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Abstract
The rapid spread of the novel human coronavirus 2019 (COVID-19) and its morbidity have created an urgent need for rapid 
and sensitive diagnostics. The real-time polymerase chain reaction is the gold standard for detecting the coronavirus in 
various types of biological specimens. However, this technique is time consuming, labor intensive, and expensive. Screen-
printed electrodes (SPEs) can be used as point-of-care devices because of their low cost, sensitivity, selectivity, and ability 
to be miniaturized. The ability to detect the spike protein of COVID-19 in serum, urine, and saliva was developed using SPE 
aided by magnetic beads (MBs) and a portable potentiostat. The antibody-peroxidase-loaded MBs were the captured and 
catalytic units for the electrochemical assays. The MBs enable simple washing and homogenous deposition on the working 
electrode using a magnet. The assembly of the immunological MBs and the electrochemical system increases the measuring 
sensitivity and speed. The physical and electrochemical properties of the layer-by-layer modified MBs were systematically 
characterized. The performance of these immunosensors was evaluated using spike protein in the range 3.12–200 ng mL−1. 
We achieved a limit of detection of 0.20, 0.31, and 0.54 ng mL−1 in human saliva, urine, and serum, respectively. A facile 
electrochemical method to detect COVID-19 spike protein was developed for quick point-of-care testing.
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Introduction

The rapid spread of the novel human coronavirus 2019 
(COVID-19) and its morbidity have created an urgent need 
for rapid and sensitive diagnostics. Conventional methods 
for virus detection include lateral flow strips, enzyme-linked 
immunosorbent assay, and polymerase chain reaction (PCR) 
[1]. Among these techniques, PCR is the gold standard for 
detecting coronaviruses from various types of biological 
specimens. The main drawbacks of thermal cyclers include 
long analysis time, expensive instrument setup, and the need 
for skilled personnel [2]. Various virus detection methods, 
including electrochemical biosensors, fluorescence biosen-
sors, surface-enhanced Raman scattering-based biosensors, 
colorimetric biosensors, chemiluminescence biosensors, sur-
face plasmon resonance-based biosensors, and magnetic bio-
sensors, have been developed for SARS-CoV-2 [3]. Among 
these detection principles, electrochemical biosensors can 
consist of potentiometric, amperometric, conductometric, 
voltammetric, polarographic, impedimetric, capacitive, or 
piezoelectric elements [4]. Moreover, biosensors incorpo-
rated with different recognition elements such as imprinted 
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polymers, enzymes, antibodies, DNA, and aptamers can be 
applied for virus detection [5]. These excellent reviews have 
summarized the background of the principles and mecha-
nisms for virus detection using biosensors.

Electrochemical biosensors can be used as point-of-care 
devices because of their low cost, selectivity, and ability to 
be miniaturized [6]. Electrochemical biosensors to detect 
SARS-CoV-2, such as screen-printed electrodes (SPEs) and 
field-effect transistors (FET), also have been widely used [7]. 
The electrochemical sensing of coronavirus amplicons from 
PCR has been developed using printed-circuit-board (PCB) 
electrodes [8]. In addition, SPEs have advantages such as 
easy production, low cost, disposability, sensitivity, and min-
iaturization [9, 10]. Ehsan et al. chose SPEs as impedance 
immunosensors to detect coronavirus in nasopharyngeal 
fluid samples. Antibody immobilization on a carbon elec-
trode provides a low limit of quantification (0.25 fg mL−1) of 
patients’ samples [11]. SPEs coated with gold nanoparticles 
are applied to immobilize antibodies against the coronavi-
rus nucleocapsid with a linear range from 1.0 pg mL−1 to 
100 ng mL−1 and a limit of detection of 0.4 pg mL−1 [12]. 
The Cu2O-modified SPE is used to detect the spike protein 
of SARS-CoV-2 using charge transfer resistance. The assay 
range is around 0.25 fg mL−1 to 1 μg mL−1 within 20 min, 
and it exhibits a recovery rate of ~ 97–103% in different arti-
ficial saliva, artificial nasal, and universal transport media 
[13]. These studies indicate the potential and power of dis-
posable electrochemical biosensors. However, these studies 
must also address the issues of complex manufacturing and 
the time needed for analysis if they are to be applicable for 
point-of-care testing.

Magnetic beads (MB) integrated with SPE have been 
applied to detect different biomarkers [14, 15]. In this study, 
the facile detection of spike protein in serum, urine, and 
saliva was developed using MB-based disposable SPE in 
combination with a portable potentiostat. The antibody-
peroxidase-loaded MBs are the detection platform for elec-
trochemical assays. The MBs enable simple washing and 
easy separation on the working electrode using a magnet. 
The assembly of the MBs and enzymatic reaction on the 
electrode surface can increase the measurement sensitivity. 
The electrochemical signal is generated by peroxidase using 
hydrogen peroxide and hydroquinone as the substrates. We 
systematically characterized the platform of MBs and SPEs 
by scanning electron microscopy (SEM), thermogravimetric 
analysis (TGA), and a superconducting quantum interference 
device (SQUID). The performance of these immunosensors 
was evaluated using square wave voltammetry (SWV) to 
detect spike protein added to saliva, urine, and serum.

