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Abstract
MOF-derived zink and nitrogen co-doped porous carbon (ZNPC) was synthesized through the pyrolysis of MOF-5-NH2 
and used as a solid-phase microextraction (SPME) coating material. Coupled with gas chromatography-mass spectrometry 
(GC–MS), headspace SPME (HS-SPME) based on ZNPC was adopted for the determination of phenols in food samples. The 
co-existence of N and Zn in ZNPC endows the derived carbon superior hydrophilicity, which is highly beneficial for phenols 
capture. After optimizing the conditions of extraction and desorption, a sensitive analytical method was established with 
low limits of detections (LODs, 0.73–2.3 ng  g−1) and wide linear ranges (5–5000 ng  g−1). Both the intra-fiber repeatability 
(RSDs from 2.8–7.3%) and inter-fiber reproducibility (RSDs from 9.7–11.7%) were satisfactory. The established method 
was applied to phenol determination in beef jerky and duck neck with satisfactory recoveries of 81.2–120.4% and RSDs of 
2.8–9.9%, which met well with the requirement of practical application.
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Introduction

Phenols, one of the most frequently detected contaminants, 
would result in chronic intoxication even at low concentra-
tions due to the accumulation and even generate acute poi-
soning and death at high concentrations [1]. Several phenolic 
compounds have been identified as priority organic contami-
nants by the US Environmental Protection Agency (EPA), 
where the maximum allowable concentration of single phe-
nol in water is 0.1 μg  L−1 [2]. To guarantee food safety, it 
is of great importance to develop environmentally, fast, and 
accurate analytical methods for the determination of trace 
phenols [3]. However, the sensitivity analysis is challenging 
due to the complex matrix interference and trace concentra-
tion [4].

Currently, several advanced sample preparation tech-
niques including magnetic solid-phase extraction (MSPE), 
liquid–liquid partition extraction (LLPE), and solid-phase 
microextraction (SPME) have been adopted to eliminate 
the interference of matrix and realize the enrichment of the 
target. Among them, SPME is a competitive and powerful 
technique that integrates separation, enrichment, and sam-
ple injection into one step [5, 6]. Impressively, SPME has 
been widely applied in the preconcentration of various com-
pounds from environment [7], foods [8], metabolomics [9], 
and other fields [10].

Since the properties of the coating have a significant 
impact on the application range, selectivity, and sensitiv-
ity of the established analytical method [11, 12], the devel-
opment of new inexpensive coating materials with stable 
and excellent extraction performance has always been the 
emphasis of research. Porous carbons have attracted exten-
sive attention owing to their easy preparation, high specific 
surface area, and tailored structure [13, 14]. For exam-
ple, Zheng et al. [15] prepared a polydopamine-modified 
ordered mesoporous carbon as SPME coating. Combined 
with GC–MS, the developed method exhibited low limits 
of detection (LODs, 0.08–0.38 ng  L−1) towards various phe-
nols. However, in general, porous carbons are hydropho-
bic, which are unfavorable for the capture of polar phenols. 
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Therefore, it is valuable to develop hydrophilic porous car-
bons with simple synthetic methods to capture polar phenols 
efficiently.

Recently, metal–organic frameworks (MOFs) have 
been utilized as ideal precursors to prepare porous carbons 
through a facile and single-step calcination procedure due 
to their diverse structure and high porosity [16, 17]. Several 
studies have reported that the MOF-derived porous carbons 
exhibited excellent extraction performance as SPME coating 
due to their fantastic characteristics [18–20]. For example, 
Ni et al. [20] prepared the Zr and N co-doped hydrophilic 
porous carbon using UiO-66-NH2 as precursor, which was 
used as an efficient SPME coating to extract trace phenols 
from water. The study showed that porous carbon integrating 
both metal component and heteroatom elements was helpful 
to adjust the hydrophobicity, which is beneficial for polar 
phenols capture. Thus, the facile preparation and superior 
capture performance make it attractive to fabricate hydro-
philic carbons by taking MOFs as precursors [21]. Neverthe-
less, the influence of metal component and heteroatom co-
doped on the hydrophilicity/hydrophobicity of the resulting 
porous carbons and their extraction performance has not yet 
been fully noticed.

