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Abstract
A colorimetric sensor array designed on a paper substrate with a microfluidic structure has been developed. This array is 
capable of detecting COVID-19 disease by tracking metabolites of urine samples. In order to determine minor metabolic 
changes, various colorimetric receptors consisting of gold and silver nanoparticles, metalloporphyrins, metal ion complexes, 
and pH-sensitive indicators are used in the array structure. By injecting a small volume of the urine sample, the color pattern 
of the sensor changes after 7 min, which can be observed visually. The color changes of the receptors (recorded by a scan-
ner) are subsequently calculated by image analysis software and displayed as a color difference map. This study has been 
performed on 130 volunteers, including 60 patients infected by COVID-19, 55 healthy controls, and 15 cured individuals. 
The resulting array provides a fingerprint response for each category due to the differences in the metabolic profile of the 
urine sample. The principal component analysis-discriminant analysis confirms that the assay sensitivity to the correctly 
detected patient, healthy, and cured participants is equal to 73.3%, 74.5%, and 66.6%, respectively. Apart from COVID-19, 
other diseases such as chronic kidney disease, liver disorder, and diabetes may be detectable by the proposed sensor. How-
ever, this performance of the sensor must be tested in the studies with a larger sample size. These results show the possible 
feasibility of the sensor as a suitable alternative to costly and time-consuming standard methods for rapid detection and 
control of viral and bacterial infectious diseases and metabolic disorders.

Keywords  Colorimetric detection · Digital color imaging · Paper-based device · Nanoparticle receptors · Pattern 
recognition analysis · Sensor array · Viral infection

Introduction

The uncontrollable and rapid spread of infectious diseases 
may involve a high percentage of the world’s population, 
which is known as a pandemic [1]. Examples of common 
types of viral diseases include the cold, influenza, HIV, HPV, 
Ebola, and COVID-19 [2]. The last one has emerged since 

2019, attacking the respiratory tract, resulting in lung dis-
orders and has infected or killed millions of people [3, 4].

The virus infection can be detected by conventional 
methods with virus cell culture [5]. Although these methods 
provide accurate and reliable results, their corresponding 
analyses are time-consuming, and need to propagate virus 
particles [6]. The nucleic acid-based detection methods 
such as the real-time quantitative polymerase chain reac-
tion (RT-qPCR), loop-mediated isothermal amplification 
(LAMP), recombinase polymerase amplification (RPA), 
helicase-dependent amplification (HDA), and rolling circle 
amplification (RCA) are capable of directly and sensitively 
detecting the virus genetic material in a shorter period of 
time [7]. The diagnostic tests are conducted by trained oper-
ators in a laboratory equipped with sophisticated devices. 
However, the nucleic acid-based methods may provide 
false-negative results due to an improper sampling process, 
sample contamination, and changes in genome sequencing 
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[8]. Antibody-based biosensors can recognize infection by 
trapping proteins associated with viruses [9]. These sensors 
can be fabricated based on lateral-flow or enzyme-linked 
immunosorbent assays [10]. Compared to previous methods, 
biosensors are more inexpensive and have a shorter detection 
time. Moreover, performing the analysis process does not 
require special skills. Nevertheless, the efficiency of biosen-
sors is limited due to the high cost of antibodies, and their 
special storage conditions [11].

Since the immune system of body responds to viral patho-
gens by releasing, eliminating, or altering the concentration 
of chemical species (known as metabolites) in its biological 
fluids, the diagnosis of a disease can be realized by examin-
ing the metabolic profiles [12]. In this regard, previous stud-
ies have shown that the spread of viruses such as COVID-19 
can affect the concentration of chemical markers in exhaled 
breath [13], serum [14], plasma [15], saliva [16], and urine 
samples [17]. The human urine contains more than 3000 
types of metabolites, and is one of the most widely applied 
and available biological fluids for the diagnosis of various 
diseases, including urinary tract infections, kidney, gastroin-
testinal, liver, and cancer diseases, and metabolic disorders 
such as diabetes [18]. The healthy and coronavirus-infected 
urine samples have 1033 different chemical species from 
each other [17]. These compounds fall into the categories of 
amines, esters, carbohydrates, phenols, alcohols, and sulfur-
containing substances [12]. In addition, the infected urine is 
more alkaline and has a lower specific gravity [17].

