Skip to main content
Log in

Mesoporous nanomaterial-assisted hydrogel double network composite for mixed-mode liquid chromatography

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

By introducing functional groups such as quaternary amine groups, sulfonic acid groups, triazine groups, and other mespore nanomaterials into the hydrogel, better separation effect of some organic framework materials has been obtained. Due to a reasonable design and preparation strategy, the hydrogel composite-modified silica can be used in the selective separation of various analytes such as pesticides, alkylbenzenes, polycyclic aromatic hydrocarbons, nucleosides/bases, benzoic acids, antibiotics, and carbohydrates. Through the exploration of chromatographic retention behavior, it is proved that the column can be used in mixed-mode liquid chromatography. The intra-day relative standard deviation for retention time of this new stationary phase is 0.12–0.16% (n = 10), and the inter-day relative standard deviation is less than 0.39% (n = 5). This new stationary phase can also be used for separation in complex samples. The limit of detection (LOD) for chlorotoluron in farm irrigation water is 0.21 µg/L and the linear range is 2–250 µg/L. After optimizing the chromatographic conditions, the highest efficiency of the hydrogel column in RPLC and HILIC modes has reached 32,400 plates/m (chlorobenzuron) and 41,300 plates/m (galactose). This new type of hydrogel composite is a porous network material with flexible functional design and simple preparation method and its application has been expanded in liquid chromatography separation successfully.

Graphical abstract

The hydrogel composed of triallyl cyanate cross-linking agent and 3-(2-(methacryloyloxy) ethyl) dimethylamine) propane-1-sulfonate (SBMA) monomer which were co-modified on the surface of mesoporous silica with MOF-919 for separation in mixed-mode liquid chromatography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Huang Y, Liu J, Wang J, Hu M, Mo F, Liang G, Zhi C (2018) An intrinsically self-healing NiCo vertical bar vertical bar Zn rechargeable battery with a self-healable ferric-ion-crosslinking sodium polyacrylate hydrogel electrolyte. Angew Chem Int Ed 57(31):9810–9813

    Article  CAS  Google Scholar 

  2. Zhang YZ, Lee KH, Anjum DH, Sougrat R, Jiang Q, Kim H, Alshareefit HN (2018) MXenes stretch hydrogel sensor performance to new limits. Sci Adv 4(6):eaat0098. https://doi.org/10.1126/sciadv.aat0098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Le X, Shang H, Yan H, Zhang J, Lu W, Liu M, Wang L, Lu G, Xue Q, Chen T (2021) A Urease-containing fluorescent hydrogel for transient information storage. Angew Chem Int Ed 60(7):3640–3646

    Article  CAS  Google Scholar 

  4. Jiao L, Xu W, Yan H, Wu Y, Gu W, Li H, Du D, Lin Y, Zhu C (2019) A dopamine-induced Au hydrogel nanozyme for enhanced biomimetic catalysis. Chem Commun 55(66):9865–9868

    Article  CAS  Google Scholar 

  5. Zhou Q, Dong X, Xiong Y, Zhang B, Lu S, Wang Q, Liao Y, Yang Y, Wang H (2020) Multi-responsive lanthanide-based hydrogel with encryption, naked eye sensing, shape memory, self-healing, and antibacterial activity. ACS Appl Mater Inter 12(25):28539–28549

    Article  CAS  Google Scholar 

  6. Zhao Z, Wang Z, Li G, Cai Z, Wu J, Wang L, Deng L, Cai M, Cui W (2021) Injectable microfluidic hydrogel microspheres for cell and drug delivery. Adv Funct Mater 31(31):2103339. https://doi.org/10.1002/adfm.202103339

    Article  CAS  Google Scholar 

  7. Ma Y, Hua M, Wu S, Du Y, Pei X, Zhu X, Zhou F, He X (2020) Bioinspired high-power-density strong contractile hydrogel by programmable elastic recoil. Sci Adv 6(47):2520–2530

    Article  Google Scholar 

  8. Li J, Mooney DJ (2016) Designing hydrogels for controlled drug delivery. Nat Rev Mater 1(12):16071

    Article  CAS  Google Scholar 

  9. Liu J, Qu S, Suo Z, Yang W (2021) Functional hydrogel coatings. Natl Sci Rev 8(2):254–272

    Article  Google Scholar 

  10. Okubo K, Ikeda K, Oaku A, Hiruta Y, Nagase K, Kanazawa H (2018) Protein purification using solid-phase extraction on temperature-responsive hydrogel-modified silica beads. J Chromatogr A 1568:38–48

    Article  CAS  Google Scholar 

  11. Fan F, Liang X, Wang S, Wang L, Guo Y (2020) A facile process for the preparation of organic gel-assisted silica microsphere material for multi-mode liquid chromatography. J Chromatogr A 1628:461472–461480

