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Abstract
Paper-based analytical devices (PADs) are powerful platforms for point-of-need testing since they are inexpensive devices 
fabricated in different shapes and miniaturized sizes, ensuring better portability. Additionally, the readout and detection 
systems can be accomplished with portable devices, allying with the features of both systems. These devices have been 
introduced as promising analytical platforms to meet critical demands involving rapid, reliable, and simple testing. They 
have been applied to monitor species related to environmental, health, and food issues. Herein, an outline of chronological 
events involving PADs is first reported. This work also introduces insights into fundamental parameters to engineer new 
analytical platforms, including the paper type and device operation. The discussions involve the main analytical techniques 
used as detection systems, such as colorimetry, fluorescence, and electrochemistry. It also showed recent advances involving 
PADs, especially combining optical and electrochemical detection into a single device. Dual/combined detection systems can 
overcome individual barriers of the analytical techniques, making possible simultaneous determinations, or enhancing the 
devices’ sensitivity and/or selectivity. In addition, this review reports on distance-based detection, which is also considered a 
trend in analytical chemistry. Distance-based detection offers instrument-free analyses and avoids user interpretation errors, 
which are outstanding features for analyses at the point of need, especially for resource-limited regions. Finally, this review 
provides a critical overview of the practical specifications of the recent analytical platforms involving PADs, demonstrating 
their challenges. Therefore, this work can be a highly useful reference for new research and innovation.

Keywords Paper-based analytical devices · Colorimetry · Fluorescence · Electrochemistry · Distance-based detection · 
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Introduction

The number of rapid tests for medical diagnosis has 
increased in the last years as a response to the global out-
break of coronavirus. The COVID-19 pandemic has intensi-
fied the development of millions of point-of-care tests. These 
tests have been globally used every day in hospitals, work-
places, airports, and people’s homes. Despite the availability 
of tests for health systems and communities, the fabrication 
cost is always a deep concern for society, specifically for 

underdeveloped countries. Additionally, their disposal can 
have unforeseen impacts on human health and the environ-
ment. Even though the devices are normally incinerated to 
reduce contamination risk, the commercial platforms are 
commonly fossil-derived unsustainable polymeric materi-
als, which can generate toxic pollutants when improperly 
incinerated, causing detrimental effects on environmental 
and human health. As a result, Ongaro et al. [1] review ways 
to design a sustainable future for point-of-care diagnostics 
and single-use microfluidic devices. Different materials 
are reported for this purpose, including recycled plastics, 
such as polymethyl methacrylate (PMMA), bio-derived and 
biodegradable plastics such as shellac, zein, and polylactic 
acid (PLA), and natural fibrous materials (paper, cotton, and 
wood). The paper substrates have become an attractive sub-
strate among natural fibrous.

A search on the “Web of Science” database using the key-
words “paper-based device” shows a significant number of 
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works exploring paper as an analytical platform from 2010 
(Fig. 1). The publication’s number achieved a maximum 
value after 2019, a landmark with the COVID-19 pandemic. 
Even though most previous works focused on techniques to 
fabricate the devices and looked for ways of coupling them 
with different detection systems, the new ones have exten-
sively demonstrated the knowledge acquired over the years 
for analytical purposes.

PADs have received rapid development over the last dec-
ade (Fig. 1). They have been the focus of several reviews 
due to their advantages in comparison to conventional 
chips, normally made of glass and polymer platforms. The 
features include simpler fabrication, lower cost, and bio-
logical compatibility. Moreover, the paper has capillarity 
properties, dispensing the need for external pumps [2]. Xia 
et al. [3] published a review presenting different manufac-
turing techniques for microfluidic devices, employing two-
dimensional (2D) and three-dimensional (3D) methods. The 
authors also highlighted the various types of applications for 
these devices, their advantages and disadvantages, and future 
trends for developments in this field. In 2020 Paixão et al. [4] 
published a review that discusses 10 years of development in 
paper-based devices focusing on electrochemical detection. 
The review presents that these devices have an enormous 
production variety, with different types of paper and ways of 
creating barriers. Moreover, these sensors can be applied to 
out-of-bench detection, performing analysis in-field detec-
tion. These devices have an appreciable form of detection, 
consisting of the main ones discussed in this review, colori-
metric [5], fluorometric [6], electrochemical [7], distance-
based [8], and dual readout [9]. They can also be integrated 
with other techniques, such as surface-enhanced Raman 
spectroscopy (SERS) [4], mass spectroscopy [10], and 

Fourier-transform infrared spectroscopy (FTIR) [11]. For 
these devices, there are some examples in the market for the 
end user. However, they are often colorimetric detection.

Most recent advances in the fabrication methods of 
paper-based devices have received growing attention in the 
field of bioanalysis. To evaluate the state-of-the-art devel-
opment of paper-based biosensors, Silva-Neto et al. [11] 
published a review that discusses important information 
about manufacturing methods, integrative sensing materi-
als, the clinical relevance of biomarkers, and bioanalysis. 
Salentijn et al. [12] demonstrated how paper features could 
contribute to (bio)analysis in another review. Thus, while 
previous major reviews have focused on different manufac-
turing techniques and methods, this review aims to present 
the advances observed in the last 10 years for paper-based 
analytical devices, highlighting the relationship between the 
paper type and its analytical application. Furthermore, we 
carefully discuss the main detection systems, including the 
latest dual/combined and distance-based detection systems. 
In this way, we provide insights into PADs to serve as a 
reference for further research.

History of paper‑based analytical devices

Most articles until 2022 show more laboratory solutions 
than point-of-need applications. However, since 2007, 
many applications using paper-based analytical devices have 
changed the focus of searching for new materials for sens-
ing applications. They added a new look to an old material 
with a well-known chemical structure, the paper. Paper was 
used as an alternative material to transmit information from 
generation to generation, replacing animal skin, stone, wood, 
and papyrus. Some characteristics behind this change are 
due to some important properties of the paper, like lighting, 
porosity, price, and availability. The same features we look 
for in PADs [12, 13].

The analytical applicability of paper substrates is not 
new. However, it is not easy to precisely date the start. The 
first report came from the years 23 [14], where iron was 
detected in papyrus based on a colorimetric reaction. It 
opened the possibilities for pH detection using litmus paper 
in the seventeenth century [15] and free chlorine detection 
using iodide starch reaction in 1814 [16], followed by sugar 
dark-brown color detection based on tin(II) chloride reaction 
in 1850 [17]. In 1917, Feigl and Stern proposed a new color 
detection [18], culminating in the paper spot-test reaction. 
This article was the basis for many qualitative detections, 
leading to a landmark in analytical chemistry. After this 
period, Martin and Synge used paper as the substrate for 
chromatography separation, where the fibrous structure of 
the paper was essential to interact with the analytes result-
ing in a different time of elution [19]. This work opened the 

Fig. 1  Publications’ number over the years obtained from the “Web 
of Science” database using the keywords “paper-based device”
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possibility of using paper for electrophoresis separation by 
Durrum in 1950 [20], and for vital out-of-lab measurements 
using immunochromatographic side flow, which is currently 
used in the pregnancy test and other biosensing approaches 
for disease detection [21]. From 1982 to 2007, some authors 
attempted to highlight the potentiality of the paper. However, 
the way to look for the piece of paper only changed in 2007, 
making the paper old-new analytical platforms. This change 
was based on the Whitesides approach creating hydrophobic 
barriers on paper with photoresist [22]. In 2009, a clever and 
cheap approach [23] was proposed to fabricate the devices 
using wax-printing technology. Figure 2 summarizes the 
paper and its application in analytical chemistry.

Influence of paper type

The essential primary material for paper is cellulose, a 
natural polymer obtained mainly from wood and cotton. 
Based on the necessity of paper purity, the origin of the 
cellulose could vary, whereas cotton has purer cellulose 
than that came from wood. Instead of cellulose, the raw 
material has other compounds, such as hemicelluloses, 
lignin, and wood extracts. Cellulose is 40–50% of wood’s 
chemical composition, hemicelluloses represent 15–25%, 
lignin 10–30%, and extracts 0.5–5% [24]. During the paper 
manufacture, lignin is removed in the pulping process, 

releasing the fibers and eliminating impurities related 
to discoloration and possible future paper breakdown. 
Depending on the application, paper substrates containing 
high lignin content, such as card boxes, have been used in 
the literature [7]. The polymeric structure and the attached 
groups are also essential for paper modification, especially 
biosensing applications. Consequently, the paper’s prop-
erties must match the specific applications, which will be 
discussed in this section.

Paper types typically differ in composition, pore size, 
surface area, porosity, and thickness. Thus, the paper pro-
vides a different feature in the PADs, since absorbing, flow 
controlling, filtering, reagent adsorption, and wicking [25]. 
PADs are often produced with chromatography and filter 
papers, considered traditional platforms [26, 27]. This fact 
is associated with the high percentage of alpha cellulose, the 
most stable form of cellulose, leading to a smooth surface 
and uniformity in this substrate. It is important to emphasize 
that the main difference between quantitative and qualita-
tive papers is non-volatile substance content (called ash), 
which varies from less than 0.01% to 0.06% for quantitative 
and qualitative papers, respectively. The lower the ash con-
tent, the greater the purity of the paper. The chromatography 
paper is manufactured with pure cellulose obtained from the 
highest quality cotton without strengthening or whitening 
agents [28]. Table 1 summarizes the properties of common 
papers used to fabricate PADs.