On the other hand, chromatographic methods such as gas 
and liquid chromatography are combined with mass spec-
trometry (MS), FT-IR, and nuclear magnetic resonance 
spectrometers provide unique results for minor changes in 
the type and concentration of components of urine samples 
[19–21]. However, the extraction of information is costly 
and time-consuming, and requires special laboratory condi-
tions and skilled manpower.

The miniature sensing devices based on non-biorecep-
tors are able to qualitatively and quantitatively analyze one 
or more chemical markers in a urine sample [22]. While 
numerous chemical compounds, including organic dyes, 
inorganic complexes, and nanostructures, can be candidates 
in the fabrication of receptors, the selective identification 
of analytes depends on the specific structural and optical 
properties of the receptors [23]. These can participate in 
electrostatic, nucleophilic, and H-bonding interactions, or 
respond to changes in the pH of the reaction medium [24, 
25]. It is possible to fabricate sensing devices in the form 
of an array structure, thus increasing the sensor’s ability to 
selectively detect chemical species with similar structures 
and determine them at low concentrations [26].

The sensor arrays can be assembled on a paper substrate 
in order to save cost and consumption of reactants, inject low 
sample volumes, reduce analysis time, and help run tests at 

the sampling site [27]. Based on previous reports, we can use 
the paper-based arrays for monitoring biogenic amines [28], 
glucose [29], tuberculosis [30], and urinary tract infections 
[31] in urine samples. However, the performance of these 
diagnostic tools has not been evaluated for detecting the viral 
infections by tracking the metabolic changes of urine.

The potential of sensor arrays embedded on a paper sub-
strate was previously assessed for non-invasive detection 
of COVID-19 disease using saliva [32] and exhaled breath 
[33] metabolites by our group. Here, a study is presented to 
introduce a sensor array-based microfluidic structure with 
16 detection zones filled by color compounds, including 
gold and silver metal nanoparticles, porphyrin dyes, metal 
ion complexes, and organic dyes modified by a carbonyl 
species-sensitive reagent. The sensor is expected to have a 
high efficiency to react with the metabolites after receiving 
a low volume of the urine sample, find metabolic changes 
between infected and healthy samples in the shortest time, 
and be able to recognize the cured person after the treat-
ment process. If promising results are obtained, this sensor 
can be employed as a rapid and cost-effective alternative to 
conventional viral infection detection methods.

Experimental section

Instruments and software

The microfluidic pattern was drawn on the paper substrate 
by HP LaserJet printer 1200. The receptors were poured on 
the detection zones using micropipette (BRAND Transfer-
pette® S, Germany).The pH of metal ion complex solution 
was regulated by Metrohm 632 pH-meter (Model 780 pH 
lab). A canon scanner (CanoScan LiDE 220) was applied 
to receive the response of sensor. The design of microflu-
idic pattern was conducted by AutoCAD 2016. The changes 
in the color of receptors were verified by ImageJ (1.51n, 
National Institutes of Health, USA). The pattern recognition 
analysis was performed in the MATLAB R2015 environ-
ment. SPSS (Version 22; Chicago, IL, USA) was used to 
process the statistical analysis.

Chemicals

Silver nitrate (AgNO3), gold (III) chloride trihydrate 
(HAuCl4.3H2O), iron(III) nitrate nonahydrate)Fe(NO3)3.9H2O(, 
copper(II) nitrate trihydrate (Cu(NO3)2.3H2O), bromocresol 
purple (R1), ethanol (EtOH), boric acid (H3BO3), sodium 
hydroxide (NaOH), sulfuric acid (H2SO4) (18.4 mol.L−1), and 
sodium borohydride (NaBH4) were bought from Merck chemi-
cal company. Tyrosine (Tyr), tannic acid (TA), bromophenol 
red (R2), acridine orange (R3), malachite green (R4), phenol 
red (R5), pararosaniline hydrochloride (R6), pyrocatechol 
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violet (Py), vanadyl sulfate pentahydrate (VOSO4.5H2O), 
and 2,4-dinitrophenylhydrazine were obtained from Sigma 
Aldrich. Note that these materials were pure and used in the 
analytical grade. The other materials such as meso-tetrakis(4-
chlorophenyl) porphyrin-manganese (III) acetate (Mn(III)T(4-
Cl)PP(OAc)), meso-tetraphenylporphyrin]Iron(III) chloride 
(Fe(III)TPPCl), and meso-tetrakis(4-hydroxyphenyl) porphy-
rin-manganese (III) acetate (Mn(III)T(4-OH)PP(OAc)) were 
provided from Shargi research group, Shiraz, Iran. The prepa-
ration methods for synthesis of porphyrin dyes were found in 
the previous reports [34–36]. The microfluidic sensor was fab-
ricated on the Whatman® Grade NO.2 filter paper.