Experimental

Reagents and materials

MB-NH2 and MB-COOH (U-108, U-118) were purchased 
from TAN Bead (Taoyuan, Taiwan). Hydroquinone (HQ), 
glutaraldehyde, sodium phosphate dibasic, sodium phos-
phate monobasic, 3-aminophenyl boronic acid hemi sulfate 
salt (APBA, 95%), polyethylene glycol (PEG, mw:3350), 
dextran sulfate (DS), glucose, bovine serum albumin (BSA), 
vitamin C, and human serum were from Sigma-Aldrich 
(MO, USA). DMEM was purchased from Elabscience (TX, 
USA). Urea was from J.T. Baker (Leicestershire, UK) and 
γ-cyclodextrin (γ-CD) was from Wako (Tokyo, Japan). 
DNase was from Worthington Co. (Lakewood, USA), and 
RNase was from GenMark (Taipei, Taiwan). Biotinylated 
detection antibody for SARS-COV-2 spike protein (S2) 
(Lot#0,918,201,221), streptavidin-HRP (Lot#G01152188), 
standard spike protein (Lot#C07152088), and ELISA kit 
were obtained from RayBio (GA, USA). Hydrogen peroxide 
(H2O2, 30%) was from Fluka (MI, USA). All other chemi-
cals were of extra pure analytical grade and used without 
further purification. Phosphate buffer solution (0.1 M and 
pH 7.0) was the diluent to study the reactions. Water was 
freshly prepared using the ultrapure water system (Sartorius 
Lab instruments GmbH & Co, Gottingen, Germany). SPEs 
containing a counter, working, and Ag reference electrodes 
were from Zensor (TE-100, Taichung, Taiwan).

Apparatus

The morphology and size of modified MBs were character-
ized using a scanning electron microscope (SEM, HITACHI 
S-4700, Tokyo, Japan), transmission electron microscope 
(TEM, JM-1011, JEOL, Tokyo, Japan), and ZetaSizer® 
Nano ZS 90 (Malvern, Worcestershire, UK). The carbon-
coated copper grid was used to load the nanomaterials for 
TEM analysis. Thermal decomposition of modified MBs 
was analyzed using Q50 Analyzer (TA Instruments, DE, 
USA) in a nitrogen environment at various heating rates. The 
electrochemical properties of the SPE were analyzed using 
a portable electrochemical simulator (Zensor, ECAS-100). 
All the UV spectra were recorded by a microplate reader 
(SpectroStar, BMG, Ortenberg, Germany).

Preparation of layer‑by‑layer modified MBs

A 100 µL aliquot of the MB-NH2 was transferred into a 
1.5 mL Eppendorf tube. The MBs were washed twice with 
1 mL of 0.1 M phosphate buffer solution for 10 min, and 
the supernatant was discarded. Amine groups of MBs were 
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activated by 60 min continuous vortex in 100 µL of glutar-
aldehyde (4 ×) solution. Then APBA was captured onto the 
activated beads for 60 min at 25 °C under continuous vortex. 
Separately, 100 × biotin antibody and 100 × of streptavidin-
HRP were mixed in a tube and incubated for 45 min at 4 °C. 
The MB/APBA were washed twice with 0.1 M phosphate 
buffer solution, then 100 µL Ab-HRP solution was added to 
the MB/APBA and incubated for 30 min at 25 °C to form 
MB/APBA/Ab-HRP. Then, the MB/APBA/Ab-HRP was 
further blocked in 5% glucose (GLU) for 30 min. Subse-
quently, the MB/APBA/Ab-HRP/GLU was washed twice 
with 1 mL of 0.1 M phosphate buffer solution (pH 7.0). 
After the wash and separation, 100 µL spike protein in serum 
was added to MB/APBA/Ab-HRP/GLU and incubated for 
30 min at room temperature.

Fabrication and assay of the MB‑based 
immunosensor

The fabrication of the MB-based immunosensor is outlined 
in Fig. 1. First, an SPE was cleaned by sonication with DDW 
(10 s), and a neodymium magnet on the backside of the 
SPE was used to attract MB/APBA/Ab-HRP/GLU on the 
working electrode. Five microliters of modified MB (MB/

APBA/Ab-HRP/GLU) was added to the SPE. The solution 
of 5.0/5.0 mM H2O2/HQ solution (95 μL) was added to the 
SPE surface and waited for 5 s for SWV measurement. SWV 
measurement of HRP signal on SPE was obtained by apply-
ing a potential range of -0.4 ~ 0.2 V in a H2O2/HQ solution as 
previously described [16].

