Skip to main content
Log in

Simultaneous colorimetric determination of bisphenol A and bisphenol S via a multi-level DNA circuit mediated by aptamers and gold nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The capability of multi-level logic operations in biological diagnosis is far from being fully realized. In particular, the simplification of logic judgments to realize rapid, on-site complex diagnoses is still a key issue in bioelectronics. The authors here describe the construction of a colorimetric multilevel DNA circuit that incorporates two IMPLY gates and a sample extraction technology (SET) with anti-BPA aptamer as a co-recognizing element and the color of gold nanoparticles as the output signal. The circuit can perform multi-bioanalysis of the plasticizers and hormone mimetics bisphenol A (BPA) and bisphenol S (BPS). The assay is based on the finding that the aptamer against BPA can recognize both BPA and BPS. This DNA logic detection system is simple, fast, sensitive and selective because of the utilization of a co-recognition element which decreased input numbers. This, in turn, cascades multiplex Boolean logic gates and simplifies the diagnostic challenge. Both BPA and BPS can be determined by photometry at 620 nm, the limit of detection being 1.5 ng⋅mL−1 for BPA and 1.3 ng⋅mL−1 for BPS. Application to (spiked) water samples shows good analytical performance in terms of recovery (95.4 to 106.8%), linear range (4.4 to 66 ng⋅mL−1 for BPA, 2.5 to 75 ng⋅mL−1 for BPS) and correlation coefficients (>0.98). In our perception, the method represents a simple route for the fabrication of colorimetric multi-level DNA circuits. It may shorten the gap between bioelectronic logic circuits and high throughput real sample analysis.

Illustration of sample extraction treatments (SET) of bisphenol A (BPA) and bisphenol S (BPS) and the three-input IMPLY1-IMPLY2 logic operation with BPA, BPS and anti-BPA aptamer as inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen Q, Yoo SY, Chung YH, Lee JY, Min J, Choi JW (2016) Control of electrochemical signals from quantum dots conjugated to organic materials by using DNA structure in an analog logic gate. Bioelectrochemistry 111:–6

  2. Zhang Y, Liu W, Zhang W, Yu S, Yue X, Zhu W, Zhang D, Wang Y, Wang J (2015) DNA-mediated gold nanoparticle signal transducers for combinatorial logic operations and heavy metal ions sensing. Biosens Bioelectron 72:218–224

    Article  Google Scholar 

  3. Du J, Yin S, Jiang L, Ma B, Chen X (2013) A colorimetric logic gate based on free gold nanoparticles and the coordination strategy between melamine and mercury ions. Chem Commun 49:4196–4198

    Article  CAS  Google Scholar 

  4. Park KS, Jung C, Park HG (2010) “Illusionary” polymerase activity triggered by metal ions: use for molecular logic-gate operations. Angew Chem Int Ed 49:9757–9760

    Article  CAS  Google Scholar 

  5. Xianyu Y, Wang Z, Sun J, Wang X, Jiang X (2014) Colorimetric logic gates through molecular recognition and plasmonic nanoparticles. Small 10:4833–4838

    Article  CAS  Google Scholar 

  6. Yang B, Zhang X, Kang L, Huang Z, Shen G, Yu R, Tan W (2014) Intelligent layered nanoflare:“lab-on-a-nanoparticle” for multiple DNA logic gate operations and efficient intracellular delivery. Nanoscale 6:8990–8996

    Article  CAS  Google Scholar 

  7. Feng L, Lyu Z, Offenhausser A, Mayer D (2015) Multi-level logic gate operation based on amplified aptasensor performance. Angew Chem Int Ed 54:7693–7697

    Article  CAS  Google Scholar 

  8. Yang J, Song Z, Liu S, Zhang Q, Zhang C (2016) Dynamically arranging gold nanoparticles on DNA origami for molecular logic gates. Appl Mater Interfaces 8:22451–22456

    Article  CAS  Google Scholar 

  9. Qin C, Gao Y, Wen W, Zhang X, Wang S (2016) Visual multiple recognition of protein biomarkers based on an array of aptamer modified gold nanoparticles in biocomputing to strip biosensor logic operations. Biosens Bioelectron 79:522–530

    Article  CAS  Google Scholar 

  10. Wang J, Lu J, Su S, Gao J, Huang Q, Wang L, Huang W, Zuo X (2015) Binding-induced collapse of DNA nano-assembly for naked-eye detection of ATP with plasmonic gold nanoparticles. Biosens Bioelectron 65:171–175

    Article  CAS  Google Scholar 

  11. Zhang Y, Li M, Liu H, Ge S, Yu J (2016) Label-free colorimetric logic gates based on free gold nanoparticles and the coordination strategy between cytosine and silver ions. New J Chem 40:5516–5522

    Article  CAS  Google Scholar 

  12. Wu Z, Dong B, Zhou X, Shen A, Hu J (2015) INHIBIT-inspired two-output DNA logic gates based on surface-enhanced raman scattering volume. Chemistry 21:14301–14304

    Article  CAS  Google Scholar 

  13. Chen JH, Fang ZY, Lie PC, Zeng LW (2012) Computational lateral flow biosensor for proteins and small molecules: a new class of strip logic gates. Anal Chem 84:6321–6325