Fig. 2  Timeline involving paper substrates for analytical applications
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Paper characteristics have a significant influence on 
the analytical performance of electrochemical [7, 29–31], 
fluorescence [32], and colorimetric devices [33]. Pradela 
et al. [31] demonstrated the fabrication of paper-based elec-
trodes with graphite ink. Filter paper and office paper were 
evaluated as substrates for the sensors. An improvement in 
electrical conductivity and, consequently, in the analytical 
response was observed for the filter paper. This behavior 
was attributed to the larger pore size of this substrate and 
its more uniform distribution, increasing the ink percentage 
immobilized onto the filter paper. Dias et al. [34] evalu-
ated the influence of five paper types to fabricate electrodes, 
including filter paper, vegetal paper, office paper, photo 
paper, and chromatography paper. The vegetal paper pro-
vided the highest electrical conductivity and electrochemical 
performance for forensic applications. This fact was associ-
ated with the roughness of the vegetal paper, allowing higher 
graphite deposition. Ninwong et al. [32] proposed the first 
fluorescent distance-based device to determine trace mer-
cury ions  (Hg2+) in water. Whatman Nº 1 filter paper, anion 
exchange filter paper, cation exchange filter paper, and silica 
gel filter paper were evaluated to determine the best surface 
to deposit nitrogen-doped carbon dots (NCDs). The authors 
observed that the positive charges of diethylaminoethyl cel-
lulose on the anion exchange filter paper could interact with 
the negative charge of the functional groups of the NCDs, 
facilitating their immobilization. Consequently, this paper 
was selected as a substrate, and the resulting device was 
applied for mercury quantification in water samples. Despite 
enhancing the analytical performance, the paper selection is 
not always studied or detailed during fabrication.

The paper choice is also an essential parameter for paper-
based microfluidic devices once it can affect the flow rate, 
impacting the analytical performances of the devices [35]. 
A paper-based microfluidic device coupled with electro-
chemical detection showed higher analytical signals using 
Whatman filter paper Nº 4 (25 µm) than the Whatman filter 
paper Nº 1 (11 µm). This behavior was associated with an 

increased flow rate by increasing the substrate’s pore size, 
improving the analyte’s mass transport to the electrode sur-
face [36]. However, higher flow rates are not always advanta-
geous depending on the application since the reagents previ-
ously deposited in the reaction zone can be easily washed out 
during the experiments, affecting the sensitivity and repeat-
ability of the measurements [37]. Boehle et al. [38] showed 
that the Whatman filter paper Nº 1, which has smaller pores 
relative to Whatman 4, improved enzyme-based colorimetric 
detection performance. Pradela et al. [39] demonstrated the 
possibility of using office paper as a substrate to fabricate 
paper-based microfluidic devices. However, care must be 
taken in choosing this substrate since additives may interfere 
with the measurements [40].

Although filter and chromatography paper are often 
used for PADs fabrication, other cellulose-based substrates 
can also be applied. Hunt et al. [41] reported a substantial 
improvement in the analytical signal by comparing cellu-
lose-based paper and non-cellulose paper to produce col-
orimetric paper-based biosensors. The proposed biosensor 
was assessed for SARS-CoV-2 RNA determination in human 
saliva samples. In addition, combining the different papers 
has been applied to improve PAD performance by integrat-
ing multiple steps in a single device [42].

The paper modification has also been evaluated during 
device fabrication. The modification typically provides a 
variety of functional groups to the paper substrate, improv-
ing the uniformity of color development (e.g., colorimetric 
detection) and the stability of immobilized molecules [43]. 
Most approaches to modify paper substrates are based on 
electrostatic forces, hydrogen bonding, stacking, and/or van 
der Waals forces as well as some reversible non-covalent 
interactions [44]. Evans et al. [45] report the silica nanopar-
ticles modified with 3-aminopropyltriethoxysilane incorpo-
rated on a Whatman grade 1 filter paper which facilitates the 
adsorption of selected enzymes and prevents the washing 
away effect that creates color gradients in the colorimetric 
measurements. Filter paper substrates chemically modified 

Table 1  Properties of common 
papers applied for PADs 
fabrication [28]

NS not specified, NC no content

Paper type Thickness (µm) Pore size (µm) Nominal ash (%)

Quantitative filter paper Grade C42 200 1–2 0.07
Quantitative filter paper C40 200 4–7 0.07
Quantitative filter paper Grade 589/1 190 12–25 0.01
Quantitative filter paper Grade 41 215 20 0.07
Qualitative filter paper Grade 1 180 11 0.06
Qualitative filter paper Grade 3 390 6 0.06
Qualitative filter paper Grade 4 210 25 0.06
Qualitative filter paper Grade 5 200 2.5 0.06
Chromatography Cellulose Grade 3 360 NS* NC**
Chromatography Cellulose Grade 1 180 NS* NC**
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by oxidation allow the covalent coupling of enzymes on 
the cellulose surface, providing an enhanced colorimetric 
measurement [46]. Gabriel et al. [47] propose a microflu-
idic paper-based device (μPAD) modified with chitosan 
for colorimetric detection of glucose and uric acid (UA) in 
biological fluids. The modification incorporates chitosan on 
the paper surface, resulting in better solid support to adsorb 
enzymes, ensuring a more effective reactive area in the 
whole detection zone.

Considering the works discussed in this section, we pro-
pose a guide (Fig. 3) containing ways to select the paper type 
according to application. Figure 3 shows that papers with 
different characteristics have been used to produce analytical 
devices, demonstrating that a unique paper does not fit all 
applications. Therefore, evaluating the paper is significantly 
important to understand how this parameter can influence 
the analytical response of the device.

Detection and readout system 
for point‑of‑need applications

The need to obtain rapid results for disease diagnosis, 
real-time environmental and health monitoring creates the 
demand for point-of-need (PON) analytical devices that can 
be used remotely outside the hospital or laboratory envi-
ronments. They are especially desired in locations with a 
lack of infrastructure and shortages of trained personnel. 
The development of point-of-care (POC) tests, in particular, 
must follow the ASSURED criteria set by the World Health 
Organization (WHO), that is, being affordable, sensitive, 
specific, user-friendly, rapid and robust, equipment-free, 
and deliverable to end-users [48]. In this context, PADs can 
be an excellent alternative to these purposes. Paper is an 

abundant, low-cost material whose porous structure allows 
reagents and biological sample storage and fluid flow con-
trol by capillary action without needing external equipment. 
PADs are also disposable, portable, and easy to use, which 
is very interesting for POC tests [49, 50].

Several detection methods can be associated with PADs, 
such as colorimetric [22, 51], electrochemical [52, 53], sur-
face-enhanced Raman scattering [54], chemiluminescence 
[55], fluorescence [56], and electrochemiluminescence [57]. 
However, it is essential that these methods also attend the 
ASSURED criteria to be used as point-of-need or point-of-
care devices. This section will critically discuss the most 
recent point-of-need applications found in the literature for 
paper-based analytical devices, which will be divided into the 
most common detection methods, also considering dual/com-
bined readout devices [58] and distance-based detection [59].

Colorimetry

Colorimetry is the most common analytical technique used 
with PADs. A colorimetric sensor detects analytes through 
color changes that can be visually observed [60]. Paper is 
an excellent substrate for this type of detection due to its 
white background, contrasting with the color appearance 
[61]. Different strategies can be applied for color formation, 
including enzymatic reactions, redox indicators, nanopar-
ticles formation, acid/base indicators, and complexometric 
reactions. The next step immediately after color formation 
is the readout process, which can be done by the naked eye, 
especially considering qualitative tests with YES or NO 
output originated by a color change due to the presence or 
absence of an analyte. It is also possible to perform quanti-
tative data acquisition by constructing a calibration curve, 
where the color intensity is proportional to the concentration 

Fig. 3  Scheme to select paper 
type according to the analysis’s 
mode (static or flow analyses) 
for optical and electrochemical 
detection
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of the analytes. In this case, office scanners or smartphones 
are required to digitize the images, which are processed in 
specialized software (e.g., Adobe Photo-Paint, ImageJ, Pho-
toMetrix) by decomposing the images into primary colors, 
known as RGB (red, green, blue), or secondary colors 
CMYK (cyan, magenta, yellow and black), among other 
systems [62].

Overall, paper-based colorimetric devices are a good fit 
for point-of-need tests regarding numerous applications, 
such as early pregnancy detection through hCG hormone in 
urine samples [5]; glucose, cholesterol, lactate [63], and cre-
atinine [37] monitoring via noninvasive fluids; and detection 
of viruses like human immunodeficiency virus (HIV) for 
acquired immunodeficiency (AIDS) [64] and SARS-CoV-2 
for COVID-19 diagnosis [65, 66], as well as bacterial dis-
eases such as tuberculosis [67] and E. coli. infection [68], 
and important cancer biomarkers [69, 70]. Table 2 summa-
rizes recent findings in the literature related to PADs with 
colorimetric detection for point-of-need applications.

