Skip to main content
Log in

Gold nanoparticle functionalized nanopipette sensors for electrochemical paraquat detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A sensitive nanopipette sensor is established through a unique design of host–guest recognition, which could be further enhanced by the introduction of gold nanoparticles (Au NPs). Generally, the nanopipette is conjugated with caboxylatopillar[5]arenes (CP[5]) or carboxylated leaning pillar[6]arene (CLP[6]) to generate recognition sites. After the addition of pesticide molecules, they would be captured by CP[5] (or CLP[6]), resulting in a significant electronegativity change on the nanopipette’s inner surface, which could be determined by the ionic current change. The CP[5]-modified nanopipette exhibited reliable selectivity for paraquat, while the CLP[6]-modified nanopipette showed an ability of detection for both paraquat and diquat. The addition of Au NPs improved the selectivity and sensitivity of the CP[5]-Au NP-modified nanopipette for paraquat sensing. After optimization by lowering the size of the Au NPs, CP[5]-Au NPs (3 nm)-modified nanopipettes achieved lower detection limits of 0.034 nM for paraquat. Furthermore, in real sample analysis, this sensor demonstrates exceptional sensitivity and selectivity. This study provides a new strategy to develop nanopipette sensors for practical small molecule detection.

Graphical abstract

The gold nanoparticles enhanced quartz nanopipette sensor based on host-guest interaction was firstly established, which could achieve an excellent limit of detection of 3.4 × 10-11 mol/L for paraquat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Seiber JN, Kleinschmidt LA (2011) Contributions of pesticide residue chemistry to improving food and environmental safety: past and present accomplishments and future challenges. J Agric Food Chem 59:7536–7543

    Article  CAS  PubMed  Google Scholar 

  2. Zhang K, Li H, Wang W, Cao J, Gan N, Han H (2020) Application of multiplexed aptasensors in food contaminants detection. ACS Sens 5:3721–3738

    Article  CAS  PubMed  Google Scholar 

  3. Narenderan ST, Meyyanathan SN, Babu B (2020) Review of pesticide residue analysis in fruits and vegetables. Pre-treatment, extraction and detection techniques. Food Res Int 133:109141

    Article  CAS  PubMed  Google Scholar 

  4. Kuitio C, Klangprapan S, Chingkitti N, Boonthavivudhi S, Choowongkomon K (2021) Aptasensor for paraquat detection by gold nanoparticle colorimetric method. J Environ Sci Health B 56:370–377

    Article  CAS  PubMed  Google Scholar 

  5. Levine M (2021) Fluorescence-based sensing of pesticides using supramolecular chemistry. Front Chem 9:616815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang D, Liang P, Yu Z et al (2020) Self-assembled “bridge” substance for organochlorine pesticides detection in solution based on surface enhanced Raman scattering. J Hazard Mater 382:121023

    Article  CAS  PubMed  Google Scholar 

  7. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183:2063–2083

    Article  CAS  Google Scholar 

  8. Dergunov SA, Kim MD, Shmakov SN, Pinkhassik E (2019) Building functional nanodevices with vesicle-templated porous polymer nanocapsules. Acc Chem Res 52:189–198

    Article  CAS  PubMed  Google Scholar 

  9. Lanaro R, Costa JL, Fernandes LCR, Resende RR, Tavares MFM (2011) Detection of paraquat in oral fluid, plasma, and urine by capillary electrophoresis for diagnosis of acute poisoning. J Anal Toxicol 35:274–279

    Article  CAS  PubMed  Google Scholar 

  10. Meng FN, Yao X, Ying YL, Zhang J, Tian H, Long YT (2015) Single-molecule analysis of the self-assembly process facilitated by host-guest interactions. Chem Commun 51:1202–1205

    Article  CAS  Google Scholar 

  11. Luo L, Nie G, Tian D, Deng H, Jiang L, Li H (2016) Dynamic self-assembly adhesion of a paraquat droplet on a pillar[5]arene surface. Angew Chem Int Ed 55:12713–12716

