
Briefly, the preparation consisted on depositing onto a 
stainless steel MALDI plate the following layers: 1 μL of 
SA in 99:1 (v/v) acetone:water (final SA concentration 27 
mg  mL−1), 1 μL of sample solution, again 1 μL of sample 
solution (to increase sample homogeneity), and, finally, 1 μL 
of SA acid in 50:50 (v/v) ACN:water with 0.1% (v/v) of TFA 
(final SA concentration 10 mg  mL−1). Spots were allowed to 
dry at room temperature between the addition of each layer 
to ensure maximum homogeneity and, therefore, reproduc-
ibility in the MALDI-TOF-MS analyses. Three replicates 
(spots) of each sample were prepared and analyzed.

Results and discussion

Preparation and characterization 
of aptamer‑functionalized stir bars

The application of aptamers in SBSE format has been 
scarcely explored, and specifically for the analysis of small 
persistent organic pollutants [18, 19]. Apart from the benefit 
of providing higher selectivity to the extraction process, it 
would also be interesting to develop inexpensive and robust 
aptamer-functionalized SBSE coatings from different mate-
rials, as an alternative to those that can be prepared in com-
mercial PDMS-coated stir bars (e.g., Twister SBSE Gerstel) 
[24]. In this context, our research group have successfully 
employed low-cost commercial PTFE stir bars to prepare 
SBSE coatings for the extraction of low levels of acidic 
drugs [4] and estrogens [25] from environmental water and 
urine samples. Inspired by these studies, PTFE stir bars were 
selected and properly modified prior to functionalization 
with the selective aptamer against the target protein Con A. 
As shown in Fig. 1, the PTFE stir bar was firstly chemically 
etched with sodium naphthalene (Fluoroetch®) to convert 
the C-F bonds into C-H, C-OH, and COOH moieties. Then, 
the incorporated hydroxyl groups were susceptible to react 
with the epoxide groups of the GMA molecules, giving as 
a result a vinylized active surface [4, 25, 26], which was 
functionalized with the thiol-modified aptamer against Con 
A by a “thiol-ene” click reaction.

The immobilization of the thiol-modified aptamer onto 
the vinylized PTFE stir bar was optimized with regard to the 
coupling time, from 30 min to 7.5 h. The coupling efficiency 
was evaluated by comparing the aptamer concentration in 

the coupling solution before and after the immobilization 
reaction. As shown in Fig. 2, the amount of immobilized 
aptamer increased during the first 5 h, reaching a plateau 
after this time, with an average coupling efficiency of 
approximately 80%.

The preparation of the aptamer-functionalized SBSE 
coating was also monitored by FT-IR spectroscopy (Fig. S1). 
As it can be seen, the bare PTFE stir bar (Fig. S1A) gave 
the characteristic bands of C-F bonds (from 1100 to 1300 
 cm−1). After etching and vinylization treatment, the result-
ing FT-IR spectrum (Fig. S1B) presented a broad absorp-
tion band at 3300  cm−1 (corresponding to OH vibrations) 
and bands at 1600–1700  cm−1 attributable to vinyl groups. 
After immobilization of the thiolated aptamer (Fig. S1C), 
a slight decrease in the absorption peak corresponding to 
the C=C was observed at 1600–1700  cm−1, jointly with 
the emergence of a small band at 950  cm−1 attributable to 
C-S vibration. Furthermore, phosphorous was determined 
by ICP-MS to corroborate the attachment of aptamer onto 
the stir bars. Thus, the aptamer-functionalized SBSE coat-
ing provided significantly greater contents of phosphorus 
(0.0498 ± 0.0008%), than control vinylized coating (0.0055 
± 0.0003%). The residual phosphorous found in the control 
coating was probably due to a cross-contamination associ-
ated with the reagents and water necessary for the coating 
preparation.