Currently, most of the available paper-based devices only 
identify single targets. However, it would be interesting to 
evaluate different parallel biomarkers or specific combina-
tions, consequently improving the test’s clinical value and 
saving on reagents, time, and cost. In this context, Pomili 
et al. [63] proposed a multiplexed colorimetric device for 
simultaneously detecting salivary biomarkers, i.e., glucose, 
cholesterol, and lactate. The multiplexed PAD, which was 

manufactured in a single  CO2 laser cutting step, comprised 
a chromatographic paper with a small central area for saliva 
sampling, connected with three microfluidic channels. 
Each channel contains a detection zone spotted with gold 
nanoparticles (AuNPs) and a layer of the corresponding 
enzymes (glucose (GOx), cholesterol (ChOx), and lactate 
oxidase (LOx)) for the respective analytes. In addition, pre-
treatment zones functionalized with halogens (NaI) were 
interposed between the sample and the test zones (Fig. 4). 
The colorimetric detection is based on the oxidation of the 
biomarker by its specific enzyme, generating hydrogen 
peroxide  (H2O2) as a byproduct, which leads to a morpho-
logical change in the AuNPs, thus promoting a blue-to-
pink color change. The colorimetric response is achieved 
within 10 min due to the presence of NaI, which boosts 
the oxidation process, promoting a rapid color change in 
case of a pathological concentration of the biomarkers in 
saliva that can be either read by the naked eye or using a 
smartphone camera. A prototype device for POC tests was 
also developed by adding a protective adhesive mask on 
the paper surface, designed with holes in the sample and 
detection zones. The prototype provides easy handling for 
home testing and could be adapted to detect several other 
biomarkers. Although this platform offers low-cost and 
rapid preliminary testing, the qualitative readout does not 
accurately assess health conditions, requiring conventional 
tests to provide more quantitative information.

Table 2  Summary of recent PADs found associated with colorimetric detection for point-of-need applications

hCG human chorionic gonadotrophin, HIV human immunodeficiency virus, AIDS acquired immunodeficiency syndrome, CFU colony-forming 
unit, PCA3 prostate cancer antigen 3, AFP using alpha-fetoprotein, MUC16 mucin-16

Paper type Analyte LOD Diagnostic Sample Reference

Whatman chromatogra-
phy Nº 1

Glucose, cholesterol, 
lactate

n/a (qualitative) Diabetes Saliva [63]

Whatman chromatogra-
phy Nº 1

Glucose and lactate 0.312 and 0.297 mmol 
 L−1

Diabetes Human serum [71]

Whatman filter Nº 4 hCG hormone 10 ng  mL−1 Pregnancy Urine [5]
Whatman filter Nº 4 Creatinine 0.27 mmol  L−1 Renal disorders Artificial urine [37]
Whatman chromatogra-

phy Nº 1 and 3
HIV-1 p24 antigen 0.03 ng  mL−1 AIDS Human blood plasma [64]

Ahlstrom chromatogra-
phy Grade 222

SARS-CoV-2 200 genomic copies μL−1 COVID-19 Saliva [72]

Whatman chromatogra-
phy Nº 1

Dengue virus serotypes 5.23–38.17 nmol  L−1 Dengue Plasmids [73]

Whatman chromatogra-
phy Nº 3

Tuberculosis DNA 0.0195 ng  mL−1 Tuberculosis Human disc tissue [67]

Cellulose paper E. coli 104 CFU  mL−1 Bacterial infection and 
drug resistance

Mice wound tissue [68]

Whatman filter Nº 1 PCA3 antigen 0.34 fg μL−1 Prostate cancer RNA from cancer cells [69]
Whatman filter Nº 1 Citrate 0.4 mmol  L−1 Prostate cancer Urine [74]
Nitrocellulose membrane AFP and MUC16 pro-

teins
1.054 and 0.413 ng  mL−1 Liver and ovarian cancer Synthetic serum [70]

Whatman filter Nº 1 Cytochrome c 0.5 mmol  L−1 Hematologic cancer Human serum [75]
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Regarding quantitative colorimetric analyses, Aydin-
dogan et al. [70] developed a paper-based spot test using 
AuNPs bioconjugates as a color provider for the quanti-
tative detection of alpha-fetoprotein (AFP) and mucin-16 
(MUC16), which are well-known protein biomarkers for 
liver and ovarian cancer. The AuNPs were first immobi-
lized on a nitrocellulose membrane, which was pretreated 
with bovine serum albumin (BSA) solution to facilitate the 
formation of circular shapes as in a spot-like platform. Next, 
the anti-AFP or anti-MUC16 antibodies were immobilized 
on the spot’s surface using glutaraldehyde as a crosslinker. 
Then, different concentrations of AFP or MUC16 antigen 
solutions were incubated for 30 min. Afterward, smartphone 
images via ImageJ software were used to evaluate color 
changes on the GNP surface, whose intensity depends on the 
biomarker concentration. The limit of detection (LOD) for 
AFP was 1.054 ng  mL−1 which agrees with the serum cut-off 
value reported in the literature (20 ng  mL−1), demonstrat-
ing acceptable analytical performance for this species. On 
the other hand, the LOD for MUC16 (0.413 ng  mL−1) was 
not compared with reference values. The authors described 
that the cut-off value is reported in a different unit (35 U 
 mL−1), limiting the comparison. The sensing platform was 
only stable over 4 days, which is considered a drawback for 
commercial purposes. Nevertheless, it still represents a rapid 
and noninvasive alternative for preliminary cancer detection, 
which is an unmet need worldwide. It also holds great poten-
tial for the study of other molecules of interest.

Another approach presented by Wang et al. [69] used a 
reverse transcription loop-mediated isothermal amplification 
(RT-LAMP) chip with colorimetric detection for point-of-
care testing of prostate cancer 3 (PCA3) biomarkers. The 

chip was composed of an amplification zone, where the 
samples and reagents were loaded on a sponge-like polyvi-
nyl chloride (PVC) pad, and a calcine-preloaded dry filter 
paper was positioned in a detection zone, both connected 
by a microfluidic channel. The paper discs were prepared 
by using a desktop paper cutter. After an incubation time 
using a battery-powered thermal module, the RT-LAMP 
products were pressed by a stick, flowing from the sponge to 
the paper. The color change was imaged using a smartphone, 
and the PCA3 gene could be detected from RNA samples at 
concentrations as low as 0.34 fg  mL−1.

Despite the ease of using smartphones for accurate quan-
tification in colorimetric assays, Davidson et al. [72] pre-
sented a PAD for directly detecting SARS-CoV-2 in saliva 
using LAMP via a distinct colorimetric response that can be 
read using the naked eye. The device consists of a reading 
layer and two reaction paper strips. In addition, instead of 
using wax printing, they used polystyrene spacers to prevent 
cross-talk between samples, enabling large-scale production. 
Under positive results, the paper color changes from red to 
yellow. Although presenting an analytical sensitivity of 76%, 
specificity of 100%, and ~ 91% accuracy, the subjectivity in 
color perception of the control PAD can lead to false positive 
results, which do not occur with image processing. Addi-
tionally, the device exhibits the color change within 60 min 
and costs around $10/test, which can be considered outdated 
compared to the COVID-19 lateral flow tests commercially 
available today.

It is also possible to perform semi-quantitative measure-
ments by comparing the change in color with a color chart dia-
gram without the need for external equipment, extending its 
application to resource-limited areas of the world. About this 

Fig. 4  Schematic illustration of the colorimetric paper-based device 
for the simultaneous detection of three salivary biomarkers, where a 
drop of saliva is deposited in the sample zone, flowing through the 
pretreatment zones, where it is mixed with the deposited NaI, after 
which it reaches the detection zones, functionalized with AuNPs and 

oxidase enzymes. The insert shows the colorimetric reaction medi-
ated by the  H2O2 byproduct in the presence of NaI, which leads to a 
visible color change from blue to pink for nonphysiological levels of 
the target analyte.  Copyright 2021, MDPI [63]
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topic, Chen et al. [64] developed an instrument-free μPAD sen-
sor based on the colorimetric enzyme-linked immunosorbent 
assay (ELISA) to detect the virological biomarker HIV-1 p24 
antigen for early HIV diagnosis. Hydrophobic barriers were 
first patterned on chromatographic paper by wax printing to cre-
ate sample/reagent wells. The paper was folded as origami and 
placed in a 3D-printed holder, enabling multi-step assays by 
sliding the μPAD layers. The system comprises a test and a con-
trol detection well, both pre-modified with capture antibodies, 
forming an antigen–antibody complex in the test well by sample 
addition. It also includes a paper strip featuring two other wells 
containing dried horseradish peroxidase (HRP) conjugated 
detection antibodies that overlap with the detection wells when 
pulled down, and react with the complex by adding a wash-
ing buffer. Additionally, an electricity-free automated timer 
function was incorporated into the device, which works by 
delivering the washing buffer excess to indication wells at the 
appointed times, displaying a green color due to the presence of 
a food dye previously dried in the paper substrate. The correct 
delivery times were achieved by adjusting the viscosity of the 
buffer solution by treating the paper with dried sucrose, which 
is an efficient strategy for controlling the flow rate in μPADs. 
The first indication well is triggered in approx. 4 min after the 
buffer is added. A green color indicates the right moment for 
3,3′,5,5′-tetramethylbenzidine (TMB) addition, which enables 
the development of a dark blue color in the test well due to the 
presence of the antigen, while the control well displays a light 
blue color. This step activates the second indication well, and 
the target analyte concentration can be determined (~ 5 min) by 
comparing the color on the test well with the color chart dia-
gram. The latter shows the detection results based on different 
antigen concentrations, providing a semi-quantitative detection 
of the HIV-1 p24 with a satisfactory LOD of 0.03 ng  mL−1.

