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Abstract Biological nanochannels or nanopores play a cru-
cial role in basic biochemical processes in cells. Artificial
nanopores possessing dimensions comparable to the size of
biological molecules and mimicking the function of biological
ion channels are of particular interest with respect to the de-
sign of biosensors with a sensitivity that can go down to the
fM level and even to single molecule detection. Nanopore-
based analysis (NPA) is currently a new research field with
fascinating prospects. This review (with 118 refs.) summa-
rizes the progress made in this field in the recent 10 years.
Following an introduction into the fundamentals of NPA, we
demonstrate its potential by describing selected methods for
sensing (a) proteins such as streptavidin, certain antibodies, or
thrombin via aptamers; (b) oligomers, larger nucleic acids, or
micro-RNA; (c) small molecules, (d) ions such as K(I) which
is vital to themaintenance of life, or Hg(II) which is dangerous
to health. We summarize the results and discuss the merits and
limitations of the various methods at last.
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Introduction

Biological ion channels embed in biological cell to communi-
cate the matter and energy with the extracellular world [1].
They play a crucial role in various significant physiological
activities [2–4]. The function of biological ion channels has
allured a lot of attention from both scientists and engineers.
They fabricate solid-state artificial nanopores to mimic func-
tions of biological ion channels [5–9]. Except for many similar
functions of the biological ion channels, synthetic nanopores
such as carbon nanotubes [10–13], silicon-based nanopores
[14–20], graphene nanopores [21–24], and polymeric
nanopores [25–27] possess ascendances, multi-functions and
stability. Benefit by these characteristics, many applications in-
cluding sensing [28–32], energy conversion [33–35],
nanofluidic circuits [36, 37] and filtration [38–40] are possible
to achieve. Among all these potential applications, we focus
mainly on the nanopore-based analysis (NPA) for their applica-
tions in detection of the biochemical species in last 10 years.

The principle of NPA can be described briefly: molecules
access in or attach on the surface of a pore, thereby leading the
ionic current changes can be detected [41]. The nanopore
membrane is located in the middle of two electrochemical
chambers separated into cis- and trans- compartments, each
containing conducting buffers. Under an applied voltage, elec-
trolyte ions flow through the nanopore, which is measured as
current in the electrical instrument. The effective diameter of
the nanopore will be decreased when targets have certain in-
teraction with receptors which are attached on the inner sur-
face of the nanopore. Correspondingly, the current signal will
drop along with the appearance of the target; we call it signal
off system. Conversely, the effective diameter of nanopores
will be increased when targets change the structure of receptor
or come out of the nanopore. Correspondingly, the current
signal will rise along with the appearance of the target; we call
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it signal on system (Fig. 1). Using nanopores in sensing of
biomolecules has distinct advantages; for example, one can
detect analytes via their size [42], shape [43] or charge [44].
The range of analytes that can be detectedwith nanopores now
spans peptides, proteins, bimolecular complexes, enzymes,
organic polymers and small molecules [45]. In this review,
we discuss the application of the NPA in detection of nucleic
acids, proteins, small molecules and ions. We end with a brief
conclusion of the advantages and challenges of the NPA.

The NPA for detection of biochemical species

Detection of proteins

The NPA technology develops in an application for detection
of protein [46–48]. Siwy et al. fabricate a single conical gold
nanopore with biochemical molecular-recognition agent
(MRA) as a protein biosensor [49]. They investigate three
MRA/analyte systems including the biotin/streptavidin, pro-
tein-G/immunoglobulin (IgG), and an antibody to the protein
ricin as the MRA and ricin as the analyte. For example the
diameter of the streptavidin (SA) molecule (~5 nm), and the
final diameter after theMRAmodified is ~5 nm for SA sensor.
Because the size of protein molecule is comparable with the
nanopore diameters, when the protein is recognized, the effec-
tive diameter of nanopore decreases. This is the signal off

system. Current–voltage (I–V) curves for the biotinylated
nanopore after exposure to two negative control proteins
100 nM lysozyme and BSA, the signal show little change,
indicating that the sensor does not respond to proteins that
do not recognize by the biotin MRA. In contrast, the ionic
current drop substantially after immersed to a solution with
180 pM streptavidin (Fig. 2a). They use the time required for
blockage, τ b, to determine the analyte concentration. The IgG
concentrations in 100–10 nM range can be detected. Chen
group also use the MRA to detect a variety of biotin binding
proteins by modified an OmpG nanopore with a biotinylated
PEG molecule [50].