MALDI‑TOF‑MS

Before the optimization of the SBSE protocol, Con A 
standard solutions were analyzed by MALDI-TOF-MS. 
As can be seen in Fig. 3 (black line) for a 100 μg  mL−1 
Con A standard solution, three different proteoforms 
from Con A were identified, which corresponded to the 
full length α-chain  (Mr theorical  (Mr theo) 25,598.19) and 
its derived β-chain  (Mr theo 12,936.36) and γ-chain  (Mr 
theo 12,679.85) fragments [27, 28]. The MALDI-TOF-MS 

0

20

40

60

80

100

0.5 1 2.5 5 7.5

C
ou

pl
in

g 
ef

fi
ci

en
cy

 (
%

)

Coupling time (h)
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method was linear between 10 and 200 μg  mL−1 of Con A 
and the protein was detected until 2.0 μg  mL−1.

To corroborate that the mixtures of proteoforms 
detected in the Con A standard were the same as in a real 
food sample, an extract obtained from commercial jack 
beans (25-fold diluted), which presents high contents of 
Con A (ca. 1.2 mg  kg−1), was subjected to MALDI-TOF-
MS analysis (Supplementary material, Fig. S2).

SBSE optimization

Several extraction parameters that can affect the extrac-
tion performance of Con A were optimized after SBSE 
MALDI-TOF-MS, including loading solution pH, extrac-
tion time, stirring rate, extraction temperature, elution 
volume, time, and temperature. Extraction efficiency was 
calculated considering the peak heights of the three prote-
oforms identified in the mass spectra, as the ratio between 
the protein concentration in the eluate and in the starting 
sample. Along the optimization study, an aqueous solu-
tion (1 mL) containing 5 μg  mL−1 of Con A was used as 
test solution. All experiments were performed in triplicate. 
The respective text and figures regarding the optimiza-
tion are included in ESM (Figs. S3 and S4). The follow-
ing experimental conditions were found to give the best 
results: (i) loading solution, water; (ii) extraction time, 30 
min; (iii) stirring rate, 600 rpm; (iv) extraction tempera-
ture, 25 °C; (v) elution volume, 0.05 mL of 100 M  NH4OH 
(pH 11.2); (vi) elution time and temperature, 45 min and 
25 °C, respectively.

Selectivity of aptamer‑functionalized stir bars

To evaluate the selectivity of the aptamer-functionalized stir 
bars, a mixture containing Con A at 5 μg  mL−1 and three 
different lectins (i.e., peanut agglutinin (PNA), phytohemag-
glutinin-L (PHA-L), and Pisum sativum agglutinin (PSA)) 
at 10 μg  mL−1 was subjected to SBSE MALDI-TOF-MS 
analysis. As can be observed in Fig. 4A, the MALDI-TOF 
mass spectrum of the mixture before the extraction showed 
the presence of Con A proteoforms (α, β, and γ chains), as 
well as PNA, PHA, and PSA lectins with molecular mass 
values of around 28,000, 29,500, and 50,000, respectively 
[29–31] (Fig. 4A). In contrast, after the SBSE pretreatment 
(Fig. 4B), only the molecular ions corresponding to the Con 
A proteoforms were observed in the eluate. These results 
demonstrated the high selectivity of the developed aptamer-
functionalized stir bar for Con A even in presence of other 
lectins.

Method validation

The developed SBSE MALDI-TOF-MS method was vali-
dated in terms of linearity, limits of detection (LOD) and 
quantification (LOQ), and precision (Table 1). The LOD 
and LOQ were established at signal-to-noise (S/N) ratios 
of 3 and 10, respectively. The method was linear for the 
three Con A proteoforms between 1.5 and 50 μg  mL−1 of 
Con A (R2 > 0.996). The LOD and LOQ values were 0.5 
μg  L−1 and 1.5 μg  L−1 of Con A, respectively (i.e., they 
were comprised between 0.16 to 0.18 μg  L−1 and 0.48 to 

Fig. 3  MALDI-TOF mass 
spectra of a 100 μg  mL−1 Con 
A standard solution (black 
line) and a 5 μg  mL−1 Con A 
standard solution after SBSE 
(red line)
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0.55 μg  L−1 for the Con A proteoforms, respectively). The 
reproducibility of the aptamer-functionalized stir bar prep-
aration procedure was evaluated from the relative stand-
ard deviations (% RSD) of the peak heights of the Con A 
proteoforms for a 5 μg  mL−1 Con A standard solution. As 
shown in Table 1, inter-day precision for a single stir bar 
ranged from 2.7 to 4.5% (n = 3), while intra-batch (n = 3) 
and inter-batch (n = 3) precision gave %RSD values lower 
than 5.5 and 7.6%, respectively.

