Skip to main content
Log in

Mesoporous cellulose nanofibers-interlaced PEDOT:PSS hybrids for chemiresistive ammonia detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Chemiresistive ammonia (NH3) detection at room temperature is highly desired due to the unique merits of easy miniaturization, low cost, and minor energy consumption especially for portable and wearable electronics. In this regard, poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) has sparked considerable attention due to the benign room-temperature conductivity and environmental stability, but it is undesirably impeded by limited sensitivity and sluggish reaction kinetics. To overcome these, we incorporated cellulose nanofibers (CNF) into PEDOT:PSS via a facile blending. The constituent-optimized composite sensor displayed sensitive (sensitivity of ∼7.46%/ppm in the range of 0.2–3 ppm), selective, and stable NH3 sensing at 25 °C at 55% RH, with higher response and less baseline drift than pure PEDOT:PSS counterparts. Additionally, the response/recovery times (4.9 s/5.2 s toward 1 ppm NH3) ranked the best cases of conducting polymers based NH3 sensors. The humidity involved more than twofold response enhancement indicated a huge potential in exhaled breath monitoring. Furthermore, we observed an excellent flexible NH3-sensing performance with bending-tolerant features. This work provides an alternative strategy for trace NH3 sensing with low power consumption, superfast reaction, and high sensitivity.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li XG, Li XX, Li Z, Wang J, Zhang JW (2017) WS2 nanoflakes based selective ammonia sensors at room temperature. Sensors Actuators B Chem 240:273–277

    Article  CAS  Google Scholar 

  2. US Department of Health and Human Services (1992) Occupational safety and health guideline for ammonia. US Department of Health and Human Services, Washington, DC

    Google Scholar 

  3. Ho KF, Lee SC, Chan CK, Yu JC, Chow JC, Yao XH (2003) Characterization of chemical species in PM2.5 and PM10 aerosols in Hong Kong. Atmos Environ 37:31–39

    Article  CAS  Google Scholar 

  4. Wu ZQ, Chen XD, Zhu SB, Zhou ZW, Yao Y, Quan W, Liu B (2013) Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sensors Actuators B Chem 178:485–493

    Article  CAS  Google Scholar 

  5. Gao LF, Yang X, Shu Y, Chen XW, Wang JH (2018) Ionic liquid-based slab optical waveguide sensor for the detection of ammonia in human breath. J Colloid Interface Sci 512:819–825

    Article  CAS  Google Scholar 

  6. Davies S, Spanel P, Smith D (1997) Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int 52:223–228

    Article  CAS  Google Scholar 

  7. Hu NT, Yang Z, Wang YY, Zhang LL, Wang Y, Huang XL, Wei H, Wei LM, Zhang YF (2014) Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 25:025502

    Article  CAS  Google Scholar 

  8. Zhou Y, Wang YH, Wang YJ, Yu HC, Zhang RJ, Li J, Zang ZG, Li X (2021) MXene Ti3C2Tx-derived nitrogen-functionalized heterophase TiO2 homojunctions for room-temperature trace ammonia gas sensing. ACS Appl Mater Interfaces 13:56485–56497

    Article  CAS  Google Scholar 

  9. Wang YJ, Zhou Y, Wang YH, Zhang RJ, Li J, Li X, Zang ZG (2021) Conductometric room temperature ammonia sensors based on titanium dioxide nanoparticles decorated thin black phosphorus nanosheets. Sensors Actuators B Chem 349:130770

    Article  CAS  Google Scholar 

  10. Khan H, Malook K, Shah M (2017) Highly selective and sensitive ammonia sensor using polypyrrole/V2O5 composites. J Mater Sci: Mater Electron 28:13873–13879

    CAS  Google Scholar 

  11. Choi J, Lee J, Choi J, Jung D, Shim SE (2010) Electrospun PEDOT:PSS/PVP nanofibers as the chemiresistor in chemical vapour sensing. Synth Met 160:1415–1421

    Article  CAS  Google Scholar 

  12. Pang ZY, Nie QX, Zhu YN, Ge MQ, Chen MQ (2019) Enhanced ammonia sensing characteristics of CeO2-decorated SiO2/PANI free-standing nanofibrous membranes. J Mater Sci 54:2333–2342

    Article  CAS  Google Scholar 

  13. De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631

    Article  Google Scholar 

  14. Ummartyotin S, Manuspiya H (2015) A critical review on cellulose: from fundamental to an approach on sensor technology. Renew Sustain Energy Rev 41:402–412

    Article  CAS  Google Scholar 

  15. Yun S, Kim J (2010) Multi-walled carbon nanotubes-cellulose paper for a chemical vapor sensor. Sensors Actuators B Chem 150:308–313

    Article  CAS  Google Scholar 

  16. Ivanova A, Frka-Petesic B, Paul A, Wagner T, Jumabekov AN, Vilk Y, Weber J, Gunne J, Vignolini S, Tiemann M, Fattakhova-Rohlfing D, Bein T (2020) Cellulose nanocrystal-templated tin dioxide thin films for gas sensing. ACS Appl Mater Interfaces 12:12639–12647

    Article  CAS  Google Scholar 

  17. Tong X, Zhang XJ, Li J, Wang H (2021) Flexible NH3 gas sensor based on TiO2/cellulose nanocrystals composite film at room temperature. J Mater Sci: Mater Electron 32:23566–23577