Fluorescence

Fluorescence is the electromagnetic radiation emitted by a 
molecule when electrons, previously excited by the absorp-
tion of light, return to their ground state or lower energy than 
the excited state [76]. Paper-based devices with fluorescence 
detection are usually fabricated by immobilizing fluorescent 
materials, such as organic dyes, metal nanoclusters, and dif-
ferent types of nanoparticles, on a piece of paper that pro-
duces spectral responses in the presence of target analytes. 
The fluorescence response can be obtained, for example, 
by using a smartphone camera, as previously described for 
colorimetric systems. Fluorescence detection has increas-
ingly attracted the attention of researchers due to its high 
sensitivity, fast response time, easy implementation, and 
simplicity. In addition, there is a high commercial availabil-
ity of fluorescence dyes that can be directly visualized by the 
naked eye under UV irradiation, increasing the possibility 
of applications [77–80].

Paper-based fluorescence devices have generally been 
applied in bioanalysis and medical diagnostics [6, 81–83]. 
The popularity is associated with the paper substrate’s inher-
ent advantages and the fluorescence response’s efficiency, 
making this combination an attractive alternative for POC 
diagnostics [80]. Xu et al. [84] developed a paper-based plat-
form for detecting microbial species (Plasmodium falcipa-
rum, Plasmodium vivax, and Plasmodium pan) responsible 
for causing malaria in humans. The device comprises five 
paper panels with a hydrophobic barrier delimited by wax 
using wax printing. These panels are folded after adding the 
sample, generating an origami-shaped device. This design is 
an interesting approach since it allows sequential steps in a 
single device, including DNA extraction, loop-mediated iso-
thermal amplification (LAMP), and fluorescence detection. 
After adding the sample to the device, the analyte solution 
is guided by capillarity to four different points containing 
the control and LAMP reagents for each analyte. The system 
is then closed to avoid evaporation of the reagents during 
the incubation, and subsequently, the amplification is car-
ried out at 63 °C for 45 min. The results were observed by 
the naked eye using a portable UV lamp. Compared with 
gold-standard assay polymerase chain reaction (PCR), the 
proposed method provided high sensitivity and specificity 
to determine Plasmodium in blood samples. However, this 
test failed for some samples from PCR-positive patients who 
had already started antimalarial treatment. Consequently, 
this fact can be considered a limitation for POC testing, and 
the proposed method needs further studies for comparable 
analytical performance.

Al Lawati et al. [83] developed a new alternative for glu-
cose monitoring (Fig. 5) using a paper-based fluorescence 
device with a built-in 2D cobalt-terephthalate framework 
(CoMOF). These well-organized three-dimensional struc-
tures contribute to the formation of highly porous and 
extraordinarily stable surfaces, which add to these devices 
a high surface area and the possibility of application in the 
catalysis of chemical reactions. Two-dimensional cobalt-
terephthalate was synthesized using a solvothermal method 
and later incorporated with the enzyme glucose oxidase 
(GOx) into the paper through a simple drip-drying pro-
cess. A yellow–brown color is observed when the sample 
(2 µL) containing glucose is injected into the device. After 
1 min, the device is exposed to UV irradiation (365 nm) in 
a dark box, generating fluorescent irradiation. The emitted 
fluorescence was captured by using a smartphone camera. 
The results showed that 2D CoMOF surprisingly increased 
both the performance and stability of GOx, remaining sta-
ble for at least 2 months and decreasing the time required 
for glucose oxidation. In addition, 2D CoMOF accelerated 
the reaction of  H2O2 produced by the enzymatic oxidation 
of glucose with o-phenylenediamine (OPD). The proposed 
method provides a wide linear range (50 µM–15 mM) and 
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great LOD (3.2 µM) for glucose quantification. The system’s 
applicability was successfully evaluated to monitor glucose 
in blood samples. Despite all advantages, the time and cost 
required to prepare the CoMOF should also be considered 
parameters to compare the proposed device with commercial 
devices or other devices able to simultaneously determine 
glucose and other biomarkers [85, 86].

Considering the need for more sensitive and quantitative 
detection methods for the detection of biomarkers of non-
communicable diseases, Natarajan et al. [79] have developed 
a fluorescent lateral flow paper-based microfluidic device for 
point-of-care detection of cardiac Troponin I. According to 
the American Heart Association and American College of 
Cardiology (AHA/ACC), this substance is considered the 
most specific biomarker for acute myocardial infarction. The 
proposed device is a sandwich-type, which uses a monoclo-
nal antibody immobilized onto the nitrocellulose membrane 
using an Easy print to capture and an antibody conjugated 
to Alexa Fluor dye to detect the analyte. After 10 min of 
incubating the sample, cardiac Troponin was quantified by 
the immunoanalyzers. The fluorescent lateral flow immu-
noassay resulted in less than 10 min with a detection limit 
of 0.019 ng/mL.

Another device for biomarker detection was developed by 
Xu and colleagues [87]. A paper-based upconversion fluo-
rescence resonance energy transfer biosensor was developed 
and applied to detect carcinoembryonic antigen (CEA). This 
compound is commonly associated with several types of 
cancer, including colorectal, pancreatic, and gastric carci-
noma. The device was made on standard filter paper with a 
simple nano-printing method. The upconversion nanoparti-
cles labeled with specific antibodies were printed on the test 
areas on the test paper, followed by the introduction of the 
test antigen. Fluorescence upconversion measurements were 
directly performed at the test sites after the antigen–antibody 
reactions. Besides good stability and reproducibility, the 
device showed a low detection limit (0.89 ng/mL). In addi-
tion, the authors highlight the device’s ease of fabrication 

and operation, making it a promising alternative for point-of-
care clinical testing. Table 3 summarizes other recent works 
related to PADs with fluorescence detection for point-of-care 
applications.

Electrochemistry

Combining paper-based devices with electrochemical detec-
tion has distinctive features since this set can be produced 
in miniaturized size, aligning portability, low cost, and 
sensitivity [52]. In addition, potentiostat, the main instru-
ment used in electrochemical measurements, can be easily 
miniaturized, allowing portability and field analysis [93]. 
Selectivity is a challenge faced in electrochemistry [94]. 
However, this parameter can be modulated by choosing the 
appropriate detection potential and/or the electrode material, 
significantly enhancing the device’s analytical performance 
[4]. Commercial electrodes [95], pencil graphite [96], and 
metal wires [42] have been used as electrochemical detectors 
integrated into paper-based devices. Besides that, different 
approaches can be found to fabricate electrochemical sen-
sors directly on the paper surface, including stencil printing, 
screen printing, inkjet printing, pencil drawing, and laser 
pyrolysis [97].

Screen printing and stencil printing use high-viscosity 
conductive ink for electrode fabrication [98]. The process 
consists of using an open mask, made of transparent film 
or adhesive tape, as a mold to design the electrode geom-
etries. The ink is then applied onto the paper substrate using 
a squeegee [99, 100]. Before ink drying, this mask is rap-
idly removed from the paper substrate, generating the three-
electrode electrochemical system. Unlikely screen printing, 
stencil printing does not have sophisticated screen apparatus 
[100]), affording electrode fabrication even in resource-lim-
ited laboratories. In contrast, inkjet printing is a cutting-edge 
technology to deposit high-precision ink lines [97, 101]. 
This technique dispenses the use of masks and allows scal-
able electrode fabrication.

Fig. 5  Schematic representation 
of the analytical application 
performed with a paper-based 
fluorescence device proposed by 
Lawati et al. [70]
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Unlikely ink-based techniques, pencil drawing consists 
of obtaining carbon conductive tracks from the mechani-
cal friction between the paper substrate and graphite pencil 
[102]. Pyrolysis uses a laser source to induce the formation of 
graphite structures onto the paper substrates. This automated 
approach dispenses the need for reagents and controlled envi-
ronmental conditions during electrode fabrication. Besides 
paper, other substrates have also been used for this purpose, 
including phenolic resin and polyimide [103]. However, 
each substrate can provide specific properties to the result-
ing device, including flexibility, stability, and hydrophobicity. 
Besides using these tecniques for electrode fabrication, hydro-
phobic barriers can also be created onto the paper substrate 
(e.g., using was printing technique), delimiting the volume of 
the electrochemical cell or creating microfluidic paths.