Ali et al. report a facile strategy based on the electrostati-
cally assemble biorecognition with the target into conical
nanopores for constructing a nanobiosensor. In this system
the target SA (∼5 nm) and the dimension of the nanopore
(∼8 nm) are comparable in size and the detection limit of SA
is 1 pM (Fig. 2b) [51–53]. Maglia et al. evolve Cytolysin A
nanopore, which can be isolated into three nanopore types.
The three ClyA nanopores with different diameter (33, 37,
42 Å) allowed the selective entry of proteins inside the
nanopore [54, 55].

Recently, Wei et al. [56] detect single protein by using
solid-state artificial nanopores modified with biological recep-
tors (Fig. 2c). In their design, gold-coated silicon nitride
nanopores functionalized with adequately few multivalent
nitrilotriacetic acid (NTA) groups. By adjusting the ratio of
NTA and the fabrication of ethylene glycol which can couple
to NTA, only a single NTA tag can be controlled to fabricate
on the nanopore. They use the NTA receptor, which act as
binding sites for His-tagged proteins. When nanopores are
immersed in the solution with His-tagged protein A, the cur-
rent across it changes from an empty pore to a pore transiently
blocked by one protein A molecule, or back-up process. The
authors design another nanopore platform that is used to detect
IgG. In this system, His6-tagged protein A is stably
immobilized within a trisNTA-modified pore. IgG antibodies
(=ligands) interact with the His6-tagged protein A, are detect-
ed by the resistive pulse technique. This nanopore sensor
which based on how long the pore is blocked could detect
single molecules of IgG and distinguish between various
IgG subtypes from different organisms. Unbinding of His-
tagged protein A was not detected. To control the concentra-
tion and geometry of receptors, Rotem et al. [57] also achieve
a sensitivity detection of protein by using a α-hemolysin pore
(Fig. 2d). Other groups use nanopores to study protein trans-
lation [58, 59], DNA-protein interactions [60, 61], and pro-
teins folding [62, 63].

The NPA for detection of proteins has traits in common. (1)
The nanopore mouth dimension and the target are comparable
in size. (2) By choosing or tuning the receptors which can
recognize or bind the specific proteins leads to the detection
with high specificity. (3) When the proteins enter into the

Fig. 1 Schematic of the signal off system and signal on system illustrates
the principle of the NPA. The effective diameter of nanopores will be
decreased when targets have certain interaction with receptors which
are attached on the inner surface of the nanopore. Correspondingly, the
current signal will drop along with the appearance of the target; we call it
signal off system. Conversely, we call it signal on system
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nanopores, combine with the receptor, lead to the decrease of
the effective diameter, and the ion current decreases. These are
signal off systems. NPA application in detection of protein can
achieve single-molecule sensitivity because the diameter of
nanopore can be controlled accurately. Compared with other
certain protein detection technologies, the NPA offers a simple
detection method relying on the electrical read-out to down-
stream signal processing, which avoiding complex operations.