Optimization of measuring parameters and signal 
definition

To optimize measurement, operation factors such as concentra-
tions of antibody, HRP, H2O2/HQ, incubation time of antibody, 
reaction time of MBs were evaluated. Only one parameter was 
varied, and the other parameters were fixed. The SWV sig-
nal was obtained using 10 ng mL−1 serum spiked protein in 
this experiment. Each signal was repeated three times (n = 3). 
Based on the signal/blank (S/B) ratio, the optimal parameters 
were selected. The S/B ratio was calculated using the previous 
definition [17, 18]:

S∕B ratio = ΔI
10
∕ΔI

0

ΔI
0
= IPBS − IHS

ΔI
10

= IPBS − IHS+spike protein

Fig. 1   Schematic illustration for spike protein detection using the 
MB-based electrochemical immunosensor. MB/APBA/Ab-HRP/
GLU/SP was synthesized using layer-by-layer modification. Ab-HRP 
was prepared by incubating a biotinylated antibody with streptavidin-
HRP. 3-Aminophenyl boronic acid: APBA, glucose: GLU, spike pro-

tein: SP. Ab-HRP binds preferentially to APBA on MB. Unbound 
APBA was blocked by GLU. Spike protein binds to Ab-HRP to form 
the immune complex, which can impede the substrate H2O2 and elec-
tron mediator HQ from reaching HRP’s active site and electrode, and 
thus decrease in electrochemical signal
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where IPBS is the signal of MBs treated with phosphate 
buffer solution, IHS is the signal of MBs treated in human 
serum without spike protein, IHS + spike protein is the signal of 
MBs treated with 10 ng mL−1 spike protein in human serum. 
The SWV signals of MBs were obtained using the 5.0 mM 
H2O2/5.0 mM HQ solution. The principle of the S/B calcula-
tion was demonstrated in Fig. S1.

SWV and EIS assay procedure

Cyclic voltammetry (CV) and electrochemical impedance 
spectroscopy (EIS) were used to study the different steps 
of immobilization, whereas the quantitative measurements 
were done using SWV. CV was cycled from − 0.5 to 0.6 V 
with a scan rate of 50 mV s−1. SWV was recorded from 200 
to − 400 mV with the increment time of 5 ms, amplitude of 
75 mV, sample width of 6 ms, and pulse period of 100 ms. 
EIS was run with amplitude 100  mV, frequency range 
1 ~ 1000 Hz, and initial potential 20 mV. The real and imagi-
nary components from impedance data of EIS were plotted 
as Nyquist plots. A semicircle in the Nyquist plot corre-
sponds to the electron-transfer process, and the diameter of 
the semicircle is equal to the resistance of charge transfer 
(Rct). The EIS data of the modified MBs were also regressed 
by software (Zsimpwin) using the resistor–capacitor-resistor 
equivalent circuit to obtain the resistance and capacitance 
of the MB-loaded electrode. Histogram of charge transfer 
resistance and peak current of different MBs were studied. 
Assays were performed in triplicate, and the error bar repre-
sented the standard deviation of the measurement. The Ks by 
the CV method was evaluated using the Nicholson method 
as described previously [17].

Association constant analysis

In order to understand spike protein capture by the immobi-
lized antibody on MBs, the association constant (Ka) for the 
binding between spike protein and the antibody was deter-
mined using EIS and the Langmuir isotherm assumptions 
such as monolayer adsorption and equal binding energy for 
all binding sites. θ represents the occupied ratio of antibody 
binding sites, and Ka is related to the equilibrium adsorption 
between spike protein and antibody on MBs. The Ka and θ 
were calculated using the Rct data from EIS as described 
previously [17].

Statistical analysis

In this study, all data are reported as means ± standard devia-
tions (SD) in three repeats. The mean and SD of measure-
ments were calculated using Microsoft Excel to evaluate the 
reproducibility. The data are expressed as mean ± standard 
deviation from three repeats. To predict the limit of detection 

(LOD) and recovery rate (%), the following formulas were 
used [19]:

where SD is the standard deviation of the lowest concentra-
tion of spike protein and m is the slope of the calibration 
curve.