In this research, MOF-5-NH2, one of the most commonly 
used MOFs, was selected as a precursor to prepare Zn and 
N co-doped porous carbon (ZNPC) by direct carboniza-
tion. As a proof of concept, the obtained ZNPC featuring 
good hydrophilicity was used as SPME coating coupled 
with gas chromatography-mass spectrometry (GC–MS) to 
determine trace phenols in food products. Extraction per-
formance using the materials with only Zn or N doped was 
also evaluated to study the influence of element doping on 
the hydrophilicity and extraction behavior.

Experimental

Chemicals and reagents

Zinc acetate dihydrate, 2-aminoterephthalic acid, tereph-
thalic acid, N, N-dimethylacetamide (DMAc), hydrochlo-
ric acid, sodium hydroxide, sodium chloride, and methanol 
were purchased from Sinopharm Chemistry Reagent Co. 
Ltd. (Shanghai, China). Phenols standard solution contain-
ing 2,4,6-trichlorophenol (2,4,6-TCP), 2-nitrophenol (2-NP), 
2,4-dichlorophenol (2,4-DCP), 2,4-dimethylphenol (2,4-
DMP), and 2,6-dimethylphenol (2,6-DMP) were obtained 
from Accustandard (United States). Stainless steel wire 
(SSW, φ 0.14 mm) was got from Shenzhen Bao Fang Metal 
Materials (Guangdong, China). Commercial polyacrylate 
(PA, 85-μm thickness) fiber was purchased from Supelco 

(Bellefonte, PA, United States). Sylgard 184 silicone gel was 
provided by DOW CORNING (United States).

Apparatus

The SPME procedure was completed on a multipurpose sam-
pler (MPS, GERSTEL, Germany). The analysis of phenols 
was performed on a GC–MS (QP2010 PLUS) equipped with 
an Rtx-Wax capillary column (30 m × 0.25 mm × 0.25 μm) 
(SHIMADZU, Japan). The conditions of the column were 
described as follows: initially, the temperature was held at 
100 °C for 1 min before heat up to 120 °C within 4 min. Sub-
sequently, the temperature was raised to 150 °C within 3 min 
and kept for 1 min, finally, raising the temperature to 230 °C 
and hold for 2 min. The samples were desorbed at 230 °C in 
the injector, which was operated in splitless mode. The car-
rier gas was high-purity helium (99.999%) and the flow rate 
was maintained at a constant flow rate of 1.5 mL  min−1. The 
operating conditions of MS are summarized as follows: the 
temperature of both the transfer line and ion source is kept 
at 220 °C. Besides, the ion source was operated in electron 
impact mode (EI) (70 eV) and the detection was conducted 
in SIM mode. The specific parameters of the SIM mode are 
shown in Table S1.

N2 adsorption − desorption isotherms of the as-prepared 
materials were measured after degassing at 150 °C for 12 h. 
The Brunauer − Emmett − Teller (BET) method was utilized 
to estimate the specific surface areas. Scanning electron 
microscopy (SEM, HITACHI, SU8010, Japan) and transmis-
sion electron microscopy (TEM, JEM-2010 electron micro-
scope, Japan) were adopted to gain insight into the mor-
phology of ZNPC. X-ray diffractometer (XRD, D8 Advance, 
Bruker, Germany) with Cu-Kα radiation and Labor Raman 
HR (Horiba, USA) were employed to study the structural 
information. Fourier transform infrared (FT-IR) spectra 
were performed on a Nicolet 6700 (Thermo Fisher, USA). 
The elemental distribution images were acquired through 
energy-dispersive X-ray spectroscopy (EDX). The water 
contact angle was measured using a Drop Shape analyzer 
(DSA100; Krüss, Hamburg).

Fabrication of the SPME fiber

The synthesis of MOF-5-NH2 and MOF-5 was referred 
to the literature with a slight modification [22]. The 
detailed information was presented in the Electronic 
Supporting Material (ESM). To prepare ZNPC, a porce-
lain boat loaded with 1.0 g MOF-5-NH2 was put in the 
center of a tubular furnace. Then, the temperature was 
raised from room temperature to 800 °C at a heating rate 
of 10 °C  min−1 under  N2 atmosphere and maintained for 
1 h. After cooling to room temperature, the resulting prod-
uct, denoted as ZNPC, was collected. Similarly, ZPC was 
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prepared through the same procedure by taking MOF-5 as 
a precursor. NPC was obtained by treating ZNPC with 10% 
hydrochloric acid to remove element Zn.