    Article  CAS  Google Scholar 

  12. Fan F, Lu X, Wang S, Liang X, Wang L, Guo Y (2021) Non-conjugated flexible network for the functional design of silica-based stationary phase for mixed-mode liquid chromatography. Talanta 233:122548–212555

    Article  CAS  Google Scholar 

  13. Wang X, Xu D, Jaquet B, Yang Y, Wang J, Huang H, Chen Y, Gerhard C, Zhang K (2020) Structural colors by synergistic birefringence and surface plasmon resonance. ACS Nano 14(12):16832–16839

    Article  CAS  Google Scholar 

  14. Kim I, Bang W-Y, Park WH, Han EH, Lee E (2019) Photo-crosslinkable elastomeric protein-derived supramolecular peptide hydrogel with controlled therapeutic CO-release. Nanoscale 11(37):17327–17333

    Article  CAS  Google Scholar 

  15. Lee TH, Oh JY, Jang JK, Moghadam F, Roh JS, Yoo SY, Kim YJ, Choi TH, Lin H, Kim HW, Park HB (2020) Elucidating the role of embedded metal-organic frameworks in water and ion transport properties in polymer nanocomposite membranes. Chem Mater 32(23):10165–10175

    Article  CAS  Google Scholar 

  16. Jiang H, Yang K, Zhao X, Zhang W, Liu Y, Jiang J, Cui Y (2021) Highly stable Zr(IV)-based metal-organic frameworks for chiral separation in reversed-phase liquid chromatography. J Am Chem Soc 143(1):390–398

    Article  CAS  Google Scholar 

  17. Liu Q, Song Y, Ma Y, Zhou Y, Cong H, Wang C, Wu J, Hu G, O’Keeffe M, Deng H (2019) Mesoporous cages in chemically robust MOFs created by a large number of vertices with reduced connectivity. J Am Chem Soc 141(1):488–496

    Article  CAS  Google Scholar 

  18. Jiao C, Majeed Z, Wang G-H, Jiang H (2018) A nanosized metal-organic framework confined inside a functionalized mesoporous polymer: an efficient CO2 adsorbent with metal defects. J Mater Chem A 6(35):17220–17226

    Article  CAS  Google Scholar 

  19. Zuo H, Guo Y, Zhao W, Hu K, Wang X, He L, Zhang S (2019) Controlled fabrication of silica@covalent triazine polymer core shell spheres as a reversed-phase/hydrophilic interaction mixed mode chromatographic stationary phase. ACS Appl Mater Inter 11(49):46149–46156

    Article  CAS  Google Scholar 

  20. Li X, Li B, Liu M, Zhou Y, Zhang L, Qiao X (2019) Core-shell metal-organic frameworks as the mixed-mode stationary phase for hydrophilic interaction/reversed-phase chromatography. ACS Appl Mater Inter 11(10):10320–10327

    Article  CAS  Google Scholar 

  21. Huang J, Han X, Yang S, Cao Y, Yuan C, Liu Y, Wang J, Cui Y (2019) Microporous 3D covalent organic frameworks for liquid chromatographic separation of xylene isomers and ethylbenzene. J Am Chem Soc 141(22):8996–9003

    Article  CAS  Google Scholar 

  22. Yang F, Yang C-X, Yan X-P (2015) Post-synthetic modification of MIL-101(Cr) with pyridine for high-performance liquid chromatographic separation of tocopherols. Talanta 137:136–142

    Article  CAS  Google Scholar 

  23. Zhao W, Hui K, Hub C, Wang X, Yu A, Zhang S (2017) Silica gel microspheres decorated with covalent triazine-based frameworks as an improved stationary phase for high performance liquid chromatography. J Chromatogr A 1487:83–88

    Article  CAS  Google Scholar 

  24. Du W, Zhang Z, Fan W, Gao W, Su H, Li Z (2018) Fabrication and evaluation of polydimethylsiloxane modified gelatin/silicone rubber asymmetric bilayer membrane with porous structure. Mater Des 158:28–38

    Article  CAS  Google Scholar 

  25. Li P, Yu H, Liu N, Wang F, Lee G-B, Wang Y, Liu L, Li WJ (2018) Visible light induced electropolymerization of suspended hydrogel bioscaffolds in a microfluidic chip. Biomater Sci 6(6):1371–1378

    Article  CAS  Google Scholar 

  26. Zhao L, Ren Z, Liu X, Ling Q, Li Z, Gu H (2021) A multifunctional, self-healing, self-adhesive, and conductive sodium alginate/poly(vinyl alcohol) composite hydrogel as a flexible strain sensor. ACS Appl Mater Inter 13(9):11344–11355

    Article  CAS  Google Scholar 

  27. Fan F, Nie X, Fan C, Liang X, Lu X, Guo Y (2020) L-cysteine and 5-norbornene-2-carboxylic acid decorated mesoporous silica spheres as liquid chromatographic material. Micropor Mesopor Mat 299:110102–110108