Results and discussion

Principle of SARS‑CoV‑2 biosensor

The detection mechanism and fabrication steps of the devel-
oped MB-based immunosensor for the detection of COVID-
19 spike protein are demonstrated in Fig. 1. Layer-by-layer 
modified MBs are used to fasten the assay through simul-
taneous capture and concentration of the targets with the 
aid of a magnet. The APBA modified MBs (MB/APBA) 
can immobilize Ab-HRP via diol-boronic ester bond to pre-
pare the MB/APBA/Ab-HRP and then glucose treatment to 
obtain MB/APBA/Ab-HRP/GLU. HRP is one of the most 
extensively studied and commonly used enzymes for the 
construction of H2O2 biosensors. Generally, direct transfer 
of an electron between HRP and an electrode is difficult 
because the active sites of HRP are deeply buried in a thick 
protein shell and because the large distance between the 
active sites and the electrode surface will slow down the 
electron transfer. Electron transfer via a mediator like HQ, 
however, is more effective for establishing an electrical con-
nection between the redox centers and the electrode [20]. In 
this work, H2O2 was a substrate reduced by Ab-HRP, and 
HQ was used as a mediator for electron transduction. Previ-
ously, chorionic gonadotrophin has been proved to decrease 
the catalytic activity of the Ab-HRP on the detection probe 
and reduce the current signal on the immunosensor [21]. 
In another paper, when the antigen of parathyroid hormone 
increased, the catalytic activity (Kcat) of Ab-HRP on SPCE 
decreased, and the signal current decreased [17]. These 
papers suggest the mechanism as follows. When the con-
centration of antigen increased, the thickness of immuno-
complexes on MBs increased. The non-electroactive com-
plex was a blocking layer against the mass transfer of H2O2 
to HRP sites and also impeded the transfer of the electron 
mediator HQ to the electrode. EIS is an effective method 
for probing the features of an electrode using an impedance 
signal. We also found an increase in the Rct values after the 
formation of immuno-complexes on MBs when an increase 

LOD = 3 ×
SD

m

Recovery(%) =
found

added
× 100
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in spike protein concentrations. This could be ascribed to 
the formation of the antigen–antibody complex, which could 
increase the impedance and hinder the transfer of electrons 
to the electrode. This explained the spike protein concentra-
tion was inversely proportional to the current signal.

Characterization of modified MBs

The morphology of modified MBs was investigated by scan-
ning electron microscope (SEM) and transmission electron 
microscope (TEM) imaging. Figure 2(A–D) shows micro-
scale images of the original MBs and modified MBs with a 
1.0 µm scale bar. All images were obtained with 15 kV volt-
age. MBs are typically sphere shape, as seen in Fig. 2(A); 
MB/APBA has an aggregated cloud-like structure, as in 
Fig. 2(B), and MB/APBA/Ab-HRP have expanded clusters, 
possibly from the interaction of Ab-HRP with increased size, 
as shown in Fig. 2(C). An aggregated globular structure was 
observed in Fig. 2(D). In addition, the various sizes of the 
MBs were characterized using a Zeta sizer. An increase in 
size from 978 to 1041 nm was indicated the conjugation 
of APBA on the MB surface. Similarly, after immobilizing 
Ab-HRP, the size increased to 1535 nm and finally reached 
2674 nm after adsorption of spike protein (Table S1). To 
select MBs, we performed a test with two kinds of MB, 
one containing the NH2 group and the other containing the 
COOH group.

We evaluated HRP adsorption using two kinds of MBs 
modified by APBA. The crosslinkers tested for MB-NH2 and 
MB-COOH were glutaraldehyde and EDC/NHC, respec-
tively. We measured the APBA remaining in the solution 
using UV absorbance at 233 nm. By using the APBA stand-
ard as a reference, the concentration of APBA was evalu-
ated and plotted, as in Fig. S2(A). To confirm the effect of 

correct orientation, glutaraldehyde is used as a cross-linker 
to conjugate Ab-HRP to magnetic beads without APBA. The 
MB-NH2 was directly activated using a glutaraldehyde solu-
tion to form MB-NH2/GA. The Ab-HRP was added to the 
MB-GA and incubated for 30 min, and a TMB assay was 
used to evaluate the HRP activity of the MBs. Figure S2(B) 
shows the comparison of the calibration curve of MB with 
and without the APBA layer. MB-NH2/GA/APBA/Ab-HRP 
had higher activity (slope) than MB-NH2/GA/Ab-HRP. The 
APBA can covalently bond to 1,2- and 1,3-diols of the car-
bohydrate moiety of glycoproteins that can immobilize the 
Ab-HRP on the MBs. Previously, antibodies were immo-
bilized using their lysine, arginine, and glutamine residues 
by random conjugation of glutaraldehyde on electrode sur-
faces, resulting in unsatisfactory activity in antigen target-
ing [22]. The immobilization of the oriented antibody with 
the proper targeting activity has been achieved using APBA 
[23]. Owing to the oriented immobilization of Ab-HRP via 
boronic acid groups on MB, more activity of the Ab-HRP 
was preserved in this study. Glutaraldehyde randomly con-
jugates the Ab-HRP using the amino-acid residues with 
the amines on MB-NH2, resulting in the decrease of HRP 
activity. The presence of APBA on the MB surface help to 
preserve more Ab-HRP activity, as shown in Fig. S2(B). Fig-
ure S3(A–D) shows TEM images of the modified MBs. The 
two MBs (MB-NH2, MB/APBA) had a similar pattern. How-
ever, the comparison shows that MB-NH2 looks less aggre-
gated with a smaller size. Upon immobilization, a round 
aggregated structure with increased size was observed. 
Antibody immobilization and signal amplification are two 
key factors in target detection at ultra-low concentrations. 
The boronic acid in APBA forms cyclic esters with 1,2- and 
1,3-diols on the carbohydrate moiety of glycoproteins that 
can immobilize the antibody on the MBs [24, 25]. APBA 