Once fabricated, paper-based electrochemical devices 
can be used in static or hydrodynamic conditions [104, 
105]. In static mode [106], hydrophobic barriers are cre-
ated in the paper to delimit the analysis zones (Fig. 6A). 
Then, micro volumes of the analyte solution, which con-
tains supporting electrolytes, are dropped on the sensors 
to record the electrochemical measurements. Another 
approach [107, 108] involves transporting the analyte to the 

electrochemical detection zone by the capillarity of the paper 
substrate. The electrochemical measurement is subsequently 
recorded when the solution stops flowing. This is an inter-
esting strategy since multiple electrochemical detectors can 
be integrated into a single device, increasing the system’s 
applicability. In hydrodynamic conditions, a constant flow 
of supporting electrolyte can be produced by using two res-
ervoirs (Fig. 6B) [39, 103, 109, 110]. The inlet reservoir is 
constantly filled with supporting electrolyte, which flows 
by gravity and capillarity. A sorbent pad is used as an outlet 
reservoir and is responsible for wicking the carrier fluid. 
The electrochemical sensors are placed between the two 
reservoirs. The injections of the analyte solution are per-
formed at a point located between the inlet reservoir and 
the electrochemical detector. Another approach involving 
hydrodynamic conditions involves coupling batch injection 
analysis with paper-based microfluidic devices (Fig. 6C) 
[96]. The electrochemical system is fabricated on a circu-
lar paper substrate. The analyte solution, prepared in the 
supporting electrolyte, is directly injected into the electrode 
surfaces, resulting in transient signals associated with the 
redox process. During the analysis, the analyte solution is 
gradually spread on the edges of the paper by capillarity, and 

Table 3  Recent literature findings related to PADs with fluorescence detection for point-of-need applications

HCV hepatitis C virus, cDNA complementary DNA, HepG-2 human liver cancer cell line

Paper type Analyte LOD Diagnostic Sample Reference

Absorbent paper Dipicolinic acid 0.8 nmol  L−1 Anthrax River water; Orange 
juice

[77]

Whatman chromato-
graphic Grade 1

Hepatitis C virus DNA 5.0 pmol  L−1 Hepatitis C HCV cDNA [78]

Nitrocellulose membrane Cardiac Troponin I 0.019 ng  mL−1 Acute myocardial infarc-
tion

Human serum [79]

Whatman filter Nº 4 Alkaline phosphatase 
and butyrylcholinest-
erase

3.6 U  L−1 and 0.4 U 
 mL−1

Liver diseases Human serum [6]

Whatman filter Nº 1 Immunoglobulin E 0.13 IU  mL−1 Allergic diseases Human serum [81]
Whatman filter Glucose 3.2 µmol  L−1 Diabetes Blood [83]
Filter paper Plasmodium falciparum, 

Plasmodium vivax, and 
Plasmodium pan

n/a (qualitative) Malaria Blood [84]

Whatman filter Nº 3 Cooper ions 0.41 pmol  L−1 Anemia, pancytopenia, 
Wilson’s disease, and 
Alzheimer’s disease

HepG-2 cells, mouse 
urine, human serum, 
and bovine serum

[88]

Filter paper Albumin 16.4 nmol  L−1 Hepatic impairment and 
chronic kidney disease

Human serum [89]

Nitrocellulose membrane Norovirus 3.3 ng  mL−1 Acute gastroenteritis Mussel [90]
Whatman filter Antibiotic resistance 

genes
n/a (qualitative) Antibiotic resistance Blood [91]

Whatman filter Nº 1 Sulfamethazine, 
oxytetracycline, and 
chloramphenicol

0.47, 0.48, and 
0.34 ng  mL−1

Antibiotic resistance Shrimp [92]

Filter paper Carcinoembryonic 
antigen

0.89 ng  mL−1 Colorectal, pancreatic, 
and gastric cancer

Human serum [87]
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new injections are sequentially performed in the device. In 
general, paper-based microfluidic devices bring remarkable 
advantages since the system can substantially improve the 
analysis time and reduce sample consumption.

Pagkali et al. [111] reported the development of an enzy-
matic biosensor capable of monitoring glucose in food sam-
ples. The electrochemical platform on the paper surface was 
obtained from the pencil-drawing technique, combining a 
commercial writing pencil to obtain the analysis zones and 
a hydrophobic marker pen to delimit the fluidic path of the 
sample zone. Subsequently, the enzyme glucose oxidase 
and the mediator ferricyanide were added to the analysis 
zones. Glucose quantification was performed by the elec-
trochemical technique of amperometry, showing LOD of 
0.08 mmol  L−1, a relative standard deviation of analytical 
response smaller than 12%, and recovery studies between 
94 and 106%.

Dempsey and Rathod [112] described an electrochemical 
immunosensor, on commercial acetate paper, using screen-
printed electrodes (SPE), by combining stencil printing pro-
cess and ELISA approach for determining cardiac Troponin 
T (cTnT), exploring microfluidic properties of different 
papers substrate for analysis in lateral flow mode. The first 
stage was to manufacture the device. This was performed 
by the screen-printing technique using mixtures of graphite 
powder and epoxy resin. Then, the anti-cardiac troponin T 
antibody (Ab-cTnT) was fixed on the surface of the working 
electrode (5 × 2  mm2) followed by the addition of bovine 
serum albumin. In the second stage, Whatman filter paper 
(membrane, 5 × 50  mm2) was fixed on the working surface 
of the device, followed by immobilization of anti-cardiac 
troponin T antibody-HRP (Ab-HRP) at a distance of 30 mm 
from the working electrode. Samples containing cTnT were 
added at a distance of 50 mm from the working electrode. 

During the percolation process, a complex (Ab-HPR/cTnT) 
is formed, followed by a sandwich on the working surface 
(SPE/Ab/BSA/cTnT/Ab-HRP). The detection and quantifi-
cation of cTnT are performed through a redox mediation 
after adding  H2O2 on the working surface of the device, fol-
lowed by enzymatic conversion of o-phenylenediamine into 
diamine. The electroanalytical method presented a linear 
range of 100–700 ng  mL−1 and a LOD of 0.15 ng  mL−1. 
The results were obtained relatively in a short analysis time 
compared to recent literature works (20 min). Therefore, the 
work reports a disposable device for the detection of a global 
relevance biomarker in preventing myocardial infarction.

Wei et al. [108] developed a microfluidic label-free paper-
based aptasensor for detecting and quantifying prostate can-
cer using a prostate-specific antigen (PSA) as a biomarker. 
The device fabrication used wax printing to form hydro-
phobic barriers and screen-printing to obtain the reference, 
auxiliary, and working electrodes. The working surface was 
modified with AuNPs, reduced graphene oxide (rGO), and 
thionine (THI), followed by immobilization of the DNA 
aptamer. Biological recognition between DNA aptamer and 
PSA was mediated and translated by THI. The method pre-
sented lower LOD (10  pgmL−1) than those reported in serum 
samples, demonstrating the possibility for prostate cancer 
diagnoses (4 ng  mL−1).

Torul et al. [113] developed a paper-based biosensor that 
microRNAs (miRNA-155 and miRNA-21) correlated to 
lung cancer. The fabrication method combined wax printing 
and pencil drawing. The working electrode surface was then 
modified with rGOe or molybdenum disulfide nanosheets 
(MoS2) modified with AuNPs (AuNPs/RGO, AuNPs/
MoS2). The analysis presented short times (35 min) and 
reduced sample volume (5.0 µL) compared to recent works. 
The LODs obtained for miRNA-21 and miRNA-155 were 

Fig. 6  A Paper-based electrochemical device used in static condi-
tions. B Paper-based microfluidic device under a constant flow of 
supporting electrolyte produced by using two reservoirs [36]. C 

Paper-based microfluidic device coupled with batch injection analy-
sis. Reprinted with permission from Iana V.S. Arantes and Thiago 
R.L.C. Paixão [96].  Copyright 2022 Elsevier
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12.0 and 25.5   nmol−1 for AuNPs/RGO against 51.6 and 
59.6  nmol−1 for AuNPs/MoS2 biosensors.

Cincotto et al. [107] developed a paper-based microfluidic 
device with electrochemical detection to determine creati-
nine and uric acid biomarkers. The ePAD consisted of two 
spot sensors in the same working electrode. Each spot was 
modified differently for each biomarker. The first spot was 
modified with graphene quantum dots (GQDs) to monitor 
uric acid. The second spot was modified with quantum dots 
containing creatininase and the redox mediator ruthenium to 
determine creatinine. The modifications were performed by 
using the “drop-casting” method. The analytical signals of 
the proposed sensors were compared to the unmodified elec-
trode, demonstrating the electrocatalytic properties attrib-
uted to the GQDs. Square wave voltammetry was used as an 
analytical technique for both biomarkers, showing a linear 
range of 0.01–3.0 µmol  L−1 and limits of detection (LOD) 
of 3.7 and 8.4 nmol  L−1 for creatinine and UA, respectively. 
The applicability of the proposed devices was evaluated 
to determine these species in real urine samples since the 
presence of both biomarkers can indicate kidney malfunc-
tion. The values obtained for the recovery tests ranged from 
101.5 ± 0.7 to 98.9 ± 0.5%, demonstrating the potential 
application of the developed ePAD. Despite the scientific 
merit, a brief discussion about the effective parameters that 
could affect the reproducibility, performance, and large-scale 
production should be more detailed in this work. In addition, 
other parameters should be better discussed in this article, 
including paper types, electrode fabrication method, device 
design, and analytical signal amplification [114].