    Article  CAS  Google Scholar 

  14. Song T, Liang H (2012) Synchronized assembly of gold nanoparticles driven by a dynamic DNA-fueled molecular machine. J Am Chem Soc 134:10803–10806

    Article  CAS  Google Scholar 

  15. Zhang L, Wang Z, Liang R, Qiu J (2013) Easy design of colorimetric logic gates based on nonnatural base pairing and controlled assembly of gold nanoparticles. Langmuir 29:8929–8935

    Article  CAS  Google Scholar 

  16. Yang C, Wang Y, Marty JL, Yang X (2011) Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26:2724–2727

    Article  CAS  Google Scholar 

  17. Li J, Chang K, Wang C, Yang C, Shiesh S, Le G (2016) On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads. Biosens Bioelectron 79:887–893

    Article  CAS  Google Scholar 

  18. Deng C, Zhong Y, He Y, Ge Y, Song G (2016) Selective determination of trace bisphenol a using molecularly imprinted silica nanoparticles containing quenchable fluorescent silver nanoclusters. Microchim Acta 183:431–439

    Article  CAS  Google Scholar 

  19. Diao C, Yang X, Sun A, Liu R (2015) Vortex-assisted liquid-liquid microextraction of bisphenol S prior to its determination by HPLC with UV detection. Microchim Acta 182:2593–2600

    Article  CAS  Google Scholar 

  20. Huang YQ, Wong CKC, Zheng J, Bouwman SH, Barra R, Wahlstrom B, Neretin L, Wong MH (2012) Bisphenol A (BPA) in China: a review of sources, environmental levels, and potential human health impacts. Environ Int 42:91–99

    Article  CAS  Google Scholar 

  21. Kinch CD, Lbhazehiebo K, Jeong JH, Habibi HR, Kurrasch DM (2015) Low-dose exposure to bisphenol A and replacement bisphenol S induces precocious hypothalamic neurogenesis in embryonic zebrafish. PNAS 5:1475–1480

    Article  Google Scholar 

  22. Gallart-Ayala H, Moyano E, Galceran MT (2011) Analysis of bisphenols in soft drinks by on-line solid phase extraction fast liquid chromatography-tandem mass spectrometry. Anal Chim Acta 683:227–233

    Article  CAS  Google Scholar 

  23. Ragavan KV, Selvakumar LS, Thakur MS (2013) Functionalized aptamers as nano-bioprobes for ultrasensitive detection of bisphenol-A. Chem Commun 49:5960–5962

    Article  CAS  Google Scholar 

  24. Xu J, Li Y, Bie J, Jiang W, Guo J, Luo Y, Shen F, Sun C (2015) Colorimetric method for determination of bisphenol A based on aptamer-mediated aggregation of positively charged gold nanoparticles. Microchim Acta 182:2131–2138

    Article  CAS  Google Scholar 

  25. Zhu Y, Zhou C, Yan X, Yan Y, Wang Q (2015) Aptamer-functionalized nanoporous gold film for high-performance direct electrochemical detection of bisphenol A in human serum. Anal Chim Acta 883:81–89

    Article  CAS  Google Scholar 

  26. Vinas P, Campillo N, Martinez-Castillo N, Hernandez-Cordoba M (2010) Comparison of two derivatization-based methods for solid-phase microextraction-gas chromatography-mass spectrometric determination of bisphenol A, bisphenol S. Anal Bioanal Chem 397:115–125

    Article  CAS  Google Scholar 

  27. Becerra V, Odermatt J (2012) Detection and quantification of traces of bisphenol A and bisphenol S in paper samples using analytical pyrolysis-GC/MS. Analyst 137:2250–2259

    Article  CAS  Google Scholar 

  28. Xing H, Zhan S, Wu Y, He L, Zhou P (2013) Sensitive colorimetric detection of melamine in milk with an aptamer-modified nanogold probe. RSC Adv 3:17424–17430

    Article  CAS  Google Scholar 

  29. Jo M, Ahn JY, Lee J, Lee S, Hong SW, Yoo JW, Kang J, Dua P, Lee D, Hong S, Kim S (2011) Development of single-stranded DNA aptamers for specific bisphenol A detection. Oligonucleotides 21:85–91

    Article  CAS  Google Scholar 

  30. Mei Z, Chu H, Chen W, Xue F, Liu J, Xu H, Zhang R, Zheng L (2013) Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor. Biosens Bioelectron 39:26–30

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financed by Grants from National Natural Science Foundation of China (No. 21675127), the New Century Excellent Talents in University (NCET-13-0483), the Shaanxi Provincial Research Fund (2014KJXX-42, 2014 K02-13-03, 2014 K13-10) and Fundamental Research Funds for the Northwest A&F University of China (2014YB093, 2452015257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlong Wang.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 12.4 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, Y., Zhu, W. et al. Simultaneous colorimetric determination of bisphenol A and bisphenol S via a multi-level DNA circuit mediated by aptamers and gold nanoparticles. Microchim Acta 184, 951–959 (2017). https://doi.org/10.1007/s00604-017-2092-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-017-2092-8

Keywords

Navigation