Skip to main content
Log in

An enzyme-free turn-on fluorescent strategy for nucleic acid detection based on hybridization chain reaction and transferable silver nanoclusters

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A fluorescence biosensor has been developed based on hybridisation chain reaction (HCR) amplification coupled with silver nanoclusters (AgNCs) for nucleic acid detection. The fluorescence was activated via end-to-end transfer of dark AgNCs caged within a DNA template to another DNA sequence that could enhance their red fluorescence emission at 611 nm. Such cluster-transfer approach allows us to introduce fluorogenic AgNCs as external signal transducers, thereby enabling HCR to perform in a predictable manner. The resulted HCR-AgNC biosensor was able to detect target DNA with a detection limit of 3.35 fM, and distinguish the DNA target from single-base mismatch sequences. Moreover, the bright red fluorescence emission was detectable with the naked eye, with concentration of target DNA down to 1 pM. The biosensor also performed well in human serum samples with good recovery. Overall, our cluster-transfer approach provides a good alternative to construct HCR-AgNC assay with less risk of circuit leakage and produce AgNCs in a controllable manner.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Obliosca JM, Liu C, Yeh HC (2013) Fluorescent silver nanoclusters as DNA probes. Nanoscale 5:8443–8461. https://doi.org/10.1039/C3NR01601C

    Article  CAS  Google Scholar 

  2. Obliosca JM, Babin MC, Liu C, Liu YL, Chen YA, Batson RA, Ganguly M, Petty JT, Yeh HC (2014) A complementary palette of NanoCluster beacons. ACS Nano 8:10150–10160. https://doi.org/10.1021/nn505338e

    Article  CAS  Google Scholar 

  3. Yeh HC, Sharma J, Han JJ, Martinez JS, Werner JH (2010) A DNA−silver nanocluster probe that fluoresces upon hybridization. Nano Lett 10:3106–3110. https://doi.org/10.1021/nl101773c

    Article  CAS  Google Scholar 

  4. Yeh HC, Sharma J, Han JJ, Martinez JS, Werner JH (2011) A beacon of light: a new molecular probe for homogeneous detection of nucleic acid targets. IEEE Nanotechnol Mag 5:28–33. https://doi.org/10.1109/MNANO.2011.940951

    Article  Google Scholar 

  5. Teng Y, Jia X, Zhang S, Zhu J, Wang E (2016) A nanocluster beacon based on the template transformation of DNA-templated silver nanoclusters. Chem Commun 52:1721–1724. https://doi.org/10.1039/C5CC09138A

    Article  CAS  Google Scholar 

  6. Asiello PJ, Baeumner AJ (2011) Miniaturized isothermal nucleic acid amplification, a review. Lab Chip 11:1420–1430. https://doi.org/10.1039/C0LC00666A

    Article  CAS  Google Scholar 

  7. Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S, Sintim HO (2014) Isothermal amplified detection of DNA and RNA. Mol Biosyst 10:970–1003. https://doi.org/10.1039/C3MB70304E

    Article  CAS  Google Scholar 

  8. Dirks RM, Pierce NA (2004) Triggered amplification by hybridization chain reaction. Proc Natl Acad Sci 101:15275–15278. https://doi.org/10.1073/pnas.0407024101

    Article  CAS  Google Scholar 

  9. Bi S, Yue S, Zhang S (2017) Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine. Chem Soc Rev 46:4281–4298. https://doi.org/10.1039/c7cs00055c

    Article  CAS  Google Scholar 

  10. Green SJ, Lubrich D, Turberfield AJ (2006) DNA hairpins: fuel for autonomous DNA devices. Biophys J 91:2966–2975. https://doi.org/10.1529/biophysj.106.084681

    Article  CAS  Google Scholar 

  11. Ang YS, Yung LYL (2016) Rational design of hybridization chain reaction monomers for robust signal amplification. Chem Commun 52:4219–4222. https://doi.org/10.1039/c5cc08907g

    Article  CAS  Google Scholar 

  12. Li S, Li P, Ge M, Wang H, Cheng Y, Li G, Huang Q, He H, Cao C, Lin D, Yang L (2020) Elucidation of leak-resistance DNA hybridization chain reaction with universality and extensibility. Nucleic Acids Res 48:2220–2231. https://doi.org/10.1093/nar/gkaa016

