Skip to main content
Log in

Preparation of novel HKUST-1-glucose oxidase composites and their application in biosensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Copper-based metal–organic frameworks (MOF) and multi-walled carbon nanotubes (HKUST-1-MWCNTs) composite were synthesized by one-step hydrothermal method, and PDA-enzyme-HKUST-1-MWCNTs composite was prepared by one-pot method for the construction of glucose biosensors, which realized the sensitive amperometric detection of glucose at 0.7 V (vs. SCE). The sensitivity of the sensor for glucose detection was 178 μA mM−1cm−2 in the wide linear range of 0.005 ~ 7.05 mM, the detection limit was 0.12 μM and the corresponding RSD was 3.8%. Its high performance is mainly benefitted from the high porosity and large specific surface area of HKUST-1, the good conductivity of MWCNTs, and the excellent adhesion and dispersion of PDA. The strategy of combining PDA and MWCNTs to improve the dispersion and conductivity of MOF is expected to achieve a wider application of MOF-based materials in the electrochemical biosensing field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhu QL, Xu Q (2014) Metal-organic framework composites. Chem Soc Rev 43:5468–5512. https://doi.org/10.1039/c3cs60472a

    Article  CAS  Google Scholar 

  2. Yuan S, Feng L, Wang KC, Pang JD, Bosch M, Lollar C, Sun YJ, Qin JS, Yang XY, Zhang P, Wang Q, Zou LF, Zhang YM, Zhang LL, Fang Y, Li JL, Zhou HC (2018) Stable metal-organic frameworks: design, synthesis, and applications. Adv Mater 30:1–35. https://doi.org/10.1002/adma.201704303

    Article  CAS  Google Scholar 

  3. Cui YJ, Li B, He HJ, Zhou W, Chen BL, Qian GD (2016) Metal-organic frameworks as platforms for functional materials. Acc Chem Res 49:483–493. https://doi.org/10.1021/acs.accounts.5b00530

    Article  CAS  Google Scholar 

  4. Xia W, Mahmood A, Zou RQ, Xu Q (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8:1837–1866. https://doi.org/10.1039/c5ee00762c

    Article  CAS  Google Scholar 

  5. Farha OK, Hupp JT (2010) Rational design, synthesis, purification, and activation of metal-organic framework materials. Acc Chem Res 43:1166–1175. https://doi.org/10.1021/ar1000617

    Article  CAS  Google Scholar 

  6. Howarth AJ, Liu YY, Li P, Li ZY, Wang TC, Hupp J, Farha OK (2016) Chemical, thermal and mechanical stabilities of metal-organic frameworks. Nat Rev Mater 1:1–15. https://doi.org/10.1038/natrevmats.2015.18

    Article  CAS  Google Scholar 

  7. Anik U, Timur S, Dursun Z (2019) Metal organic frameworks in electrochemical and optical sensing platforms: a review. Microchimica Acta 186: https://doi.org/10.1007/s00604-019-3321-0

  8. Liang K, Ricco R, Doherty CM, Styles MJ, Bell S, Kirby N, Mudie S, Haylock D, Hill AJ, Doonan CJ, Falcaro P (2015) Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat Commun 6:1–8. https://doi.org/10.1038/ncomms8240

    Article  CAS  Google Scholar 

  9. Zhang ZH, Duan FH, Tian JY, He JY, Yang LY, Zhao H, Zhang S, Liu CS, He LH, Chen M, Chen DM, Du M (2017) Aptamer-embedded zirconium-based metal-organic framework composites prepared by de novo bio-inspired approach with enhanced biosensing for detecting trace analytes. Acs Sensors 2:982–989. https://doi.org/10.1021/acssensors.7b00236

    Article  CAS  Google Scholar 

  10. Lian XZ, Fang Y, Joseph E, Wang Q, Li JL, Banerjee S, Lollar C, Wang X, Zhou HC (2017) Enzyme-MOF (metal-organic framework) composites. Chem Soc Rev 46:3386–3401. https://doi.org/10.1039/c7cs00058h

    Article  CAS  Google Scholar 

  11. Liang WB, Wied P, Carraro F, Sumby CJ, Nidetzky B, Tsung CK, Falcaro P, Doonan CJ (2021) Metal-organic framework-based enzyme biocomposites. Chem Rev 121:1077–1129. https://doi.org/10.1021/acs.chemrev.0c01029

    Article  CAS  Google Scholar 

  12. Wu EH, Li YX, Huang Q, Yang ZK, Wei AY, Hu Q (2019) Laccase immobilization on amino-functionalized magnetic metal organic framework for phenolic compound removal. Chemosphere 233:327–335. https://doi.org/10.1016/j.chemosphere.2019.05.150