Experimental procedure for synthesis 
of nanoparticles

Two types of metallic nanoparticles containing gold and 
silver nanoparticles (AuNPs and AgNPs) were prepared by 
following procedures:

To synthesize the AuNPs capped by Tyr, 100 mL of a mix-
ture included 1.0 × 10−4 mol.L−1 tyrosine and 1.0 × 10−3 mol.
L−1 potassium hydroxide was poured in a volumetric flask. 
This solution was heated to boil under stirring and reflux 
condition subsequently mixed by 1.0 × 10−3 mol.L−1 HAuCl4 
drop by drop. A 12 kDa dialysis membrane was used to dis-
criminate the synthesized NPs from unreacted initial materi-
als. The same procedure was used to prepare Tyr-modified 
AgNPs but the solution of AgNO3 (1.0 × 10−4 mol.L−1) was 
used instead of HAuCl4 in the synthesis procedure [37].

TA functionalized AuNPs was provided by addition of 
2.0 mL of 6.0 × 10−3 mol.L−1 tannic acid solution to 50.0 mL 
of 1.3 × 10−4 mol.L−1 HAuCl4 boiling solution (pH 6.0) 
under stirring condition. The solution was allowed to cool 
and kept on the stirrer for 10 min [38]. To have AgNPs with 
the same capping agent, a solution containing 5.0 mL of 
3.0 × 10−3 mol.L−1 of AgNO3 and 2.0 mL of 6.0 × 10−2 mol.
L−1 tannic acid was stirred at room temperature for 12 h to 
appear the yellow color of the solution. Note that the pH of 
the tannic acid solution used in this study was equal to 8.0 
[39].

All prepared NPs were dried by freeze drier and convert 
to fine powder using a laboratory mortar.

The solution of receptors

A specified amount of NPs were re-dispersed in 1.0 mL 
deionized water, while a certain powder of porphyrin and 
organic dyes (R1 to R6) was dissolved in EtOH. The organic 
dyes was added to DWES solution which was created by 
mixing 3.0 mL of deionized water with the solution of 0.4 g 
2, 4-dinitrophenylhydrazine, and 10.0 mL of EtOH followed 
by addition of 2.0 mL of H2SO4 [39]. For formation of the 
metal ion complexes, 50.0 μL of the V (IV), Fe (III), and 

Cu (II) ion solutions was separately added to a mixing solu-
tion of 100.0 μL of borate buffer (0.1 mol.L−1) and 50 μL 
of pyrocatechol violet (Py), subsequently the reaction was 
continued on the stirrer for 10 min [40].

Selection of the studied population

One hundred fifteen males with the age range of 21 to 
80 years volunteered to participate in this study [32, 33]. Of 
these, 60 participants were categorized into patients, and the 
rest were considered healthy controls. The healthy persons 
who had not been infected by COVID-19 before the experi-
ment, were invited. The patients were selected from the 
people hospitalized at the emergency department of Baqi-
yatallah Hospital between the years 2020 and 2021 [32, 33]. 
They had the symptoms of the disease, and had not received 
medical care prior to this study. The positive results of chest 
imaging and rRT-PCR tests of these patients were approved 
by a pulmonologist. After 2 months of the disease treatment 
process, the urine samples of 15 cured participants were 
analyzed in a separate experiment [32, 33]. Demographic 
data and other medical information of the studied population 
have reported in our previous studies [32, 33]

Paper‑based microfluidic pattern

The pattern shown in Fig. 1a was plotted by AutoCAD soft-
ware, consisting of three parts: a large central circle for the 
sample injection, and 16 small circles to immobilize the 
receptors, and the channels that connect the two parts. The 
microfluidic pattern was printed on the substrate, followed 
by keeping it in an oven at 200 °C. The paper was heated for 
45 min in order to allow the ink (black areas) to penetrate 
into the paper texture, thereby providing a hydrophobic 
space [41]. To form the colorimetric sensor array (Fig. 1b), 
0.2 μL of the receptors was then added to the detection zones 
based on the order shown in Fig. 1c. Then, the sensor was 
transferred to a desiccator and the sensing elements were 
allowed to dry completely in 1 h at room temperature. In 
this condition, the sensor was stable for 20 days before usage 
(Fig. S1). Note that the sensor was used without any further 
pre-preparation in the detection step.