Clean SSW and silicone glue were prepared accord-
ing to the previous literature [23]. After taking out from 
the configured adhesive, the treated SSW was rolled in 
the ZNPC powder, resulting a uniform coating. Subse-
quently, the ZNPC-coated fiber was conditioned at 150 °C 
for 15 min. The aforementioned procedure was performed 
3 times in succession. Finally, the homemade fiber was 
aged for 2 h at 250 °C under  N2 atmosphere.

Headspace SPME (HS‑SPME)

The solution (1  μg   mL−1) containing 5 phenols was 
obtained through diluting the standard solution 
(1000 μg  mL−1) with methanol. Phenols sample solution 
(1 ng  mL−1) was prepared by diluting the phenols stock 
solution with ultra-pure water. Afterwards, the homemade 
coating was inserted into the headspace of a vial contain-
ing 10 mL phenols solution under the assistance of MPS. 
After extraction, the coating was transferred into the inlet 
of GC–MS for thermal desorption and subsequent analysis.

Preparation of food sample

Meat samples (beef jerky and duck neck) were purchased 
from the local supermarket (Wuhan, China). The sample 
preparation procedure was as followed: firstly, the meat sam-
ples were freeze-dried and ground into powder. Then, 0.1-g 
sample powder was dispersed in 1 mL dichloromethane:n-
hexane (V/V = 2:1) for 10 min under the ultrasonic treat-
ment. Extraction solvent was filtered by the 0.45-μm organic 
filter as a reserve solution. Then, 100 μL of the reserve solu-
tion was added into 10 mL saturated NaCl solution (pH 4) 
and the sample was analyzed under optimum conditions.

Results and discussions

Characterizations of the coating material

The morphology of ZNPC coating and ZNPC powder was 
characterized by SEM and TEM. Figure 1a and Fig. 1b 
show that ZNPC particles have a rough surface. Figure 1c 
shows the surface of the SSW is smooth with a diameter 
of 147 μm. Figure 1d shows that the surface of SSW was 
uniformly coated by ZNPC and the diameter of the ZNPC 
coated fiber is 218 μm. As a consequence, the thickness of 

Fig. 1  a SEM and b TEM 
images of ZNPC powder, SEM 
images of c bare SSW and d 
ZNPC-coated fiber.
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the ZNPC coating is calculated to be ~ 35 μm. The uneven 
surface endows the ZNPC coating with ample accessible 
binding sites for phenols capture.

As shown in Fig. S1, the XRD patterns of MOF-5-NH2 
are consistent with these reported in the literature [24], 
demonstrating that it was successfully synthesized. In Fig. 2 
a, the patter observed at 31.9°, 34.6°, 36.5°, 47.7°, 56.7°, 
63.2°, 68.2°, and 69.2° of ZNPC and ZPC can be ascribed 
to (100), (002), (101), (102), (110), (103), (112), and (201) 
crystal planes related to hexagonal zinc oxide (ZnO, JCPDS 
01–1136), respectively. These results suggest that the zinc 
clusters in MOFs have converted into ZnO nanoparticles 
during the carbonization procedure [25]. After treating 
with hydrochloric acid, the XRD patterns corresponding to 
ZnO disappeared, suggesting the ZnO nanoparticles have 
been completely removed. As shown in Fig. 2b, peaks at 
1639  cm−1 corresponding to the C = C vibration derived 
from benzene skeleton of the porous carbons are observed, 
indicating the possibility of formation π-π stacking between 
MOF-derived carbons and aromatic hydrocarbons. The 
peak at 3449  cm−1 can be related to the stretching vibration 

of -OH. Furthermore, the absorption peak observed at 
1560  cm−1 can be ascribed to C = N stretching vibration. 
The presence of Zn is conducive to the retention of N, and 
the absorption peak at 1415  cm−1 was caused by -OH flex-
ural vibration.

Fig. 2c shows the  N2 adsorption–desorption isotherms 
of ZNPC, ZPC, and NPC, and the specific surface areas of 
which are 440.2  m2  g−1, 332.4  m2  g−1, and 784.8  m2  g−1, 
respectively. Compared with that of ZNPC, the specific sur-
face area of NPC showed a significant increase due to the 
removal of ZnO nanoparticles, yielding additional pores. 
The adsorption–desorption isotherms are type IV, which rep-
resents large numbers of mesopores and some macropores in 
the material [26]. Figure 2d shows that the ID/IG of the car-
bon materials were all close to 1, indicating the existent of a 
high graphitization degree, possibly because of the catalytic 
graphitization in the presence of Zn [27–29].