    Article  CAS  Google Scholar 

  13. Zhang S, Wang K, Li KB, Shi W, Jia WP, Chen X, Sun T, Han DM (2017) A DNA-stabilized silver nanoclusters/graphene oxide-based platform for the sensitive detection of DNA through hybridization chain reaction. Biosens Bioelectron 91:374–379. https://doi.org/10.1016/j.bios.2016.12.060

    Article  CAS  Google Scholar 

  14. Liu L, Li Q, Tang LJ, Yu RQ, Jiang JH (2016) Silver nanocluster-lightened hybridization chain reaction. RSC Adv 6:57502–57506. https://doi.org/10.1039/c6ra09337j

    Article  CAS  Google Scholar 

  15. Qiu X, Wang P, Cao Z (2014) Hybridization chain reaction modulated DNA-hosted silver nanoclusters for fluorescent identification of single nucleotide polymorphisms in the let-7 miRNA family. Biosens Bioelectron 60:351–357. https://doi.org/10.1016/j.bios.2014.04.040

    Article  CAS  Google Scholar 

  16. Wong ZW, Ng JF, New SY (2021) Ratiometric detection of microRNA using hybridization chain reaction and fluorogenic silver nanoclusters. Chem Asian J 16:4081–4086. https://doi.org/10.1002/asia.202101145

    Article  CAS  Google Scholar 

  17. Clarivate, ISI web of science. (2021). www.webofscience.com (accessed 01.07.22)

  18. Shang L, Dörlich RM, Trouillet V, Bruns M, Nienhaus GU (2012) Ultrasmall fluorescent silver nanoclusters: protein adsorption and its effects on cellular responses. Nano Res 5:531–542. https://doi.org/10.1007/S12274-012-0238-X

    Article  CAS  Google Scholar 

  19. Penna E, Orso F, Taverna D (2015) miR-214 as a key hub that controls cancer networks: small player, multiple functions. J Invest Dermatol 135:960–969. https://doi.org/10.1038/jid.2014.479

    Article  CAS  Google Scholar 

  20. Sharma T, Hamilton R, Mandal CC (2015) miR-214: a potential biomarker and therapeutic for different cancers. Future Oncol 11:349–363. https://doi.org/10.2217/fon.14.193

    Article  CAS  Google Scholar 

  21. Wang Q, Liu Y, Wu Y, Wen J, Man C (2021) Immune function of miR-214 and its application prospects as molecular marker. PeerJ 9:e10924. https://doi.org/10.7717/peerj.10924

    Article  Google Scholar 

  22. Yu J, Choi S, Dickson RM (2009) Shuttle-based fluorogenic silver-cluster biolabels. Angew Chemie Int Ed 48:318–320. https://doi.org/10.1002/ANIE.200804137

    Article  CAS  Google Scholar 

  23. Lin X, Xiao F, Li X, Li F, Liu C, Xiao X, Hu N, Yang S (2019) A cytosine-rich hairpin DNA loaded with silver nanoclusters as a fluorescent probe for uranium(IV) and mercury(II) ions. Microchim Acta 186:519. https://doi.org/10.1007/S00604-019-3625-0

    Article  Google Scholar 

  24. Filipczuk P, Świtalska A, Kosman J, Nowaczyk G, Dembska A (2021) Fluorescent AgNCs formed on bifunctional DNA template for potassium ion detection. Chemosensors 9:349. https://doi.org/10.3390/chemosensors9120349

    Article  CAS  Google Scholar 

  25. Volkov IL, Smirnova A, Makarova AA, Reveguk ZV, Ramazanov RR, Usachov DY, Adamchuk VK, Kononov AI (2017) DNA with ionic, atomic, and clustered silver: an XPS study. J Phys Chem B 121:2400–2406. https://doi.org/10.1021/acs.jpcb.6b11218

    Article  CAS  Google Scholar 

  26. Huaccallo-Aguilar Y, Álvarez-Torrellas S, Larriba M, Águeda VI, Delgado JA, Ovejero G, García J (2019) Optimization parameters, kinetics, and mechanism of naproxen removal by catalytic wet peroxide oxidation with a hybrid iron-based magnetic catalyst. Catal 9:287. https://doi.org/10.3390/catal9030287