Detection steps

The microfluidic device was kept between the holders which 
are hand-made and fabricated by poly (methyl methacrylate). 
Fifty microliters of the urine sample was injected into the 
central circle through a hole embedded in the upper layer of 
the holder. Note that the turbidity of the urine sample did not 
impress on the response of sensor; therefore, the sample was 
not diluted or centrifuged before usage. The capillary nature 
of the paper substrate facilitated the flow of the sample 
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through the channel, and its transport to the detection areas 
(small circles) in order to react with the chemical receptors. 
Then, the sensor was dried at ambient temperature and its 
images were recorded by a scanner. The color changes of the 
receptors before and after the injection of the urine sample 
were compared using ImageJ software. For each receptor, 
three mean values were obtained corresponding to three 
color elements (red, green, and blue). Moreover, the soft-
ware provided a dataset with 48 numeric values (16 recep-
tors × 3 color elements) for each sample studied (Scheme 1).

Data collection steps

A matrix with dimensions of (130 × 48) were created and 
inserted as input into the principal component analysis-
discriminant analysis (PCA-DA) algorithm, thereby evalu-
ating the potential of the proposed device to differentiate 
between the members of patient, healthy, and cure catego-
ries, respectively.

The response of the sensor array, known as the Euclidean 
norm, was then quantified by Eq. (1):

Fig. 1   The proposed paper based microfluidic sensor: a the design, b the image, and c the location of sensing elements

Scheme 1   The general proce-
dures for detection of serum 
metabolites using a colorimetric 
paper-based microfluidic sensor
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where xi is the numerical value of the ith component of the 
data vector for each urine sample. Finally, the average results 
obtained for healthy and patient categories were compared 
using two independent sample t-test in SPSS environment.

In the optimization test, the selection of optimal values 
was performed by calculating the discrimination ability 
function (DAF) parameter, followed by determining the 
ratio of between-class variations to within-class variations 
[42]. The numerical value of this parameter can be acquired 
through Eq. (2):

where N denotes the total number of categories, Yij is the 
Euclidean norm value for the jth sample of ith category, Y  is 
the average of the measurements of each category, and Y  is 
the average of the total data obtained for the two categories 
(patients and healthy ones).

Results and discussion

According to previous studies, changes in the type and 
amount of metabolites in urine samples can be a character-
istic of a clinical failure in the body that can be assessed by 
instrumental methods and sensory diagnostic devices [12, 
17, 30, 31]. Here, a microfluidic-based sensor array is pro-
posed in order to investigate the effect of COVID-19 infec-
tion on the chemical species released in the urine sample. 
The advantage of this sensor is using the sensing potential 
of a wide range of receptors in its structure. For example, 
gold and silver nanoparticles (AuNPs and AgNPs) whose 
surface was modified by tyrosine and tannic acid coating 
agents formed four receptors. The reactivity of these sens-
ing elements depends on the inherent properties of the metal 
core, and the chemical structure, size, and electrical charge 
of the coating chemicals [43, 44]. Tannic acid is a large poly-
phenol, and tyrosine is an amino acid containing amino, car-
boxylic, and hydroxyl functional groups [45]. Compared to 
NPs synthesized with tannic acid, tyrosine-NPs are smaller 
in size and have a negative electric charge distribution on 
their surface [45]. All of these factors cause NPs to react 
differently with various chemical species through electro-
static, H-bonding, and nucleophilic interactions [43]. How-
ever, these interactions can be inhibited by the size of NPs 
due to steric hindrance. Among the other sensing elements, 
three receptors were made of metalloporphyrins, each of 
which was composed of a specific type of central metal or 
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∑
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functional group attached to a macro-heterocyclic ring that 
can have Lewis acid or base properties [46]. The sensing 
ability of complexes of the Py dye and metal ions such as 
V (IV), Fe (III), and Cu (II) was used for identifying the 
urinary metabolites. These metal ions tend to interact with 
compounds containing amino and carboxylic groups [40, 
47]. The formation of a new ion-analyte complex leads to 
the release of ligands and discoloration of the receptor. This 
reaction is known as the indicator displacement assay [48]. 
The last category of receptors was organic dyes combined 
with DWES. The additive detects and interacts with the 
compounds consisting of the carbonyl group, changing pH 
of the reaction media [49]. The organic dye then monitors 
the changes in the concentration of hydronium ions. The 
fabricated array is shown in Fig. 1.