Considering the current outbreak of the COVID-19 pan-
demic caused by SARS-CoV-2 [115], the need for point-
of-care testing has received considerable attention all over 
the world. As a result, ePADs have gained more space for 
biological analyses. Lomae et al. [116] developed a point-
of-care device using filter paper and wax printing for rea-
gent-free SARS-CoV-2 detection, assisted by a potentiostat 
integrated into the smartphone. The biosensor was modified 
with the biological recognition element pyrrolidinyl peptide 
nucleic acid (acpcPNA). The PNA is responsible for captur-
ing the target complementary DNA (cDNA) molecule. The 
synergistic interaction between PNA and cDNA results in 
the blocking of the [Fe(CN)6]3−/4− redox mediator signal. 
The method showed high selectivity and obtained concord-
ant results for 10 nasopharyngeal swab samples compared 
to tests performed by RT-PCR.

Torres et al. [117] developed a point-of-care biosensor 
for the rapid determination of SARS-CoV-2. The electro-
chemical sensors were screen-printed using qualitative filter 
paper and phenolic paper circuit boards as substrates. The 
device consisted of a biosensor modified with the human 
angiotensin-converting enzyme-2 receptor immobilized by 
drop-casting on the surface of the glutaraldehyde polymer 

previously sorbed on the phenolic paper. The device was 
stabilized with bovine albumin serum. Finally, Nafion was 
added to pre-concentrate the cationic species and protect 
the device from interfering with macromolecules. Electro-
chemical impedance spectroscopy was used as the analytical 
technique to determine SARS-CoV-2 in saliva samples. The 
estimated time for each analysis was only 4 min, which is 
considerably impressive. The proposed device demonstrated 
sensitivity and specificity comparable to nasopharyngeal/
oropharyngeal tests. Torres et al. showed the possibility of 
performing multiple analyses in different media, tempera-
tures, and virus activity. In addition, the authors showed a 
comparison with other analytical methods, evaluating the 
cost to afford large-scale production of the device, which is 
an essential factor in implementing the proposed device as 
a viable analytical platform for point-of-need applications. 
Considering the versatility of the systems, paper-based elec-
trochemical devices (ePAD) have been used in several areas, 
including biological [118], pharmaceutical [118], forensics 
[119], and environmental applications [120]. Table 4 sum-
marizes recent literature findings related to ePADs with elec-
trochemical detection for point-of-care applications.

Dual/combined readout

The main detection systems for paper-based devices (PADs) 
are colorimetric [62], fluorescence [133], and electrochemi-
cal [134]. Despite the variety, each one has its intrinsic 
peculiarities and limitations. However, these systems can 
be integrated into a single device, generating the so-called 
combined sensor or dual devices [9]. These combinations 
are interesting for analytical applications since they can 
overcome individual barriers, making possible simultane-
ous determinations, and enhancing the sensitivity and/or 
selectivity of the proposed devices [135, 136]. Optical and 
electrochemical detection have been coupled to paper-based 
devices. The devices are generally designed for two main 
approaches. The detectors can work independently to gen-
erate answers for multiple analytes [137], or they can be 
combined for a single purpose, improving the analytical sig-
nal (selectivity and/or sensitivity) [135]. These approaches 
are promising alternatives to determine a variety of species, 
including biomarkers [138], glucose, total iron [136], bacte-
ria [139], forensics [119, 140], cells [141], and plastic [142]. 
Table 5 summarizes the findings for dual detection. These 
devices can be made in miniaturized size, ensuring better 
portability to be used in the field. In addition, they can usu-
ally be fabricated by using low-cost materials, making the 
analyses cheaper than those from traditional methods. This 
feature is considerably helpful for non-privileged countries 
[40]. Electrochemical are commonly combined with colori-
metric for POC. The other combinations are more usual for 
PON. Not all forms of dual detection are electrochemistry 
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Table 4  Recent PADs found associated with electrochemical detection for point-of-need applications

WCP Whatman chromatography paper, SP screen-printing, WP wax-printing, IP inkjet printing, PD pencil drawing, LP laser pyrolysis, 3-NT 
3-nitrotyrosine, 8-OHdG 8-hydroxy-2′-deoxyguanosine, CEA carcinoembryonic antigen, NSE neuron-specific enolase, HBsAg hepatitis B sur-
face antigen, HCVcAg hepatitis C core antigen, CRP C-reactive protein, cTnI troponin I, PCT procalcitonin

Paper type Fabrication Analyte LOD Diagnostic Sample Reference

WCP Nº 1 SP H2O2 0.25 mg  dL−1 Cholesterol Serum [121]
- SP 3-NT and 8-OHdG 0.0138 and 0.0027 μmol 

 L−1
Neurodegenerative 

disorders
Urine and serum [118]

WCP Nº 1 SP CRP 6 ng  mL−1 Cardiovascular diseases Serum [122]
WCP Nº 1 SP and WP CEA and NSE 2.0 and 10.0 pg  mL−1 Lung cancer Clinical [123]
WCP Nº 1 IP Ferritin 19 ng  mL−1 Deficiency anemia Serum [124]
WCP Nº 1 WP HBsAg and HCVcAg 18.2 and 1.19 pg  mL−1 Hepatitis B and hepatitis 

C
Serum [125]

WCP Nº 1 WP CRP, cTnI, PCT 0.38 ng  mL−1, 0.16 and 
0.27 pg  mL−1

Cardiovascular diseases Serum [126]

WCP  No 4 WP Urinary albumin 0.072 mg  dL−1 Chronic kidney disease Urine [127]
Fiberboard PD Catechol 0.01 mmol  L−1 pollutant Environmental [128]
Office paper PD Furosemide 0.24 µmol  L−1 Doping agent Synthetic urine [129]
WCP Nº 1 PD Glucose and Uric Acid 2.0 and 0.5  mmol−1 Diabetes - [130]
Kraft paper LP Nitrite 4.31 μmol  L−1 pollutant Tap water, soil, and 

saliva
[131]

Kraft paper LP Sulfites 1 mg  L−1 pollutant beverages [132]

Table 5  Summary of recent PADs found for dual readout detection for point-of-need applications

H1N1 influenza virus type A,- PFU plaque forming unit, MCF-7 breast cancer cell line, SERS surface-enhanced Raman spectroscopy, LDI-MS 
laser desorption ionization mass spectrometry, KET ketamine hydrochloride
*Electrochemical technique was used as a pretreatment

Paper type Analyte Detection LOD Sample Reference

Whatman chromatogra-
phy  No 1

Bisphenol A Electrochemical and 
fluorescence

0.002/0.002 µM Plastic bottles and tin 
cans

[140]

Whatman filter  No 1 Thiocyanate ion Electrochemical and 
colorimetric

0.006/0.2 mM Saliva [135]

Whatman filter  No 1 Glucose and iron Electrochemical and 
colorimetric

0.15 mM/n.a Human serum [136]

Whatman filter  No 1 H1N1 Electrochemical and 
colorimetric

3.3/1.34
PFU  mL−1

Saliva [137]

Fiberglass filter paper Chromium ion Electrochemical and 
colorimetric

0.01/0.06 mg  mL−1 Water sample [141]

Whatman filter  No 1 or 
copy paper

E. coli and E. faecalis 
activity

Electrochemical and 
colorimetric

0.014/0.031 µM Food and water [139]

Whatman chromatogra-
phy  No 2

MCF-7 cancer cells Electrochemical and 
colorimetric

20/20 cells  mL−1 Human serum [143]

White office paper Cocaine, levamisole, caf-
feine, acetaminophen, 
and lidocaine

Electrochemical and 
SERS

– Seized cocaine [140]

Photo paper Bisphenol A Electrochemical and 
LDI-MS

6.0 and 0.35 μM/10 nM – [10]

Qualitative filter paper Cocaine Colorimetric and electro-
chemical*

0.9 μM Seized cocaine [119]

Filter RS KET Electrochemical, fluoro-
metric, and colori-
metric

3.2/20 μM/10 mg  mL−1 Soft beverages [144]
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combined with other techniques. Even though they are the 
most used, there are also examples of colorimetric [145] 
with SERS and colorimetric with fluorescence [146, 147].

Wang et al. proposed a sensor to detect MCF-7 cancer 
cells [148]. The origami-like sensor detected the cells 
electrochemically and colorimetrically. This sensor has 
a simple design made with wax barriers and is modified 
with AuNPs and 3D-rGO. This Au@3D-rGO makes it 
possible to detect the cells electrochemically. This com-
pound is synthesized in multiple steps, consisting of 
preparing 2D-rGO via “dropping and drying” into the 
paper matrix. This takes 2 h, and then put the paper in 
a vacuum freezer to dry for 8 h to form 3D-rGO. The 
AuNPs are formed by the chemical reduction of chloroau-
ric acid  (HAuCl4) with ascorbic acid on the surface. Next, 
polyhedral-AuPd alloy nanoparticles (PH-AuPd NPs) is 
prepared to adhere to the surface H2 aptamer to ensure 
the interaction of the cell with the surface. Also, the cells 
need modifications whit H1 aptamer, making it possible 
to produce hydrogen peroxide that the AuNP can sense. 
This peroxide is generated electrochemically for the col-
orimetric assay, reacts with the TMB in the colorimetric 
spot, and generates a deep blue color. This is a fully inte-
grated sensor. A wide linear range was obtained from 50 
to 107 cells  mL−1 and a low LOD of 20 cells  mL−1. The 
proposed sensor could also work in human samples. The 
only downside is that electrodo surface modification is 
time-consuming.