Fig. 2   SEM images of layer-by-layer modified MBs AMB-NH2, B MB/APBA, C MB/APBA/Ab-HRP, D MB/APBA/Ab-HRP/GLU/spike pro-
tein with scale bar: 1 µm, and E size distribution of modified MBs
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can maintain the correct antibody orientation and improve 
antibody targeting efficiency [26]. Therefore, we adopted 
APBA as a ligand to the immobilized antibody on MB to 
maintain the correct orientation of antibodies.

The thermal decomposition of MBs was analyzed under a 
nitrogen atmosphere and a heating rate of 10 °C min −1. The 
TGA result is shown in Fig. 3(A). There are two major endo-
thermic procedures, found at 334 and 380 °C, respectively. 
The first weight loss region ranging from 61 to 271 °C is 
responsible for 2% weight loss. The first weight-loss region 
shall be named as the thermal release of crystal water in 
MB-APBA. Second weight loss indicates high decom-
position temperature, this weight loss region is regarded 
as the destruction and decomposition of the APBA layer 
under thermal effect. On the other hand, the TGA analysis 

of MB-NH2 showed only one decomposition process, start-
ing at 280 °C. For a further understanding, the magnetic 
properties of our MB were measured using SQUID. The 
magnetization curve of MB and MB/APBA were measured 
and compared in Fig. 3(B).

Electrochemical characterization

EIS has been performed to characterize the stepwise fabri-
cation procedures of this immunosensor, and the effect of 
electrode modification can be reflected on Rct as reported 
by Ren et al. [27]. Impedance results during the MB modi-
fication are shown in Fig. 4(A). In Fig. 4(B), the MB-free 
electrode shows the lowest value of Rct (1238 Ω). After 
conjugating MB-NH2 with APBA, the Rct value increased 

Fig. 3   A Thermogravimetric analysis of modified MBs; B magnetic hysteresis of MB-NH2 and MB/APBA

Fig. 4   A Impedance results of layer-by-layer modified MBs using 3 mM ferricyanide in phosphate buffer solution. B Histogram of charge trans-
fer resistance of modified MBs on bare SPE. Error bar represents the standard deviation from three repeats n = 3

168   Page 6 of 12 Microchim Acta (2022) 189: 168



1 3

to 3316 Ω. Then, there was a significant increase in the Rct 
value after the antibody was immobilized on the MB surface. 
After blocking with glucose, the MB/APBA/Ab-HRP/GLU 
had the highest Rct. The solution resistance and the double-
layer capacitance were similar after layer-by-layer modifica-
tion on MBs, suggesting these parameters were not affected 
by the APBA conjugation and antibody immobilization [10, 
28]. However, Rct values were significantly influenced by 
the binding of spike protein on MBs. The hindrance to the 
electron transfer process, blocking of a redox reaction, and 
the hamper of electron tunneling to the electrode attributed 
to the increasing thickness of the immuno-complex formed 
on MB surfaces [29]. EIS is a non-destructive and label-free 
measurement for the immuno-complex by applying the small 
amplitude perturbation to collect the impedance information 
of the electrode.

Thus, Rct results confirmed the successful fabrication of 
the immunosensor. The kinetic parameters of modified MBs, 
such as electron transfer rate constant (Ks, cm s−1), were 
compared after modification (Fig. S4 and Table S2). The 
oxidation and reduction peak currents in CV from different 
electrode surfaces can be theoretically attributed to electron 
transfer rates (Ks) and Rct. The MB-free SPE had higher Ks; 
upon modification, the values of the Ks decreased. MB-NH2 
has a Ks value of 0.19 cm s−1, and upon coating with APBA, 
the Ks value decreases slightly to 0.18 cm s−1. After Ab-
HRP was immobilized, there was a significant decrease in 
Ks (0.17 cm s−1). Finally, after glucose blocking the value 
decreased to 0.13 cm s−1 as in Fig. S4(B). The reduction of 
electron transfer rate after the layer-by-layer modification 
was observed.