As shown in Fig. 3a and 3b, ZPC and NPC are hydro-
phobic carbon, of which water contact angles are 146° and 
123°, respectively. Interestingly, the co-doping of Zn and N 
changes the hydrophobic carbon into hydrophilic carbon, 

Fig. 2  a XRD patterns; b FT-IR spectra; c  N2 adsorption–desorption isotherms; and d Raman spectra of ZNPC, NPC, and ZPC.
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where the water contact angle of ZNPC is 72° (Fig. 3c) The 
high hydrophilicity of ZNPC might be contributed by the 
synergistic effects between the doped nitrogen and ZnO 
nanoparticles embedded in porous carbon, both of which 
exhibit polar nature. The hydrophilic characteristic of ZNPC 
may enhance the capture of phenols via the formation of 
strong hydrogen bonding [20]. The images of element map-
ping (Fig. S2) show that C, N, O, and Zn are distributed 
evenly, providing accessible binding sites for phenols cap-
ture. All these results demonstrated the successful prepara-
tion of ZNPC.

Optimizations of parameters of SPME

To achieve the best extraction efficiency, the relevant param-
eters include (A) extraction temperature; (B) extraction time; 
(C) desorption temperature; (D) desorption time were opti-
mized (ESM). The experimental results (Fig. S3) demon-
strate that the optimal extraction and desorption conditions 
for ZNPC coating are as follows: extraction temperature, 

70 °C; extraction time, 50 min; desorption temperature, 
230 °C; and desorption time, 2 min.

Comparison in analytical performance 
with commercial PDMS fibers

To further understand the extraction performance of the 
ZNPC coating, the as-developed method was compared with 
that based on the commercial PA coating (85 μm). As shown 
in Fig. 4 a, compared with NPC, ZPC, and commercial PA 
coating, ZNPC shows the best extraction performance. The 
results might be attributed to these factors: firstly, the for-
mation of strong hydrogen bond interaction between hydro-
philic ZNPC and phenols; secondly, larger specific surface 
area can provide more available binding sites for the uptake 
of phenols; thirdly, the π-π stacking interaction is also con-
ducive to the adsorption. The property of the coating for 
repeated use was also investigated. As shown in Fig. 4 b, 
even after 90 cycles, the extraction efficiency of the ZNPC 
coating only showed a slight change. As shown in Fig. S4, 
the morphology of ZNPC coating fiber after 90 cycles also 

Fig. 3  The water contact angle of a ZPC, b NPC, and c ZNPC

Fig. 4  a Comparison of extraction performance by using ZNPC, 
ZPC, NPC, and PA (thickness: 85 μm). b The extraction performance 
of the ZNPC coated SPME fiber under different cycles. Extrac-

tion conditions: extraction time of 50 min, extraction temperature of 
70  °C, salt concentration of 37% (NaCl, wt.%), desorption time of 
2 min, and desorption temperature of 230 °C.
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showed negligible change in comparison to the initial one, 
suggesting the ZNPC coating has an excellent stability.

Evaluate the applicability of the procedure

Under optimized conditions, the performance of ZNPC coat-
ing for the extraction of phenols was evaluated. As depicted 
in Table S2, the established method showed an excellent lin-
earity, high coefficient of determination (R2), and low LODs. 
The RSDs of five phenols were 2.8 ~ 7.3% and 9.7 ~ 11.7% 
for single fiber and fiber-to-fiber, respectively. Besides, the 
enrichment factors (EFs, calculated according to the ratio 
of the sensitivity of target after extraction to that of before 
extraction, i.e., EFs = Safter/Sbefore) of the five phenols were 
in the range of 14,978 to 59,980.

To testify the application potential of ZNPC coating on 
actual samples, the proposed method was used to monitor 
the phenols in different food samples, beef jerky, and spicy 
duck neck. The chromatograms of real sample (beef jerky) 
before and after spiking (10 ng  g−1) were shown in Fig. S5. 