    Article  CAS  Google Scholar 

  28. Fan F, Wang L, Li Y, Wang X, Lu X, Guo Y (2020) A novel process for the preparation of Cys-Si-NIPAM as a stationary phase of hydrophilic interaction liquid chromatography (HILIC). Talanta 218:121154–121160

    Article  CAS  Google Scholar 

  29. Tsopelas F, Ochsenkuehn-Petropoulou M, Tsantili-Kakoulidou A (2010) Void volume markers in reversed-phase and biomimetic liquid chromatography. J Chromatogr A 1217(17):2847–2854

    Article  CAS  Google Scholar 

  30. Al-Massaedh AA, Pyell U (2016) Mixed-mode acrylamide-based continuous beds bearing tert-butyl groups for capillary electrochromatography synthesized via complexation of N-tert-butylacrylamide with a water-soluble cyclodextrin. Part I: Retention properties. J Chromatogr A 1477:114–126

    Article  CAS  Google Scholar 

  31. Vasilevskaya VV, Klochkov AA, Lazutin AA, Khalatur PG, Khokhlov AR (2004) HA (hydrophobic/amphiphilic) copolymer model: coil-globule transition versus aggregation. Macromolecules 37(14):5444–5460

    Article  CAS  Google Scholar 

  32. Feng T, Ji W, Zhang Y, Wu F, Tang Q, Wei H, Mao L, Zhang M (2020) Zwitterionic polydopamine engineered interface for in vivo sensing with high biocompatibility. Angew Chem Int Ed 59(52):23445–23449

    Article  CAS  Google Scholar 

  33. Tan W, Chen Y, Xiong X, Huang S, Fang Z, Chen Y, Ma M, Chen B (2020) Synthesis of a poly(sulfobetaine-co-polyhedral oligomeric silsesquioxane) hybrid monolith via an in-situ ring opening quaternization for use in hydrophilic interaction capillary liquid chromatography. Microchim Acta 187:109

    Article  CAS  Google Scholar 

  34. Obradovic D, Komsta L, Agbabaa D (2020) Novel computational approaches to retention modeling in dual hydrophilic interactions/reversed phase chromatography. J Chromatogr A 1619:460951–460962

    Article  CAS  Google Scholar 

  35. Abbood A, Smadja C, Herrenknecht C, Alahmad Y, Tchapla A, Taverna M (2009) Retention mechanism of peptides on a stationary phase embedded with a quaternary ammonium group: a liquid chromatography study. J Chromatogr A 1216(15):3244–3251

    Article  CAS  Google Scholar 

  36. Sliwka-Kaszynska M, Jaszczolt K, Witt D, Rachon J (2004) High-performance liquid chromatography of di- and trisubstituted aromatic positional isomers on 1,3-alternate 25,27-dipropoxy-26,28-bis-3-propyloxy-calix 4 arene-bonded silica gel stationary phase. J Chromatogr A 1055(1–2):21–28

    Article  CAS  Google Scholar 

  37. Fan C, Liu B, Li H, Quan K, Chen J, Qiu H (2021) N-Vinyl pyrrolidone and undecylenic acid copolymerized on silica surface as mixed-mode stationary phases for reversed-phase and hydrophilic interaction chromatography. J Chromatogr A 1655:462534–462539

    Article  CAS  Google Scholar 

  38. Ren X, Zhang K, Gao D, Fu Q, Zeng J, Zhou D, Wang L, Xia Z (2018) Mixed-mode liquid chromatography with a stationary phase co-functionalized with ionic liquid embedded C18 and an aryl sulfonate group. J Chromatogr A 1564:137–144

    Article  CAS  Google Scholar 

  39. Wu Q, Hou X, Zhang X, Li H, Zhao L, Lv H (2021) Amphipathic carbon quantum dots-functionalized silica stationary phase for reversed phase/hydrophilic interaction chromatography. Talanta 226:122148–122156

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 21575149, 21575148).

Author information

Authors and Affiliations

Authors

Contributions

Fangbin Fan: conceptualization, method, investigation, data curation, and writing—original draft.

Xiaofeng Lu: formal analysis.

Shuai Wang: software and resources.

Licheng Wang: validation and formal analysis.

Xiaojing Liang: writing—review and editing.

Yong Guo: funding acquisition and writing—review and editing.

Corresponding authors

Correspondence to Xiaojing Liang or Yong Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1076 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, F., Lu, X., Wang, S. et al. Mesoporous nanomaterial-assisted hydrogel double network composite for mixed-mode liquid chromatography. Microchim Acta 188, 433 (2021). https://doi.org/10.1007/s00604-021-05094-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-021-05094-4

Keywords

Navigation