Optimization of the experimental parameter

Optimization of HRP and antibody dilution

The antibody, as a sensing element, must have a strong 
immobilization on the MBs with a good homogenous ori-
entation to detect spike protein efficiently. Moreover, the 
modified MBs must be stable enough to bear the modifica-
tion condition and the electrochemical assay. For HRP opti-
mization, various dilution from 50 to 200 × was tested. The 
delta current (ΔI) rose as HRP folds increased to 100 × and 
then decreased. One 100-–fold dilution had the highest 
S/B ratio, as shown in Fig. S5(A). Based on the S/B ratio, 
100 × HRP was selected as the optimized HRP fold. Simi-
larly, for antibody dilution, different antibody folds (50 to 
200 × were chosen) and an optimized HRP fold (100 ×) were 
selected for this test. The delta current gradually decreased 
as the antibody fold increased, as noted in Fig. S5(B). The 
optimized condition for the antibody fold was 100 × as it had 
the highest S/B ratio.

Optimization of incubation time, H2O2/HQ concentration, 
and blocking process

The effects of incubation time and H2O2/HQ concentration 
were investigated for sensitive electrochemical detection of 
COVID-19 spike protein. Given the incubation time of the 
antibody, immobilization plays a key role in binding with the 
spike protein. To improve the total assay time, the incubation 
times of Ab-HRP were tested. To optimize incubation time, 
10, 20, 30, and 60 min were tested. The optimized Ab-HRP 
fold was selected for this test. The SWV signal indicated that 
30 min had the highest S/B ratio, as seen in Fig. S5(C). The 
optimization process led to an incubation period of 30 min 
for the 100 × dilution HRP and 100 × Ab concentration. 
Similarly, to optimize the H2O2/HQ concentration, 2.5/2.5, 
5/5, 10/10, and 20/20 mM were tested. The delta current 
(ΔI) was increased with H2O2/HQ concentration, as seen 
in Fig. S5(D). The highest S/B ratio occurred at 5/5 mM 
of H2O2/HQ. Therefore, it was selected for further testing.

Previously, boronic acid-functionalized MB (BA-MB) 
has been reported to isolate immunoglobulin G synthesized 
by recombinant cells [30]. Glucose has the BA binding abil-
ity via the cis-diol linkage and affects the antibody purifica-
tion by BA-MB. Borlido et al. also demonstrate that glucose 
can compete the BA on MB with the glycoproteins [31]. 
Using this concept, we first immobilized the Ab-HRP and 
sequentially blocked the free APBA binding sites using the 
optimized glucose concentration to avoid the nonspecific 
binding from the samples. The blocking process is very cru-
cial for immunosensor preparation because it protects the 
immobilized antibodies and avoids nonspecific binding of 
impurities on electrodes. Therefore, six blocking agents were 
added to the MB surface and evaluated for their ability to 
prevent nonspecific binding. The chemicals tested included 
5% dextran sulfate, bovine serum albumin, phosphate buffer 
solution, gamma-cyclodextrin, glucose, polyethylene glycol. 
Based on experimental data, the S/B ratio of glucose was 
higher than BSA shown in Fig. S6. Therefore, glucose was 
chosen to block the free APBA on the MB surface. The opti-
mized parameters are summarized in Table 1. In addition, 
other related parameters, such as the APBA concentration 
and the incubation time of the spike protein, were tested 
using a HRP activity assay. The optimized APBA concen-
tration on MBs was 0.1%, and the incubation time of spike 
protein was found to be 30 min (Fig. S7).

Detection of spike protein

The analytical performance of the MB-based immunosen-
sor was investigated by SWV. The dose–effect of spike pro-
tein ranging from 3.12 to 200 ng mL−1 was evaluated. We 
investigated the sensor’s ability to detect the spike protein of 
SARS-CoV-2 added in human saliva, urine, and serum. The 
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SWV spectra of saliva, urine, and serum samples are shown 
in Fig. 5(A, B, C), and their standard curves are shown in 
Fig. 5(D, E, F). The current signal decreased with increas-
ing doses of spike protein because higher concentrations 
of antigen decreased the current signal of the HRP-labeled 
antibody. This was because the antigen occupied the limited 
binding sites of antibody-HRP to form an immunocomplex. 
The current was inversely proportional to the concentration 
of spike protein, and there was a linear dependence on spike 
protein concentrations in the range of 3.12 to 200 ng mL−1. 
This yielded sensitivities of 4.44, 2.49, and 0.84 µA ng−1 mL 
and LODs of 0.20, 0.31, and 0.54 ng mL−1 in human saliva, 
urine, and serum, respectively. The dose-dependent SWV 
signals could be explained by Rct results. The thickness of 
immuno-complexes on MBs increased when the spike pro-
tein increased. The inert complex hindered the H2O2/HQ 