    Article  CAS  Google Scholar 

  12. Ping G, Wang Y, Shen L et al (2017) Highly efficient complexation of sanguinarine alkaloid by carboxylatopillar[6]arene: pKa shift, increased solubility and enhanced antibacterial activity. Chem Commun 53:7381–7384

    Article  CAS  Google Scholar 

  13. Zhang G, Zhu X, Miao F, Tian D, Li H (2012) Design of switchable wettability sensor for paraquat based on clicking calix[4]arene. Org Biomol Chem 10:3185–3188

    Article  CAS  PubMed  Google Scholar 

  14. Zhang F, Ma J, Sun Y et al (2016) Fabrication of a mercaptoacetic acid pillar[5]arene assembled nanochannel: a biomimetic gate for mercury poisoning. Chem Sci 7:3227–3233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li H, Chen DX, Sun YL et al (2013) Viologen-mediated assembly of and sensing with carboxylatopillar[5]arene-modified gold nanoparticles. J Am Chem Soc 135:1570–1576

    Article  CAS  PubMed  Google Scholar 

  16. Wang X, Wu JR, Liang F, Yang YW (2019) In situ gold nanoparticle synthesis mediated by a water-soluble leaning pillar[6]arene for self-assembly, detection, and catalysis. Org Lett 21:5215–5218

    Article  CAS  PubMed  Google Scholar 

  17. Chatterjee S, Lou X-Y, Liang F, Yang Y-W (2022) Surface-functionalized gold and silver nanoparticles for colorimetric and fluorescent sensing of metal ions and biomolecules. Coord Chem Rev 459:224461

    Article  CAS  Google Scholar 

  18. Zhang M, Zhang H, Jin L et al (2022) Evidenced cucurbit[n]uril-based host-guest interactions using single-molecule force spectroscopy. Chem Commun 58:1736–1739

    Article  CAS  Google Scholar 

  19. Wang R, Qian G, Guo J et al (2022) Nanocollision mediated electrochemical sensing of host-guest chemistry at a nanoelectrode surface. Faraday Discuss 233:222–231

    Article  PubMed  Google Scholar 

  20. Zhang H, Huang K-T, Ding L et al (2021) Electrochemical determination of paraquat using a glassy carbon electrode decorated with pillararene-coated nitrogen-doped carbon dots. Chin Chem Lett 33:1537–1540

    Article  CAS  Google Scholar 

  21. Yang Q, Xu W, Cheng M et al (2022) Controlled release of drug molecules by pillararene-modified nanosystems. Chem Commun 58:3255–3269

    Article  CAS  Google Scholar 

  22. Xu W, Cheng M, Zhang S et al (2021) Recent advances in chiral discrimination on host-guest functionalized interfaces. Chem Commun 57:7480–7492

    Article  CAS  Google Scholar 

  23. Zhang H, Wang X, Huang KT, Liang F, Yang YW (2021) Green synthesis of leaning tower[6]arene-mediated gold nanoparticles for label-free detection. Org Lett 23:4677–4682

    Article  CAS  PubMed  Google Scholar 

  24. Cai SL, Cao SH, Zheng YB, Zhao S, Yang JL, Li YQ (2015) Surface charge modulated aptasensor in a single glass conical nanopore. Biosens Bioelectron 71:37–43

    Article  CAS  PubMed  Google Scholar 

  25. Wang Z, Liu Y, Yu L, Li Y, Qian G, Chang S (2019) Nanopipettes: a potential tool for DNA detection. Analyst 144:5037–5047

    Article  CAS  PubMed  Google Scholar 

  26. Liu G-C, Chen W, Gao M-J, Song L-B, Hu X-Y, Zhao Y-D (2018) Ion-current-rectification-based customizable pH response in glass nanopipettes via silanization. Electrochem Commun 93:95–99

    Article  CAS  Google Scholar 

  27. Hou R-Y, Zhu X-J, Zhang Z-Z, Cai H-M, Wan X-C (2009) A method for determination of imidacloprid residue in tea with HPLC-UV. J Tea Sci 32:203–209

    Google Scholar 

  28. Hou X, Yu H, Zhu F, Li Z, Yang Q (2022) Determination of organophosphorus pesticides based on graphene oxide aerogel solid phase extraction column. Chin J Chromatogr 40:10–16