The optimal conditions

To increase the sensor performance in finding the difference 
between the metabolites of the urine samples of patients with 
COVID-19 and healthy participants, the effective parameters 
in the fabrication of the sensing elements such as the concen-
tration of color materials or the volume ratio of the additive 
to the organic dye as well as the response time of sensor 
should be optimized. In this respect, the optimization test 
was run with five healthy and five infected samples for three 
times. For each sample, the Euclidean norm value was cal-
culated. The optimal value for each parameter was obtained 
using the DAF equation (see “Data collection steps” section).

Initially, four different sets of concentrations were 
designed for each receptor (Fig. 2a). The lowest and high-
est concentrations were observed in the first and last sets, 
respectively. The results obtained from DAF (Fig. 2b) indi-
cated that the best response of sensor was achieved using 
receptors made with the concentrations provided in the sec-
ond set. The sensing potential of the receptors was reduced 
due to the lack of active sites to interact with the analyte 
at the low concentrations. Furthermore, the changes taking 
place due to the interaction between the receptor and the 
analyte were not well observed. This is because the intensity 
of the initial color of the receptors at higher concentrations 
led to a decrease in the DAF value [50].

In the following procedure, five individual volume 
ratios were employed for the combination of the addi-
tive and the organic dye (Fig. 2c). These ratios should be 
adjusted in such a way that the additive can receive the 
aldehyde and ketone species with high accuracy, while 
also avoiding a reduction in the efficiency of the organic 
dye when detecting hydronium ions. Figure 2d reveals 
that the best discrimination was achieved using a mixture 
of the organic dye and additive (4:1) in the fabrication 
of the receptor. Finally, the discriminatory ability of the 
proposed sensor was evaluated for healthy and infected 
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Fig. 2   The results for optimization: a The designing sets for the con-
centration of sensing elements and b the respective DAF responses. 
c The designing sets for the volume ratio of the organic dyes and 

the additive in the mixing solution and d the corresponding DAF 
responses. e The DAF values for different incubation times
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samples at different times. As seen in Fig. 2e, a signifi-
cant difference between the studied groups was obtained 
after 7 min. Therefore, the color changes of the receptors 
were recorded at this time.

Colorimetric patterns

The sensor was fabricated under the optimal conditions, and 
exposed to 50.0 μL of the urine sample belonging to two 
groups of healthy and patient volunteers. The color changes 
of each receptor after the interaction with urinary metabo-
lites are shown in Fig. 3a. It was observed that metal ion 
complexes (S8-S10) and malachite green combined with 
DWES (S14) did not help differentiate between the two 
studied groups because they responded to the metabolites 
of both infected and healthy urine samples. In addition, the 
color variations were not recorded for Ty-AuNPs (S1), TA-
AgNPs (S4), Mn (III) T (4-Cl) PP (OAC) (S5), and DWES-
acridine orange. Of the receptors, a nanoparticle Ty-AgNPs 
(S2), a metalloporphyrin Mn (III) T (4-OH) PP (OAC) (S7), 
and an organic dye (DWES-pararosaniline) (S16) interacted 
with the metabolites of healthy samples, whereas the com-
pounds such as TA-AuNPs (S3), Fe (III) TPPCl (S6), and 
DWES mixed by the organic dyes including bromophenol 
red (S11), bromocresol purple (S12), and phenol red (S15) 
were sensitive to the chemical species of the patient samples.