reaction with HRP and also reduced the electron transfer of 
the redox mediator to the SPE. Previous reports also dem-
onstrate the targets of immunosensors decrease the activ-
ity of the HRP-labelled antibody on the immunosensor and 
reduce the current signal [21]. A detailed comparison of 
LOD is shown in Table S3. The data and recovery of SWV, 
ELISA, and EIS are summarized in Table 2. The developed 
MBs can also be applied to the colorimetric assay. In the 
absence of spike protein, the TMB was converted by MB/
APBA/Ab-HRP/GLU and became blue. The dose–effect of 
spike protein on EIS is shown in Fig. 6(A). The Rct value 
increases with an increase in the dose of the spike protein. 
The linear relationship between the concentration of spike 
protein and the Rct value is shown in Fig. 6(B). Based on 
the equation, we evaluated the association constant (Ka) and 
found it to be 4.11 ng−1 mL.

Table 1   Summary of 
optimization of experimental 
parameters

* HRP, horseradish peroxidase; Ab: antibody; MB, magnetic bead; HQ, hydroquinone; H2O2, hydrogen per-
oxide

Parameter Test range S/B results Chosen setting Best S/B ratio

HRP fold 50–400 ×  2.39–3.78 100 ×  3.78
Ab fold 50–400 ×  2.78–3.81 100 ×  3.81
Incubation time (Ab) 10–60 min 2.07–3.82 30 min 3.82
H2O2/HQ ratio 2.5/2.5–20/20 mM 2.58–3.83 5/5 mM 3.83
Reaction time of MB 5–20 s 3.16–3.27 5 s 3.27
MB loading volume 1–7 µL 2.60–3.80 5 µL 3.80

Fig. 5   SWV signals generated from spike protein added in A saliva, 
B urine, C serum. Calibration curves based on peak currents from 
spike protein added in D saliva, E urine, F serum using MB-based 
immunosensors. Detection was carried out on the working surface 

of SPE by placing an external magnet and loading 5 µL of sample 
and 95 µL of HQ/H2O2. Each data point represents the mean ± SD of 
three separate measurements were obtained by using the same SPE. 
The working potential was around 92 mV
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Interference test

To study the selectivity of the fabricated immunosensors, 
human serum spiked with 10 ng mL−1 of spike protein was 
evaluated in the presence of potentially interfering com-
pounds in serum such as vitamin C, serum albumin, urea, 
RNase, DNase, trypsin, immunoglobulin, and cell culture 
medium (DMEM). Spike protein (10 ng mL−1) was used as 
the positive control for the SWV method. Spike protein had 
the highest S/B ratio (control). In the presence of an inter-
ferent, the MB-based immunosensor still showed a similar 
current response. Urea and DNase would reduce the sig-
nal currents and S/B ratios. The other interferents did not 
significantly affect the spike protein detection of MB-based 
immunosensor (Fig. 7).

Stability and storage test

The developed MBs were stored at 4 °C for 49 days to 
evaluate their storage stability. MB/APBA was treated by 
Ab-HRP and 5% glucose to freshly prepare MB/APBA/Ab-
HRP/GLU. The storage stability of modified MB was evalu-
ated based on the S/B ratio and SWV signal in Fig. 8(A). 
After 49 days of storage of MB/APBA, the S/B ratio was 
3.66, which indicated it has great sensing ability. For MB/

APBA/Ab-HRP/GLU, the S/B ratio on Day 1 was 3.44, and 
after 49 days of storage, it declined to 2.85. The activity and 
targeting of antibody-peroxidase on MBs could be retained 
after 49 days of storage, as shown in Fig. 8(B). More than 
80% of the S/B ratio had been maintained as compared with 
freshly prepared MBs. This suggests that the antibody-
immobilized MBs had good stability.

A comparison of the published immunosensors to this 
study is summarized in Table 3. These reported immunosen-
sors adopted the EIS, DPV, SWV, and CV methods to quan-
tify the targets on SARS-CoV-2. For example, Eissa and 
Zourob integrated sample collection and detection into a 
single platform using diazonium-modified SPEs for nucle-
ocapsid detection. They achieved a limit of detection of 
0.8 pg mL−1 for SARS-CoV-2, and there was no significant 
cross-reactivity against the influenza antigen [32]. SPEs 
coated with graphene oxide and gold nanostars can detect 
the viral spike protein, with a superior limit of detection of 
1.68 × 10−22 μg mL−1 [33]. In these papers, nanomaterials 
such as MBs and gold nanoparticles are used to amplify the 
electrochemical signal using different mechanisms, includ-
ing a large active surface, extraordinary electron-transfer 
ability, and multivalent affinity with the enzyme and anti-
body. Very recently, an electrochemical assay was developed 
for Nucleocapsid protein using primary antibody-labeled 

Table 2   Comparison of recovery yield of spike protein by EIS, SWV, and ELISA method*