    Article  Google Scholar 

  29. Zhao D, Tang H, Wang H, Yang C, Li Y (2020) Analytes triggered conformational switch of i-motif DNA inside gold-decorated solid-state nanopores. ACS Sens 5:2177–2183

    Article  CAS  PubMed  Google Scholar 

  30. Siwy Z, Heins E, Harrell CC, Kohli P, Martin CR (2004) Conical-nanotube ion-current rectifiers: the role of surface charge. J Am Chem Soc 35:10850–10851

    Article  CAS  Google Scholar 

  31. Zhang S, Liu G, Chai H, Zhao Y-D, Yu L, Chen W (2019) Detection of alkaline phosphatase activity with a functionalized nanopipette. Electrochem Commun 99:71–74

    Article  CAS  Google Scholar 

  32. Xie Z, Yang M, Luo L et al (2020) Nanochannel sensor for sensitive and selective adamantanamine detection based on host-guest competition. Talanta 219:121213

    Article  CAS  PubMed  Google Scholar 

  33. Xue L, Yamazaki H, Ren R, Wanunu M, Ivanov AP, Edel JB (2020) Solid-state nanopore sensors. Nat Rev Mater 5:931–951

    Article  CAS  Google Scholar 

  34. Volcke C, Gandhiraman RP, Gubala V et al (2010) Reactive amine surfaces for biosensor applications, prepared by plasma-enhanced chemical vapour modification of polyolefin materials. Biosens Bioelectron 25:1875–1880

    Article  CAS  PubMed  Google Scholar 

  35. Zhang Z, Zhao Q, Yuan J, Antonietti M, Huang F (2014) A hybrid porous material from a pillar[5]arene and a poly(ionic liquid): selective adsorption of n-alkylene diols. Chem Commun 50:2595–2597

    Article  CAS  Google Scholar 

  36. Kong D, Chen Z (2018) Open-tubular capillary electrochromatography using carboxylatopillar[5]arene as stationary phase. Electrophoresis 39:363–369

    Article  CAS  PubMed  Google Scholar 

  37. Siwy ZS (2006) Ion-current rectification in nanopores and nanotubes with broken symmetry. Adv Funct Mater 16:735–746

    Article  CAS  Google Scholar 

  38. Wang L, Ma Y, Wang L (2021) High selectivity sensing of bovine serum albumin: The combination of glass nanopore and molecularly imprinted technology. Biosens Bioelectron 178:113056

    Article  CAS  PubMed  Google Scholar 

  39. Perry D, Momotenko D, Lazenby RA, Kang M, Unwin PR (2016) Characterization of Nanopipettes. Anal Chem 88:5523–5530

    Article  CAS  PubMed  Google Scholar 

  40. Zhang M, Gong Z, Yang W et al (2020) Regulating host−guest interactions between cucurbit[7]uril and guests on gold surfaces for rational engineering of gold nanoparticles. ACS Appl Nano Mater 3:4283–4291

    Article  CAS  Google Scholar 

  41. Sun J, Guo F, Shi Q et al (2019) Electrochemical detection of paraquat based on silver nanoparticles/water-soluble pillar[5]arene functionalized graphene oxide modified glassy carbon electrode. Electroanal Chem 847:113221

    Article  CAS  Google Scholar 

  42. Jafarinejad Sh (2015) Recent advances in determination of herbicide paraquat in environmental waters and its removal from aqueous solutions: a review. Int Res J Appl Basic Sci 9:1758–1774

    CAS  Google Scholar 

Download references

Funding

This work was supported in part by grants from the National Natural Science Foundation of China (21871108), the Program for Innovative Teams of Outstanding Young and Middle-Aged Researchers in the Higher Education Institutions of Hubei Province (T201702). The authors also thank Shiyanjia Lab (www.shiyanjia.com) for the support of the XPS test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Ma or Feng Liang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5991 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, Y., Ma, T., Zhang, H. et al. Gold nanoparticle functionalized nanopipette sensors for electrochemical paraquat detection. Microchim Acta 189, 251 (2022). https://doi.org/10.1007/s00604-022-05348-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-022-05348-9

Keywords

Navigation