In a separate experiment, a color pattern of the sensor was 
prepared for the urine sample of the cured group in order 
to evaluate the disease treatment process (Fig. 3a). Cured 
people are participants who have been treated for 2 months. 
This test determines the effectiveness of the treatment pro-
cess, the consumption of drugs, and their dosage. Also, the 
changes in the color of sensor show that the type and the 
concentration of the metabolites related to patient gradu-
ally turn towards the metabolic profile of the healthy per-
son. As can be inferred, there was a significant difference 
between the responses obtained for this group and those for 

the healthy and patient ones. It was clear that the metabo-
lite profile of the patient sample gradually changed to that 
of the healthy sample. These changes were reflected in the 
array results by turning off the response of receptors S3, 
S6, S11, and S15 (relating to the patient sample) or turning 
on the sensing element S7 (corresponding to the healthy 
sample). However, the receptor S12 (for the patient sample) 
responded to the metabolites of the cured sample, and the 
sensors S2 and S16 (for the healthy sample) were reluctant 
to interact with these chemical species, indicating that the 
body was still affected by the viral infection.

Figure 3b represents the color difference obtained from 
the image analysis process as a color difference map. These 
maps not only confirmed the previous information but also 
provided the user with enhanced color changes of the recep-
tor. Notably, the color changes of S7 and S11 were diffi-
cult to be detected with the naked eye, whereas the color of 
these sensing elements was well displayed in the respective 
maps. In this case, 130 urine samples were examined, and 
the colorimetric responses and corresponding color differ-
ence maps collected.

For each studied sample, the Euclidean norm values of 
receptors are presented in Fig. S2. Among the receptors 
responding to all samples, while S8 and S14 were more 
inclined to interact with metabolites of the healthy sample, 
S9 and S10 tended more to capture the compounds of the 
patient sample. As expected, the response intensity of the 
receptor S12 decreased for the cured sample in the wake 
of the progression of the treatment. Of course, an upward 
trend was observed in the result of receptor S7 under this 
condition.

Discrimination results

The responses of the proposed array to chemical species of 
urine samples were gathered in the form of data vectors. In 
this case, 60, 55, and 15 data vectors were obtained for the 

Fig. 3   a The responses and b the difference patterns of developed 
sensor for patient infected by COVID-19 (P) and healthy control (H), 
cured volunteers (C), and the participants having viral infection and 
the other disease consist of diabetes (DM), chronic kidney (KD), and 

liver disorder (LD). The data was collected in the optimum condi-
tions (Fig. 2) after 7 min. The difference patterns help to find a better 
description for color changes of the sensor related to each sample
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patient, healthy, and cured participants, respectively. These 
vectors were arranged in a data matrix with a size of 130 × 48. 
The data matrix was investigated by the PCA-DA algorithm to 
verify the sensor performance, creating a difference between 
the three studied categories. The distribution of data in the 
space of the first two principal components is depicted in 
Fig. 4. The score plot showed that PC 1 and PC 2 contained 
80.2% and 14.6% of the explained variance, respectively. 
According to this diagram, the three categories were well 
separated. Table 1 provides the statistical parameters for this 
classification analysis. As can be seen, 73.3% (44 participants) 
of patients, 74.5% (41 participants) of healthy, and 66.6% (10 
participants) of cured individuals were correctly diagnosed 
by the proposed method. However, the sensor response for 35 
studied samples differed from the demographic information. 
The assay accuracy (with a 95% confidence interval level) was 
calculated to be 73.9%, 72.0%, and 72.8% for the distinction 
between the patient-healthy, patient-cured, and healthy-cured 
categories, respectively.

Sensor responses to comorbidities

Based on the filled questionnaires, some participants may 
have other diseases such as cardiovascular, chronic kidney, 
diabetic, chronic liver, and hypertension diseases as well 
as non-COVID-19 pulmonary disorders. By monitoring the 
colorimetric pattern of 115 patient and healthy samples, it 
was clear that the response of some receptors changed in the 
presence of the urine sample infected by a specific disease 
(Fig. 3). For example, Ty-AuNPs (S1) responded to urinary 
chemicals in the participants with kidney failure, whereas 
diabetic urine metabolites tended to interact with TA-AgNPs 
(S4). Moreover, acridine orange discoloration indicated liver 
disorders. The proposed method can identify the individu-
als suffered from kidney, liver, and diabetic diseases with 
80.0%, 83.3%, and 70.0% accuracy, respectively. As illus-
trated in Fig. 3, the color changes of receptors S3, S6, S11, 
S12, and S15 repeated in the color pattern of the patients 
infected only by COVID-19, and that of the participants 
with both viral diseases and the other disorders. In turn, 
this evidenced that the chemical species related to the other 
diseases did not affect the response of the sensor to urinary 
metabolites of COVID-19.