    Article  CAS  Google Scholar 

  13. Chui Lo, Charmant O W (1999) A chemically functionalizable nanoporous material. Science (New York, NY) 283:1148–1150. https://doi.org/10.1126/science.283.5405.1148

    Article  CAS  Google Scholar 

  14. Nam DH, Bushuyev OS, Li J, De Luna P, Seifitokaldani A, Dinh CT, de Arquer FPG, Wang YH, Liang ZQ, Proppe AH, Tan CS, Todorovic P, Shekhah O, Gabardo CM, Jo JW, Choi JM, Choi MJ, Baek SW, Kim J, Sinton D, Kelley SO, Eddaoudi M, Sargent EH (2018) Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J Am Chem Soc 140:11378–11386. https://doi.org/10.1021/jacs.8b06407

  15. Loera-Serna S, Oliver-Tolentino MA, Lopez-Nunez MD, Santana-Cruz A, Guzman-Vargas A, Cabrera-Sierra R, Beltran HI, Flores J (2012) Electrochemical behavior of Cu-3(BTC)(2) metal-organic framework: the effect of the method of synthesis. J Alloy Compd 540:113–120. https://doi.org/10.1016/j.jallcom.2012.06.030

    Article  CAS  Google Scholar 

  16. Dong SY, Suo GC, Li N, Chen Z, Peng L, Fu YL, Yang Q, Huang TL (2016) A simple strategy to fabricate high sensitive 2,4-dichlorophenol electrochemical sensor based on metal organic framework Cu-3(BTC)(2). Sensors and Actuators B-Chemical 222:972–979. https://doi.org/10.1016/j.snb.2015.09.035

    Article  CAS  Google Scholar 

  17. Luo FQ, Lin YL, Zheng LY, Lin XM, Chi YW (2015) Encapsulation of hemin in metal organic frameworks for catalyzing the chemiluminescence reaction of the H2O2-luminol system and detecting glucose in the neutral condition. ACS Appl Mater Interfaces 7:11322–11329. https://doi.org/10.1021/acsami.5b01706

  18. Tan HL, Li Q, Zhou ZC, Ma CJ, Song YH, Xu FG, Wang L (2015) A sensitive fluorescent assay for thiamine based on metal-organic frameworks with intrinsic peroxidase-like activity. Anal Chim Acta 856:90–95. https://doi.org/10.1016/j.aca.2014.11.026

    Article  CAS  Google Scholar 

  19. Tiwari JN, Vij V, Kemp KC, Kim KS (2016) Engineered carbon-nanomaterial-based electrochemical sensors for biomolecules. ACS Nano 10:46–80. https://doi.org/10.1021/acsnano.5b05690

    Article  CAS  Google Scholar 

  20. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17:7–14. https://doi.org/10.1002/elan.200403113

    Article  CAS  Google Scholar 

  21. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430. https://doi.org/10.1126/science.1147241

    Article  CAS  Google Scholar 

  22. Ye Q, Zhou F, Liu WM (2011) Bioinspired catecholic chemistry for surface modification. Chem Soc Rev 40:4244–4258. https://doi.org/10.1039/c1cs15026j

    Article  CAS  Google Scholar 

  23. Yao JY, Wu TT, Sun Y, Ma ZY, Liu ML, Zhang YY, Yao SZ (2019) A novel biomimetic nanoenzyme based on ferrocene derivative polymer NPs coated with polydopamine. Talanta 195:265–271. https://doi.org/10.1016/j.talanta.2018.11.069

    Article  CAS  Google Scholar 

  24. Yang HL, Xu WT, Liang XY, Yang YY, Zhou Y (2020) Carbon nanotubes in electrochemical, colorimetric, and fluorimetric immunosensors and immunoassays: a review. Microchimica Acta 187: https://doi.org/10.1007/s00604-020-4172-4

  25. Pastucha M, Farka Z, Lacina K, Mikusova Z, Skladal P (2019) Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Microchimica Acta 186: https://doi.org/10.1007/s00604-019-3410-0

  26. Li YQ, Li YZ, Yu XL, Sun Y (2019) Electrochemical determination of carbofuran in tomatoes by a concanavalin A (Con A) polydopamine (PDA)-Reduced graphene oxide (RGO)-gold nanoparticle (GNP) glassy carbon electrode (GCE) with immobilized acetylcholinesterase (AChE). Anal Lett 52:2283–2299. https://doi.org/10.1080/00032719.2019.1609490