* Recovery (%) = found
added

× 100 ; SWV, square wave voltammetry; EIS, electrochemical impedance spectroscopy. The mean ± standard deviation is 
from three independent measurements (n = 3)

Spike protein (ng 
mL−1)

EIS found (ng mL−1) EIS recovery 
(%)

SWV found (ng 
mL−1)

SWV recovery 
(%)

ELISA found (ng mL−1) ELISA 
recovery 
(%)

6.25 6.0 ± 0.5 96 7.4 ± 0.5 118 17.6 ± 5.6 × 10−3 282
12.5 13.2 ± 0.1 105 16.9 ± 0.4 135 19.3 ± 2.9 × 10−2 154
25 24.6 ± 0.1 98 22.0 ± 0.4 88 34.3 ± 1.6 × 10−2 137
50 44.3 ± 0.8 88 48.8 ± 0.5 97 34.3 ± 1.4 × 10−3 68
100 124 ± 2.1 124 77.7 ± 0.8 77 114.0 ± 8 × 10−3 114
200 179 ± 0.2 90 234 ± 0.3 117 211.0 ± 2 × 10−3 106

Fig. 6   A Impedance results 
for the measurement of the 
association constant using spike 
protein, B standard curve of 
△RCT(Ci)/RCT(C0) versus spike 
protein concentration to obtain 
the associate constant
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Fig. 7   SWV histogram of the 
MB-based immunosensor (MB/
APBA/Ab-HRP/GLU) under 
the interfering compounds. The 
tested spike protein concen-
tration in human serum was 
10 ng mL−1. n = 3

Fig. 8   Stability tests of modified MBs A MB/APBA and B MB/APBA/Ab-HRP/GLU after 49-day storage at 4 °C. SWV was run with amplitude 
75 mV, pulse period 100 mV, and initial potential (200 to − 400 mV) using H2O2/HQ. The tested spike protein concentration was 10 ng mL−1

Table 3   Comparison of various nanomaterial-based electrochemical methods for detection of SARS-CoV-2

* DPV, differential pulse voltammetry; EIS, electrochemical impedance spectroscopy; SWV, square wave voltammetry

Nanomaterials/electrode used Target Method* Linear range (ng mL−1) LOD (ng mL−1) Reference

Graphene/carbon electrode SARS-CoV-2 S protein EIS 2.5 × 10−7–1 2.5 × 10−7 [11]
AuNP-modified SPE SARS-CoV-2 N protein SWV 1–102 4 × 10−4 [12]
Diazonium-modified SPE SARS-CoV-2 N protein SWV 10−3–103 8 × 10−4 [32]
MB-based SPE SARS-CoV-2 N protein SWV 10–103 19 [33]
PCB electrode Amplicons from PCR DPV 0.1–2 × 102 10 [34]
MB-based SPE SARS-CoV-2 S protein SWV 3.12–2 × 102 Saliva: 0.20

Urine: 0.31
Serum: 0.54

This work
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MB to capture antigen and secondary antibody-labeled phos-
phatase to detect antigen and generate enzymatic product 
naphthol [34]. The carbon black modified SPE then con-
verted the naphthol to the current signal. This novel device 
of Fabiani et al. provides low LOD and rapid analysis. How-
ever, two antibodies and several wash steps were needed as 
compared to the single antibody and simultaneous detection 
in the present study. Our proposed MB-based immunosensor 
could detect spike protein using the SWV and EIS methods 
with a fast procedure and acceptable sensitivity. However, 
these following challenges still need to be carefully inves-
tigated in future studies. This developed method is limited 
to the viremia stage, where viruses enter the bloodstream 
and have access to the rest of the body. Because the clinical 
samples contain proteins, cells, and biomolecules that can 
interfere with the selectivity and sensitivity of the developed 
biosensors, the evaluation using in patient’s samples from 
nasopharyngeal swabs can prove the clinical application of 
this system. Finally, the antibody used in this study has the 
limits of being heat sensitive and unstable to long-term stor-
age, which will need further improvement.

Conclusion

We developed a magneto immunosensor for detecting the 
SARS-CoV-2 spike protein in three body fluids by combin-
ing MB-based SPEs and a portable potentiostat. The sen-
sitive and reliable detection was achieved in a label-free 
format by monitoring the change in the SWV current upon 
binding with the spike protein. This MB can detect spike 
protein by electrochemical methods with good stability and 
reproducibility. This portable device can also be used to 
confirm the conventional analysis of spike protein by lateral 
flow and ELISA-like methods. This platform’s advantages 
include low-cost MBs, disposable electrodes, label-free 
detection, and facile assay in contrast to the expensive PCR 
instruments. We demonstrated rapid electrochemical analy-
sis of spike protein with an acceptable sensitivity, which has 
the potential to be used for point-of-care diagnostics.
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