    CAS  Google Scholar 

  18. Qiu JY, Xia XL, Hu ZH, Zhou S, Wang YJ, Wang YH, Zhang RJ, Li J, Zhou Y (2022) Molecular ammonia sensing of PEDOT:PSS/nitrogen doped MXene Ti3C2Tx composite film at room temperature. Nanotechnology 33:065501

    Article  CAS  Google Scholar 

  19. Lay M, Pelach MA, Pellicer N, Tarres JA, Bun KN, Vilaseca F (2017) Smart nanopaper based on cellulose nanofibers with hybrid PEDOT:PSS/polypyrrole for energy storage devices. Carbohydr Polym 165:86–95

    Article  CAS  Google Scholar 

  20. Li MC, Wu Q, Song K, Lee S, Qing Y, Wu Y (2015) Cellulose nanoparticles: structure-morphology-rheology relationships. ACS Sustain Chem Eng 3:821–832

    Article  CAS  Google Scholar 

  21. Du H, Zhang M, Liu K, Parit M, Jiang Z, Zhang X, Li B, Si C (2022) Conductive PEDOT:PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem Eng J 428:131994

    Article  CAS  Google Scholar 

  22. Li Y, Ban HT, Yang MJ (2016) Highly sensitive NH3 gas sensors based on novel polypyrrole-coated SnO2 nanosheet nanocomposites. Sensors Actuators B Chem 224:449–457

    Article  CAS  Google Scholar 

  23. Tian JF, Yang G, Jiang DG, Su FF, Zhang ZH (2016) A hybrid material consisting of bulk-reduced TiO2, graphene oxide and polyaniline for resistance based sensing of gaseous ammonia at room temperature. Microchim Acta 183:2871–2878

    Article  CAS  Google Scholar 

  24. Kumar V, Patil V, Apte A, Harale N, Patil P, Kulkarni S (2015) Ultrasensitive gold nanostar-polyaniline composite for ammonia gas sensing. Langmuir 31:13247–13256

    Article  CAS  Google Scholar 

  25. Singh P, Kushwaha CS, Singh VK, Dubey GC, Shukla SK (2021) Chemiresistive sensing of volatile ammonia over zinc oxide encapsulated polypyrrole based nanocomposite. Sensors Actuators B Chem 342:130042

    Article  CAS  Google Scholar 

  26. Luo GF, Xie LL, He M, Jaisutti R, Zhu ZG (2021) Flexible fabric gas sensors based on reduced graphene-polyaniline nanocomposite for highly sensitive NH3 detection at room temperature. Nanotechnology 32:305501

    Article  CAS  Google Scholar 

  27. Li ZY, Chen JY, Chen L, Guo ML, Wu YP, Wei Y, Wang JF, Wang XG (2020) Hollow Au/polypyrrole capsules to form porous and neural network-like nanofibrous film for wearable, super-rapid, and ultrasensitive NH3 sensor at room temperature. ACS Appl Mater Interfaces 12:55056–55063

    Article  CAS  Google Scholar 

  28. Li SY, Chen SJ, Zhuo BG, Li QF, Liu WJ, Guo XJ (2017) Flexible ammonia sensor based on PEDOT:PSS/silver nanowire composite film for meat freshness monitoring. IEEE Electron Device Lett 38:975–978

    Article  CAS  Google Scholar 

  29. Wang S, Jiang YD, Liu BH, Duan ZH, Pan H, Yuan Z, Xie GZ, Wang JB, Fang Z, Tai HL (2021) Ultrathin Nb2CTx nanosheets-supported polyaniline nanocomposite: enabling ultrasensitive NH3 detection. Sensors Actuators B Chem 343:130069

    Article  CAS  Google Scholar 

  30. Yang LY, Yang L, Wu SN, Wei F, Hu Y, Xu XR, Zhang L, Sun DP (2020) Three-dimensional conductive organic sulfonic acid co-doped bacterial cellulose/polyaniline nanocomposite films for detection of ammonia at room temperature. Sensors Actuators B Chem 323:128689

    Article  CAS  Google Scholar 

  31. Tang N, Jiang Y, Qu HM, Duan XX (2017) Conductive polymer nanowire gas sensor fabricated by nanoscale soft lithography. Nanotechnology 28:485301

    Article  Google Scholar 

  32. Pacher P, Lex A, Eder S, Trimmel G, Slugovc C, List EJW, Zojer E (2010) A novel concept for humidity compensated sub-ppm ammonia detection. Sensors Actuators B Chem 145:181–184

    Article  CAS  Google Scholar 

  33. Dan YP, Cao YY, Mallouk TE, Johnson AT, Evoy S (2007) Dielectrophoretically assembled polymer nanowires for gas sensing. Sensors Actuators B Chem 125:55–59

    Article  CAS  Google Scholar 

Download references

Funding

This work was partially supported by Fundamental and Frontier Research Project of Chongqing (Grant No. cstc2019jcyj-msxmX0037), and National Natural Science Foundation of China (Grant No. 61704014).

Author information

Authors and Affiliations

Authors

Contributions

RZ: formal analysis, conceptualization, investigation, validation, writing—original draft.

YW, JL, HZ, YW: formal analysis, investigation, validation.

YZ: supervision, methodology, writing—review and editing, project administration, funding acquisition, methodology.

Corresponding author

Correspondence to Yong Zhou.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 867 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Wang, Y., Li, J. et al. Mesoporous cellulose nanofibers-interlaced PEDOT:PSS hybrids for chemiresistive ammonia detection. Microchim Acta 189, 308 (2022). https://doi.org/10.1007/s00604-022-05414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05414-2

Keywords

Navigation