Pungjunun et al. presented a device to detect thiocyanate 
in saliva (Fig. 7) [135]. In the first instance, the saliva flow 
was investigated in the device. Saliva is a viscous non-
Newtonian fluid, and its flow can be significantly decreased 
through the paper channel. As a result, different designs were 
evaluated for the proposed system. The best outcome was a 
sealed paper with a hollow capillary channel engraved with 
a laser machine. This set was selected to produce the device 
since this configuration showed the most traveled distance 
of the saliva samples. The analytical procedure initially 

involves adding the saliva to the sample inlet zone. Then, it 
flows to the colorimetric region, generating a color change 
recorded with a phone. Subsequently, the colorimetric part 
is attached to the top of the electrodes to proceed with the 
electrochemical detection. This approach can evaluate a 
broader range of SCN—once the optical part detects higher 
concentrations and the electrochemical one quantifies the 
lower concentrations. However, colorimetric only works for 
those who smoke, which generally have higher concentra-
tions than a non-smoker. Therefore, further studies could be 
performed to enhance the sensitivity of colorimetric sensors. 
In addition, other types of paper could be evaluated to help 
with saliva viscousness.

Mars et al. proposed a dual-sensing device with elec-
trochemical and fluorometric detection [142]. This device 
is proposed to detect bisphenol A (BPA) in plastic bottles 
and cans. To achieve this, a curcumin@MIP is developed. 
MIP stands for molecularly imprinted polymer, which has 
specific sites for molecular recognition [149]. First, the cur-
cumin nanoparticles are synthesized in boiling water, and 
then centrifugated and dried for almost 7 h. Then, the MIP 
is prepared with BPA, acrylamide (AA), ethylene glycol 
dimethacrylate (EGDMA), and benzoin ethyl ether (BEE) in 
a mixing, polymerizing, and cleaning step of 6 h. Then, the 
polymer is confined in the top region of the paper sensor and 
dried for 40 min before use. This curcumin@MIP is capable 
of sensing BPA in both electrochemical and fluorescence. 
The sensor consists of two parts, the bottom one is a three-
cell electrode made of carbon paste mixed with Prussian 
blue [150], and both have a wax-patterned confining space 
with a part like a closing lead with a spot for the MIP, like-
wise the previous work, that can work for both detections. 
For fluorometric detection, the white spot paper allows the 
light to pass through, enabling the measure. This smart fea-
ture allows measurement without expensive materials such 
as fragile quartz cuvettes. This feature also works for elec-
trochemical with a droplet of solution (20µL), which is a 
good feature, using a small volume of solution. The reaction 

Fig. 7  Schematic representation 
of the paper-based analyti-
cal device with dual detection 
system proposed by Pungjunun 
et al. [135]
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occurs in the top part of the sensor, and the electrochemical 
measure is done in the bottom with the electrochemical cell.

For electrochemical detection, cyclic voltammetry is used 
to discover the oxidation and reduction peaks for sensing 
with differential pulse voltammetry (DPV). And for fluores-
cence, the sensor is trapped in a mounting bracket, and the 
particles are excited in 420 nm wavelength and an emission 
peak in 550 nm. In both analyses, the loss of signal/cur-
rent is due to the binding of BPA with the MIP. The higher 
the concentration, the lower the signal. The pair exhibited a 
befitting detection limit (0.002 µM) with the previous in the 
literature and a better linear range (0.004–4.38 µM). This 
work could be a great alternative to commercial methods of 
BPA detection. However, it is important to mention that the 
whole sensor fabrication takes around 14 h.

Even though we did not dedicate a specific section for 
SERS, this technique is also considered a powerful tool for 
chemical and biological analysis since it provides a spec-
troscopic fingerprint for low-concentration analytes [151]. 
SERS is a sensing technique based upon the inelastic light 
scattering of molecules that is enhanced (by 108 or more) 
when molecules are absorbed onto a corrugated metal sur-
face, normally composed of gold or silver nanoparticles 
[152]. Considering traditional instrumentation’s inherent 
sensitivity and accuracy, this technique is a great candidate 
for point-of-care testing. However, traditional instrumenta-
tion is normally large, restricting applications at the point 
of need. Some portable instruments are commercially avail-
able to address this limitation, allowing the combination of 
SERS with paper-based devices. Despite the availability 
of portable devices, it is important to highlight that instru-
mentation’s miniaturization typically suffers from decreased 
sensitivity [151].

Ameku et al. reported a combined readout sensor with 
AuNPs for electrochemistry and SERS for seized cocaine 
samples [151]. Because gold nanoparticles can not only 
detect cocaine but as well as its cutting agents (interferents) 
that drug dealers put into diluting the samples. These cutting 
agents work as fingerprints the police keep track of. This 
sensor is constituted of a working electrode made of AuNPs. 
These particles are made by a citrate-mediate method [153], 
a simple way to prepare AuNPs. Firstly, the paper is pat-
terned with a wax printer pattern, which is molten on a hot 
plate. Then, the working electrode (WE) is done by adding 
in the WE spot 3µL (3 × 1µL) of concentrated AuNP and 
drying under an IR-lamp, which allows the AuNP to dry in a 
confined way that leads to a homogeneous film. The counter, 
reference, and electrical contact were made of silver ink and 
dried under the IR lamp. The AuNP WE when compared 
to a commercial gold electrode presents better electrocata-
lytic performance. This occurs due to the packing structures 
with pores and uniform Au (111) fcc nanoparticles formed 
on the surface. This led to a sensitivity that a commercial 

gold electrode does not have to detect acetaminophen and 
caffeine due to parallel reactions that occur on the surface. 
Cocaine and levamisole were detected with the SERS detec-
tion method, possibly due to the good interaction of the mol-
ecule with the gold surface. This work presents the benefit 
of having dual detection that allows detecting molecules that 
each method alone cannot, making a more complete sensor. 
Even though SERS has a portable sensor, it is still expensive 
and not accessible to everyone.

Distance‑based detection

Even though electrochemical and optical systems are used 
as detectors in paper-based devices, the need for external 
equipment coupled to the analytical platforms can still be 
considered a limitation. To address this challenge, equip-
ment-free readout systems have received considerable atten-
tion. A distance-based detection is a promising approach for 
point-of-need testing, especially in resource-limited regions. 
Distance-based detection measures the length of the color 
changing generated along a microfluidic channel as the ana-
lyte flows down and reacts with colorimetric or fluorescent 
reagents previously immobilized. When the sample is added 
to the device, the eluent fills the microfluidic channel over 
time, and the distance of the discolored/colored band is 
correlated with the analyte concentration. After the analyte 
reaction, fluorescence emission, in special, can be observed 
across the microfluidic channel by using a UV light source 
[8, 154]. Another approach involving distance-based detec-
tion measures the traveled distance of a colored solution 
[155]. A colored solution containing amphiphilic species 
(DNA, proteins, and surfactants) flows over a concentration-
dependent distance. The amphiphilic analytes interact with 
the hydrophobic barriers of the microfluidic channel, reduc-
ing the final flow distance of the solution.

Consequently, higher analyte concentrations generate 
shorter colored bars. Distance-based detection is based on 
the visual response, and the color length can be measured 
with a ruler attached to the device. Compared with tradi-
tional optical detection, the devices are free of processing 
and recording equipment, which enhances the portability, 
reduces the cost of the analytical platforms, and circum-
vents the need for trained users. Additionally, distance-based 
detection is not vulnerable to ambient lighting influence, 
which is a great advantage since it does not measure col-
orimetric or fluorescence intensities [156]. Table 6 shows 
some analytical applications using paper devices coupled 
with distance-based detection.

Table 6 shows that different species have been quantified 
using paper devices combined with distance-based detec-
tion. Considering the number of applications, some works 
will be discussed below, providing information about device 
operation. Cate et al. [163] reported an analytical device 
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with distance-based detection for glucose, nickel, and glu-
tathione determination. Initially, wax barriers were printed 
on filter paper to create the microfluidic channel. Colorimet-
ric reagents were then deposited across the channel. After 
drying at room temperature, the device was ready to use. The 
sampling solution was injected into the device and flowed 
downstream through the channel. Consequently, the analyte 
reacted with the reagents, generating the colored band. The 
results were achieved in less than 20 min, demonstrating 
encouraging findings. However, cysteine and homocysteine 
also generated color changing along the channel, acting 
as possible interfering species for glutathione determina-
tion. Considering the nickel quantification was based on the 
reaction with dimethylglyoxime (DMG), Co(II) could also 
react with DMG, causing interference with the signal [164]. 
Therefore, the system’s applicability depends strongly on the 
selectivity of colorimetric or fluorescent reagents.