    Article  CAS  Google Scholar 

  27. Chen C, Wang LH, Tan YM, Qin C, Xie FY, Fu YC, Xie QJ, Chen JH, Yao SZ (2011) High-performance amperometric biosensors and biofuel cell based on chitosan-strengthened cast thin films of chemically synthesized catecholamine polymers with glucose oxidase effectively entrapped. Biosens Bioelectron 26:2311–2316. https://doi.org/10.1016/j.bios.2010.09.058

    Article  CAS  Google Scholar 

  28. Lin KS, Adhikari AK, Ku CN, Chiang CL, Kuo H (2012) Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. Int J Hydrogen Energy 37:13865–13871. https://doi.org/10.1016/j.ijhydene.2012.04.105

    Article  CAS  Google Scholar 

  29. Mao YY, Su BB, Cao W, Li JW, Ying YL, Ying W, Hou YJ, Sun LW, Peng XS (2014) Specific oriented metal-organic framework membranes and their facet-tuned separation performance. ACS Appl Mater Interfaces 6:15676–15685. https://doi.org/10.1021/am5049702

    Article  CAS  Google Scholar 

  30. Abdulla S, Mathew TL, Pullithadathil B (2015) Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sensors Actuators B-Chem 221:1523–1534. https://doi.org/10.1016/j.snb.2015.08.002

    Article  CAS  Google Scholar 

  31. Yan LJ, Bo XJ, Zhu DX, Guo LP (2014) Well-dispersed Pt nanoparticles on polydopamine-coated ordered mesoporous carbons and their electrocatalytic application. Talanta 120:304–311. https://doi.org/10.1016/j.talanta.2013.12.031

    Article  CAS  Google Scholar 

  32. Dong SY, Zhang DD, Suo GC, Wei WB, Huang TL (2016) Exploiting multi-function metal-organic framework nanocomposite Ag@Zn-TSA as highly efficient immobilization matrixes for sensitive electrochemical biosensing. Anal Chim Acta 934:203–211. https://doi.org/10.1016/j.aca.2016.05.040

    Article  CAS  Google Scholar 

  33. Hou C, Wang Y, Ding QH, Jiang L, Li M, Zhu WW, Pan D, Zhu H, Liu MZ (2015) Facile synthesis of enzyme-embedded magnetic metal-organic frameworks as a reusable mimic multi-enzyme system: mimetic peroxidase properties and colorimetric sensor. Nanoscale 7:18770–18779. https://doi.org/10.1039/c5nr04994f

    Article  CAS  Google Scholar 

  34. Liu X, Qi W, Wang YF, Su RX, He ZM (2017) A facile strategy for enzyme immobilization with highly stable hierarchically porous metal-organic frameworks. Nanoscale 9:17561–17570. https://doi.org/10.1039/c7nr06019j

    Article  CAS  Google Scholar 

  35. Dai MZ, Huang T, Chao L, Tan YM, Chen C, Meng WH, Xie QJ (2016) Tyrosinase-catalyzed polymerization of L-DOPA (versus L-tyrosine and dopamine) to generate melanin-like biomaterials for immobilization of enzymes and amperometric biosensing. RSC Adv 6:17016–17022. https://doi.org/10.1039/c5ra27478h

    Article  CAS  Google Scholar 

  36. Chen KJ, Lee CF, Rick J, Wang SH, Liu CC, Hwang BJ (2012) Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst. Biosens Bioelectron 33:75–81. https://doi.org/10.1016/j.bios.2011.12.020

    Article  CAS  Google Scholar 

  37. Patra S, Crespo TH, Permyakova A, Sicard C, Serre C, Chausse A, Steunou N, Legrand L (2015) Design of metal organic framework-enzyme based bioelectrodes as a novel and highly sensitive biosensing platform. J Mater Chem B 3:8983–8992. https://doi.org/10.1039/c5tb01412c

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (21405042, 21175042), the Open Fund of Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle (Nanchang Hangkong University), the Open Fund of State Key Laboratory of Chemo/Biosensing and Chemometrics (Hunan Normal University), the Open Fund of Large-scale Instrument and Equipment (Hunan Normal University) (19CSY004), and A Project Supported by Scientific Research Fund of Hunan Provincial Education Department (2016SK2020).

Human serum and urine samples based procedures were undertaken in accordance with the Guidelines for Care and Use of Laboratory Animals, and were approved by the Biomedical Research Ethics Committee of Hunan Normal University. Informed consents were obtained from human participants of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3478 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, C., Xu, H., Zhan, Q. et al. Preparation of novel HKUST-1-glucose oxidase composites and their application in biosensing. Microchim Acta 190, 10 (2023). https://doi.org/10.1007/s00604-022-05563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05563-4

Keywords

Navigation