    Article  CAS  Google Scholar 

  27. Jones B (2021) The prediction profiler at 30. Qual Eng 33:417–424. https://doi.org/10.1080/08982112.2021.1874015

    Article  Google Scholar 

  28. Max KEA, Bertram K, Akat KM, Bogardus KA, Li J, Morozov P, Ben-Dov IZ, Li X, Weiss ZR, Azizian A, Sopeyin A, Diacovo TG, Adamidi C, Williams Z, Tuschl T (2018) Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc Natl Acad Sci USA 115:E5334–E5343. https://doi.org/10.1073/PNAS.1714397115

    Article  CAS  Google Scholar 

  29. Meng Y, Chen F, Jiang M, Guo Q, Wang Y, Wang J, Zhang DW (2021) A Homogeneous label-free electrochemical microRNA biosensor coupling with G-Triplex/methylene blue complex and λ-exonuclease-assisted recycling amplification. Front Chem 9:753253. https://doi.org/10.3389/fchem.2021.753253

    Article  CAS  Google Scholar 

  30. Arévalo B, Serafín V, Sánchez-Paniagua M, Montero-Calle A, Barderas R, López-Ruíz B, Campuzano S, Yáñez- Sedeño P, Pingarrón JM (2020) Fast and sensitive diagnosis of autoimmune disorders through amperometric biosensing of serum anti-dsDNA autoantibodies. Biosens Bioelectron 160:112233. https://doi.org/10.1016/J.BIOS.2020.112233

    Article  Google Scholar 

  31. Max KEA, Bertram K, Akat KM et al (2018) Human plasma and serum extracellular small RNA reference profiles and their clinical utility. Proc Natl Acad Sci USA 115:E5334–E5343. https://doi.org/10.1073/PNAS.1714397115

    Article  CAS  Google Scholar 

  32. Geekiyanage H, Rayatpisheh S, Wohlschlegel JA et al (2020) Extracellular microRNAs in human circulation are associated with miRISC complexes that are accessible to anti-AGO2 antibody and can bind target mimic oligonucleotides. Proc Natl Acad Sci USA 117:24213–24223. https://doi.org/10.1073/PNAS.2008323117

    Article  CAS  Google Scholar 

  33. Matsuzaki J, Ochiya T (2020) Circulating microRNAs: next-generation cancer detection. Keio J Med 69:88–96. https://doi.org/10.2302/KJM.2019-0011-OA

    Article  CAS  Google Scholar 

  34. Song W, Zhu K, Cao Z, Lau C, Lu J (2012) Hybridization chain reaction-based aptameric system for the highly selective and sensitive detection of protein. Analyst 137:1396–1401. https://doi.org/10.1039/c2an16232f

    Article  CAS  Google Scholar 

  35. del Río JS, Lobato IM, Mayboroda O et al (2017) Enhanced solid-phase recombinase polymerase amplification and electrochemical detection. Anal Bioanal Chem 409:3261–3269. https://doi.org/10.1007/S00216-017-0269-Y

    Article  Google Scholar 

Download references

Acknowledgements

ZWW. acknowledges the Faculty of Science and Engineering, University of Nottingham Malaysia, for sponsoring his PhD study. ZWW. also acknowledges Dr Nur Aliana Hidayah Mohamed (Universiti Teknologi MARA) for her support in providing the human serum sample used in this work.

Funding

This work was supported by the Fundamental Research Grant Scheme (FRGS) under the project code: FRGS/1/2018/STG07/UNIM/02/2.

Author information

Authors and Affiliations

Authors

Contributions

ZWW and SYN have contributed equally: conceptualisation, writing — original draft and revision. ZWW: data curation, formal analysis, investigation, methodology, project administration, software and visualization. SYN: funding acquisition, resources, supervision and validation.

Corresponding author

Correspondence to Siu Yee New.

Ethics declarations

Ethics approval

The study involving human serum was reviewed and approved by the Science and Engineering Research Ethics Committee of the University of Nottingham Malaysia.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 825 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wong, Z.W., New, S.Y. An enzyme-free turn-on fluorescent strategy for nucleic acid detection based on hybridization chain reaction and transferable silver nanoclusters. Microchim Acta 190, 16 (2023). https://doi.org/10.1007/s00604-022-05591-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05591-0

Keywords

Navigation