Wei et al. [165] developed a distance-based quantitative 
device produced by a wax printing method, and its applica-
bility was evaluated to quantify cocaine in urine. A “sweet” 
hydrogel doped with glucoamylase (GA) was synthesized 
using an aptamer for cocaine as a cross-linker. Figure 8 shows 
a schematic representation of the proposed analytical method. 
The analytical procedure involved reactions performed in a 
centrifuge tube with the “sweet” hydrogel and the analyte. 
When cocaine is present in the sample, the “sweet” hydro-
gel releases glucoamylase into the solution, and this enzyme 
produces glucose by amylolysis. Then, the sampling solution 
can be added to the analytical device. Before the injection, 
a mixture of GOx and HRP solution is dropped on the sam-
pling reservoir, and colorless 3,3′-diaminobenzidine (DAB) is 
dipped into the microfluidic channel to modify the detection 
zone. Finally, the sampling solution is injected into the micro-
fluidic device. The glucose flows across the channel by capil-
lary action, generating gluconic acid and hydrogen peroxide 
by GOx action. Then, the resulting  H2O2 reacts with DAB in 
the presence of HRP, producing poly(DAB), which has brown 
coloration and is used for signal readout. The analytical device 

shows a great performance for cocaine determination in 
urine samples. The selectivity of the device was assessed for 
cocaine metabolites, such as ecgonine methyl ester and benzo-
ylecgonine. A slight signal was only observed for higher con-
centrations of these species, demonstrating that the aptamer 
has favorable selectivity for cocaine. Besides these possible 
interfering species, the selectivity could also be evaluated 
for nitrite. The presence of some bacteria in urine produces 
nitrite [166], which might react with the hydrogen peroxide 
[167], causing interference in the analytical response. Despite 
that, the proposed device provides sensitivity and accuracy. In 
addition, the color changing is measured after 30 min, which 
can be considered rapid. Cocaine testing is of high interest 
for police agents once it could serve as an indispensable fast 
diagnostic for illegal drug seizures [34]. Hence, the device has 
demonstrated attractive advantages for cocaine determination.

Allameh et al. [160] produced a distance-based paper 
device to quantify glucose concentration in tear samples. 
In this case, the PAD was cut using a  CO2 laser, not requir-
ing hydrophobic materials for channel fabrication. Glucose 
quantification helps to monitor diabetes. According to the 
WHO, ~ 422 million people worldwide have this disease. 

Table 6  Analytical applications 
using paper devices combined 
with distance-based detection

Paper type Analyte LOD Sample Reference

Whatman filter Nº 1 Cocaine 1.8 μmol  L−1 urine [59]
Filter paper Chloride 1.7 mg  L−1 Tap water [157]
Whatman filter Nº 1 DNA 1 amol  L−1 Parasitic worm [158]
Advantec No. 5C filter paper Potassium ion 1 mmol  L−1 serum [159]
Filter paper (80 g/m2) Glucose 0.1 mmol  L−1 tear [160]
Whatman filter Nº 1 Hydrogen peroxide 65.2 mmol  L−1 - [161]
Whatman filter Nº 1 Chloride 2 mg  L−1 mineral water [161]
Whatman filter Nº 4 Aluminum 100 μmol  L−1 water [8]
Whatman filter Nº 1 Bromide and bromate 10 μg  L−1 for  Br− 

and 0.5 μg  L−1 for 
 BrO3

−

Water, rice, cake 
flour, bread 
flour

[162]

Fig. 8  Schematic representation of the analytical method used to 
determine cocaine proposed by Wei et al. [113]. Reprinted with per-
mission from Wei et al. [165]
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Glucose is popularly monitored by blood analyses. How-
ever, sweat, interstitial fluid (ISF), saliva, tears, and urine 
can also monitor its concentration levels. Consequently, 
these samples can serve as minimally invasive alternatives, 
avoiding discomfort to patients. The proposed biosensing 
device was fabricated with GOx/HRP solution coupled with 
TMB. Only 10 μL of sample volume was required for the 
biosensor operation. The colorimetric assay was recorded 
with a smartphone camera. The video was processed with 
the software ImageJ and Tracker to get information about 
the color intensity and length, respectively. These data were 
important to evaluate the device’s performance. The results 
were acquired within 5 min, dispensing the need for any 
additional equipment or trained personnel time.

Wang et al. [158] proposed a quantitative paper-based 
DNA reader for diagnostic soil-transmitted helminth (STH) 
infections. STH infections affect practically one-third of 
the global population. Most endemic areas are under-
privileged regions, making distance-based detection a 
promising analytical tool for STH diagnosis. The signal 
readout was acquired by measuring the color distance in 
a wax-patterned device, eliminating the need for external 
readers. The analysis was based on the unique interfacial 
interactions of DNA intercalating dye, SYBR Green I, and 
unmodified chromatographic paper. The distance-based 
quantification took a few minutes (6 min). The analyses 
were conducted with real samples from children infected 
with Trichuris trichiura. The data were validated by com-
paring them with polyacrylamide gel electrophoresis, dem-
onstrating consistent results.

Xia et al. [168] developed a paper-based lipase sensor. 
Pancreatic lipase, an exocrine enzyme from the pancreas, 
can be a biomarker for acute pancreatitis diagnosis. Pan-
creatitis is a common and severe gastrointestinal inflamma-
tory disease. The proposed sensor consists of pH test paper 
strips supported on a PVC substrate. Phase separation is 
used to induce viscosity change. Firstly, lipase catalyzes 
triolein to produce oleic acid and glycerol. Calcium oleate 
is then produced by adding an excess of  Ca2+. The remain-
ing  Ca2+ binds with sodium alginate, promoting hydro-
genation with an “egg-box” structure and resulting in phase 
separation. As a result, the quantification is performed via 
a phase separation-induced viscosity change. Hence, the 
lipase concentration is determined by measuring the solu-
tion flow distance on the paper. Thioflavin T was used as a 
fluorescent probe for the viscosity test. The sensor showed 
high sensitivity and specificity for lipase. The device was 
also applied for quantitative analysis in human serum sam-
ples, demonstrating the analytical potentiality for acute 
pancreatitis detection. Besides being portable, low-cost, 
and easy operation, the proposed device is considered an 
attractive platform for commercialization.

Conclusion

This work introduces a brief history of paper-based devices 
and critically discusses the practical and analytical specifica-
tions for POC applications. These devices have been used 
as promising analytical platforms to meet critical demands 
involving rapid and simple testing. They have been applied 
to quantify various chemical and biochemical species to 
evaluate food quality, environmental and health issues. The 
devices have been engineered in different layouts and detec-
tion systems to enhance analytical performance. In addition, 
the paper properties have shown a strong influence on the 
analytical performance of the devices.

Additionally, remarkable progress has been recently 
observed in analysis modes and applications. Optical detec-
tion can be performed using a simple smartphone, an indis-
pensable tool. Electrochemical systems, in particular, have 
been used in static and hydrodynamic conditions, increasing 
the possibility of applications. Different strategies have also 
been used to integrate optical and electrochemical detec-
tors with paper-based devices. Dual/combined detection 
has attractive advantages since it can overcome the indi-
vidual barriers of the analytical techniques, making possible 
simultaneous determinations and enhancing sensitivity and/
or selectivity. Distance-based detection is another exciting 
approach for PADs. These systems offer instrument-free 
analyses since the results are obtained by visual detection 
with a rule. Compared with traditional methods, the user can 
determine the analyte concentration by reading the length of 
the color changes across the microfluidic channel. This sys-
tem precludes the need for external instruments and avoids 
user interpretation errors, which are outstanding features 
for point-of-need testing, especially for resource-limited 
regions. Although some paper-based devices are currently 
commercialized for point-of-need applications, the number 
of available devices is still considered low. This fact has 
been associated with some issues, including high LODs, 
poor reproducibility, low selectivity, and poor long-term 
storage stability. In general, the new proposed devices need 
to meet ASSURED criteria. However, the parameters must 
be carefully considered for the applications since some will 
be more significant than others. Therefore, further research 
can circumvent these challenges, extending the applicability 
of the PADs for point-of-need testing.

The final consideration is raised considering the fol-
lowing question “What to expect to be the new trend 
of these devices shortly?”. To answer that, we first 
should consider that researchers have acquired knowl-
edge about fabrication methods over the years. This 
has allowed them to develop complex architectures for 
chemical and biochemical analyses while being simple 
and easy to use. Second, the ability to perform advanced/
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combined functions has significantly enhanced data 
quality, addressing some limitations involving analyti-
cal techniques. Finally, we can already expect the scal-
able manufacturing of low-cost devices considering the 
growing need for rapid medical diagnostics worldwide. 
Considering environmental analyses, we can also expect 
a next stage involving the collaboration of chemical sci-
entists with engineers to provide new features for remote 
analysis. This includes using drone-board paper devices 
coupled with wireless data transmission. This will allow 
the monitoring of hard-to-reach locations. To achieve 
these goals, fundamental and applied research must keep 
in continuous progress with the aid of governments and 
private companies.
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