Analysis of Con A in food samples

The developed SBSE MALDI-TOF-MS method was 
applied to the analysis of the allergen protein Con A in 
different food samples, which can be contaminated or con-
tain similar allergenic lectins [32–34]. For this purpose, 
white beans as well as chickpea, lentil, and wheat flours 
were studied. A common procedure to isolate lectins from 
food matrices implies an extraction with 10 mM  Na2HPO4 

Fig. 4  MALDI-TOF mass spectra of a mixture containing PNA, PHA, and PSA lectins at concentration of 10 μg  mL−1 and Con A at 5 μg  mL−1 
before (A) and after (B) the aptamer-functionalized SBSE protocol

Table 1  Figures of merit of 
the optimized SBSE MALDI-
TOF-MS method using the 
aptamer-functionalized stir bars

a LOD and LOQ values calculated using the signal-to-noise (S/N) ratio of 3 and 10, respectively, consid-
ering the relative abundance of each Con A proteoforms (36, 34, and 17% for Con A α, β, and γ chains, 
respectively, calculated dividing their peak heights by their total sum of peak heights (n = 3))
b Inter-day values (n = 3) using a single stir bar
c Inter-batch values (n = 3) using stir bars from different preparation batches
d Intra-batch values (n = 3) using stir bars from the same preparation batch

LODa (μg  L−1) LOQa (μg  L−1) Precision (RSD, %)

Inter-dayb Inter-batchc Intra-batchd

Con A α-chain 0.18 0.55 3.3 7.3 4.6
Con A β-chain 0.18 0.53 2.7 7.6 4.1
Con A γ-chain 0.16 0.48 4.5 7.4 5.5

Microchim Acta (2023) 190:219 Page 5 of 9 219
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and 0.5 M NaCl (pH 7.6) [35, 36], which extract not only 
the target lectins but also other highly abundant proteins. 
In order to remove interfering proteins, and considering 
the good thermal stability of Con A, a thermoenrichment 
pretreatment at 70 °C followed by filtration was applied 
to both the blank and the spiked protein extracts [16, 17, 
36]. After this pretreatment, the three Con A proteoforms 
were detected by SBSE MALDI-TOF-MS in all the food 
extracts spiked at 5 μg  mL−1 of Con A (equivalent to 5 mg 
Con A per 100 g of food sample), but they were not found 
in the blanks (Fig. 5). This evidence corroborated the high 
affinity and selectivity of the aptamer, which was capable 
to recognize the target analyte even in a wide variety of 
complex samples.

Moreover, Con A recoveries found in the spiked sam-
ples were satisfactory for all food matrices, with values 
comprised between 81 and 97% (Table 2).

Additionally, the lifetime of the aptamer-functionalized 
stir bars was investigated at 5 μg  L−1 using Con A standard 
solutions and spiked food extracts. The results (Fig. S5) 
showed that the stir bars can be reused (with recoveries 
higher than 80%) at least 10 and 5 times for standards and 
food extracts, respectively.

Also, a storage stability study was done with the 
aptamer-functionalized stir bars after 2 months of storage 

in water at 4 °C. The results showed no significant changes 
on performance over this period using 5 μg  L−1 Con A 
standard solutions (recoveries > 85%).