Statistical point

The Euclidean norm values of the urine samples of 115 
healthy and patient participants were calculated. The total 
average of these data was equal to 388.98 (± 28.3). For 
each of patient and healthy groups, the mean values of the 
determinations were found to be 379.90 (± 25.4) and 398.89 
(± 28.2). As inferred, the healthy group had a higher (19 
units) mean value than the patient group. This difference was 

statistically large and significant (P-value < 0.001). Accord-
ingly, for an unknown sample, the Euclidean norms being 
higher and lower than the total average can be attributed to 
the healthy and patient groups, respectively.

In the next experiment, the dependency of the total sensor 
response on the age of population was statistically investigated 
for both patient and healthy categories. For this study, the 
corresponding Pearson coefficients were calculated as 0.249 
(P-value = 0.075) and 0.230 (P-value = 0.092) indicating a 
weak and meaningless relationship between these two stud-
ied variables (total response and age). Therefore, the color 
changes of sensor were not affected by the age of population.

Evaluation of the reproducibility of sensor 
responses

To have a reliable result on the separation between the 
studied samples, the sensor should provide reproducible 
responses for the infected and healthy urine samples. This 
experiment was performed by adding 50.0 μL of a urine 
sample to five individual sensor arrays. The color changes 
of the sensor were calculated for each analysis, and their 
numerical value was determined by the Euclidean norm 
equation (Fig. S3). After five measurements, a relative stand-
ard deviation (RSD %) of 3.1 was obtained for the patient 
sample. Meanwhile, an error of 3.4 was observed for the 

Fig. 4   The discrimination of 130 studied population (60 patients (P), 
55 healthy (H), and 15 cured (C)) by PCA-DA algorithm. The data 
was collected in the optimum conditions (Fig. 2) after 7 min

Table 1   Classification results obtained by PCA-DA analysis

Parameters Patient vs 
healthy

Patient vs cured Healthy 
vs cured

Sensitivity (%) 73.3 73.3 74.5
Specificity (%) 74.5 66.6 66.6
Accuracy (%) 73.9 72.0 72.8
Error rate (%) 26.1 28.0 27.2
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healthy sample. This low error value indicated the high 
reproducibility of the sensor responses.

In contrast with the rapid detection kits fabricating bio-
logical receptors, colorimetric sensor arrays use chemical 
compounds as sensing elements which are easily provided 
and printed on a substrate without any pre-preparation steps. 
They do not require special temperature conditions for stor-
age and their final cost is less than one dollar, which is far 
more affordable than standard methods such as chest imag-
ing, PCR test, and diagnosis kit based on immunoassay. How-
ever, the use of medications related to other diseases such as 
diabetes, hypertension, or bacterial infections, the selective-
cross reactive response of sensing elements to analytes, and 
the lower number of them in the array structure limit the 
achievement of an acceptable sensitivity/specificity for dis-
criminating between patient and healthy groups. A reason is 
the inability of the sensor to detect the trace changes in the 
type and concentration of chemical markers (related to a cer-
tain disease) in a complex mixture such as urine containing 
3000 metabolites. This problem can be overcome by choos-
ing a larger number of sensing elements that show a better 
selectivity response to a specific set of metabolites.

Conclusions

The feasibility of the colorimetric sensor array was inves-
tigated for detecting the changes in the chemical species 
concentration of the urine sample of COVID-19 patients. 
By combining four different groups of receptors (having 
different optical and structural properties), it was possible 
to provide reliable responses for the discrimination of the 
patient and healthy participants. The statistical parameters 
confirmed that the assay was more sensitive than the stand-
ard methods. The array was able to track the treatment pro-
cess of the disease, while also creating a unique colorimetric 
pattern for the cured individuals. The specific receptors of 
the sensor can interact with metabolites of kidney disease, 
diabetes, and liver failure, providing detection of these 
comorbidities. However, the performance of sensor must be 
tested in the studies with a larger sample size. The array was 
developed by designing a microfluidic structure on the paper 
substrate, which required a small volume of the urine sample 
and can be used by the public as a rapid and cost-effective 
diagnostic/screening tool.
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