According to the results shown in Table 1, only 2,4,6-TCP 
was detected in different meat samples. Satisfactory results 
were obtained for all the spiked samples, where the recov-
eries and RSDs ranged from 81.2–120.4% and 2.8–9.9%, 
respectively. All these results indicated that the developed 
method is feasible for trace phenols analysis in beef jerky 
and duck neck. As displayed in Table 2, the proposed method 
exhibited comparable or even better results in comparison 
to other methods, demonstrating that ZNPC is an intriguing 
adsorbent for the extraction of polar phenols in real sam-
ples with a complex matrix. Despite its distinct advantages, 
there are still some limitations. Firstly, since silicone glue 
was employed to ensure the adherence of ZNPC onto the 
fiber, the synthetic conditions involving during the coat-
ing preparation procedure should be precisely controlled to 
ensure reproducibility and avoid pore blocking. In addition, 
due to its large specific surface area and inherent carbon 
skeleton, ZNPC also exhibited a certain adsorption capac-
ity towards other organic compounds such as weakly polar 
benzene series (BTEX) and nonpolar polycyclic aromatic 

Table 1  The analytical results 
of real samples

ND, not detected.

Sample Compounds Measured 
concentration

Low spiked concentration 
(10 ng  g−1)

High spiked concentration 
(50 ng  g−1)

(ng  g−1) Recovery (%) RSD (%) Recovery (%) RSD (%)

Beef jerky 2-NP ND 109.8 5.1 103.7 4.0
2,4-DMP ND 100.9 3.5 92.6 3.0
2,6-DMP ND 97.8 2.8 98.9 3.1
2,4-DCP ND 114.9 6.8 120.4 5.0
2,4,6-TCP 5.1 100.8 3.8 110.1 4.1

Spicy duck neck 2-NP ND 83.3 9.9 96.0 5.4
2,4-DMP ND 81.2 8.0 87.5 4.0
2,6-DMP ND 114.3 9.5 109.6 7.3
2,4-DCP ND 105.4 6.1 107.4 6.9
2,4,6-TCP 5.4 94.1 4.9 110.9 4.5

Table 2  Comparison of the performances of the proposed method with other published procedures for the determination of phenols

a LODs were calculated based on the signal-to-noise ratio of 3 (S/N = 3).

Analytical method Materials Sample Linear range (ng  L−1) LODsa (ng  L−1) RSD (%) Life time 
(times)

Refs

SPME/GC–MS OMP-NH2 Pond & river water 0.2–10,000 0.05–0.16 4.0–6.1 150 [8]
SPME/GC–MS Fe3O4@HPS Water and sediments 10–300 1.0–3.1 - - [30]
SPME/GC–MS MOF-177 Surface, river & waste water 100–50,000 15–43 2.8–5.5 - [31]
SPME/GC–MS Co-MONT- Waste water 0.5–1000 0.07–0.18 4.3–8.4 100 [32]
SPME/GC–MS SNW-1 Honey 0.1–100 0.06–0.2 ng  g−1 4.3–9.7 110 [33]
SPME/GC–MS GO/POE Pearl river water 5–1000 0.12–1.36 1.5–4.4 100 [34]
SPME/GC–MS/MS PPc-CMPs Tap, snow, and waste water 0.1–1000 0.02–0.05 2.5–8.1 100 [35]
SPME/GC–MS/MS SCSs-COOH Tap, river, and lake water 1–1000 0.26–2.63 2.0–9.0 - [36]
SPME/GC–MS ZNPC Beef jerky & spicy duck neck 5/10–5000 ng  g−1 0.73–2.3 ng  g−1 2.8–9.9 90 This work
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hydrocarbons (PAHs) through π-π stacking interaction, 
affecting the extraction selectivity (Fig. S6).

Conclusions

In conclusion, ZNPC was prepared through direct carboni-
zation by utilizing MOF-5-NH2 as the precursor and uti-
lized as potential SPME coating for the efficient extraction 
of phenols. Compared with that of NPC and ZPC, ZNPC 
featuring excellent thermal stability, good hydrophilicity 
(water contact angle was 72°), and large specific surface 
area (440.2  m2  g−1) exhibited much better extraction perfor-
mance, benefiting from the co-doped of N and Zn. Coupling 
with GC–MS, a sensitive and reliable analytical method for 
the analysis of trace phenols in food products was estab-
lished. To further improve the extraction performance, the 
development of a facile method to prepare such coating by 
growing nitrogen-containing MOF material on the metal 
wire substrate through in situ synthesis and subsequently 
carbonization is of more interest. Furthermore, the applica-
tion of metal and heteroatom co-doped porous carbon for 
other contaminants will be explored in the future.
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