All these results demonstrated the great performance of 
the proposed aptamer-functionalized stir bars. Other benefit 
is that several PTFE stir bars can be modified simultaneously 
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respond to blank sample extracts and spiked sample extracts at 5 μg 
 mL−1 Con A (5 mg Con A per 100 g of food sample), respectively

Table 2  Con A proteoforms recoveries in spiked food samples (5 mg 
Con A per 100 g of food sample) after aptamer-functionalized SBSE 
MALDI-TOF-MS analysis. SD (n = 3)

Sample Con A proteoform Recovery 
(%) ± SD

Chickpea flour α-chain 86 ± 6
β-chain 97 ± 6
γ-chain 84 ± 5

Lentil flour α-chain 81 ± 5
β-chain 95 ± 4
γ-chain 93 ± 6

Wheat flour α-chain 91 ± 7
β-chain 88 ± 4
γ-chain 91 ± 5

White bean α-chain 97 ± 6
β-chain 90 ± 7
γ-chain 99 ± 4
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(ca. 10 in 12 h) giving an estimated cost of 0.6 €/stir bar, and 
up to 16 €/stir bar after the aptamer functionalization, which 
made the device production cost-effective and potentially 
feasible to be commercialized, as described for Con A or 
adapted with other aptamers against other target proteins. In 
addition, the combination of aptamer-functionalized SBSE 
with MALDI-TOF-MS presented a good selectivity, low 
detection limits, and allows a rapid, selective, sensitive, and 
accurate identification and determination of the target pro-
tein, preventing false positives or erroneous quantifications 
of non-MS-based biosensors or bioassays.

Comparison with other microextraction methods 
for the determination of Con A

The proposed aptamer-functionalized SBSE MALDI-TOF 
method was compared with other microextraction methods 
reported in literature for the extraction and determination of 
Con A [37–42]. In general, the developed method showed 
better pretreatment times than other works reported in the 
literature [37–41], except to that described by Qu et al. [42]. 
Concerning performance features such as recovery or LOD, 
it should be mentioned that the focus of the most studies men-
tioned in Table 3 was mainly oriented to lectin purification 
using affinity sorbents combined with spectrophotometric 
or chromatographic techniques. Indeed, almost in the total-
ity of these works, information regarding these analytical 
parameters is not mentioned. In fact, the only work that pro-
vides recoveries was that developed by Ahirwar et al. [39], 
being these values significantly lower than those found in our 
method. Additionally, in most of these studies, the selectivity 
of the affinity sorbent was not investigated. With regard to 
the reusability of purification/extraction device, the aptamer-
modified coating stir bar also gave similar values to those 
obtained in other methods. All these results highlighted that 
the proposed method showed excellent analytical performance 
as well as a satisfactory applicability to complex samples.

Conclusions

A novel aptamer-functionalized SBSE coating to selectively 
isolate and preconcentrate the allergenic food protein Con A 
followed by rapid MALDI-TOF-MS analysis was developed. 
Commercial PTFE stir bars were vinylized to attach a thiolated 
aptamer against Con A via straightforward “thiol-ene” click 
chemistry. The unique properties of aptamer-functionalized stir 
bars make them able to selectively recognize the target protein 
even in presence of other similar lectins from foods (bean, pea-
nuts, and peas). The developed stir bars exhibited several other 
advantages such as cost-effective and reproducible prepara-
tion, long-term stability, and reusability. Although the method 
requires lengthy incubation/elution times (more than 1 h), a Ta
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high throughput can be achieved by serial extraction using a 
thermomixer of multiple vessels. Finally, the combination 
with MALDI-TOF-MS analysis allowed an improvement of 
the selectivity and sensitivity of the whole assay, enabling the 
identification and determination of Con A in complex food sam-
ples, at the low levels of the typical health-based intake limits 
established as reference doses for allergenic proteins. Indeed, the 
proposed method was successfully applied to the analysis of Con 
A in white beans as well as chickpea, lentils, and wheat flours 
with satisfactory recoveries. It is noteworthy that this is the first 
aptamer-functionalized stir bar proposed for the recognition of 
large biomolecules and the obtained LOD values are adequate to 
determine the targeted allergen in foods. The developed method 
offers a new insight in agri-food, clinical, and environmental 
fields since it can be extended to other large biomolecules and, 
in general, to any type of compounds of interest, as long as the 
corresponding selective aptamers are available.
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