Detection of nucleic acids

The NPA is firstly applied possibility to rapidly sequencing
DNA [64–66]. In 1996 year, a group of scientists made a
discovery that the ion channel could in principle provide di-
rect, high-speed detection of the sequence of bases in single
molecules of DNA or RNA [41]. They use an electric field to
drive single-stranded DNA and RNA molecules through a
pore-forming protein and detect the signal of ionic current in
nanopores [67, 68] (Fig. 3a). This system uses the Staphylo-
coccus aureus toxin,α-hemolysin (α-HL) (Fig. 3b), the use of
which as a biosensor is pioneered by Bayley and his co-
workers [69–73]. Both Ghadiri group and Akeson group show
that polymerase enzymes can be used to move DNA across
the α-HL nanopores [74–76]. Gundlach group introduced the
MspA pore and showed the convincing sequencing data [77,
78]. Maglia et al. use modified ClyA nanopore to recognize

and chaperone DNA [79]. Long group modified the protein
nanopores as biomolecular sensors [80–83]. These experi-
ments dawn some conclusions. For example, Contrast on
polyC, polyA can block the nanopore a greater degree; the
nanopore has not a clear distinct between purine and pyrimi-
dine ribonucleotides. The order of the nucleobases in a poly-
nucleotide can be detected by the signal changes of ion current
though nanopores. Both kilo-base length polymers (single-
stranded genomic DNA or RNA) and small molecules (e.g.,
nucleosides) can be identified and characterized without am-
plification or labeling. The NPA offers a unique analytical
capability that makes inexpensive, rapid DNA sequencing
possible [84, 85].

Artificial nanopores synthesized by materials such as sili-
con nitride have superiority to be detected of molecules. The
capabilities of these sensors are influenced by both the diam-
eter of the nanopore and the thickness of the membrane.
Wanunu et al. show a sub-micrometer area of a SiNmembrane
with thicknesses as small as 6 nm provides a detection plat-
form for the RNA molecules, which without the time-
consuming labelling or amplification methods [86]. Their ex-
periments show that reducing the thickness of the membrane
can increase signal amplitudes from biomolecules. Nucleic
acids with as few as ten base pairs can be detected by using
3-nm-diameter nanopores in sub-10-nm thick membranes.
The various short nucleic acids with similar molecular weights

Fig. 2 a Current–voltage curves for the streptavidin sensor are presented
in the presence of no protein (×), 100 nM lysozyme (♦), and 180 pM SA
(▲) [49]. Copyright © 2005, American Chemical Society b A single
asymmetric nanopore functionalized with biorecognition elements
(biotin-PEO3-amine) is used for streptavidin analytics [51]. Copyright
© 2008, American Chemical Society c Artificial nanopores are applied
to analyze the antibodies. His6-tagged protein A is immobilized on the

surface of trisNTA-modified nanopores. IgG antibodies are identified
because of their specific interaction times with protein A receptors. The
species and subclass the antibodies belong to can also be detected in the
system [56]. d An α-hemolysin pore functioned by a DNA aptamer
detects thrombin [57]. Copyright © 2012, Rights Managed by Nature
Publishing Group
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are also discriminated on differences in their physical dimen-
sions. They detect the miR122a which from 1 mg of rat liver
total RNA using by a 3-nm-diameter nanopore in 7-nm-thick
membrane. Target microRNA is first hybridized to a probe.
This probe/target duplex is then enriched through binding to
the viral protein. From the measurement data, the concentra-
tion of miR122a dilute 20-fold in sample is 0.7 fmol/μL,
translate 78±2 pg miR122a/mg liver RNA in rat liver cells.
Gu et al. use one nanopore to detect of multiple miRNA si-
multaneously [87]. When it comes to the thickness of
nanopore, the graphene nanopores have to mentioned because
of it has one atom thickness. Graphene nanopores show great
potential for the detection of DNA sequencing rather than
other solid-state artificial nanopores [88–98]. The nanopore
provides a highly confined space which made the nucleic
acids analyzed at high throughput [99–101]. However, such
thin membranes significantly limit the surface of the pore
available to interact with DNA, leading to the translocation
speeds of DNA in nanopores is too fast. Thus, electrical signal
cannot be resolved with sufficient accuracy in the detection
system [102, 103].

To regulate the translocation speeds of nucleic acid might
be one of the most important factors in detection of DNA or
RNA sequencing use solid-state artificial nanopores. During
detection of nucleic acids sequencing both signals off system
(nucleic acids enter into nanopores) and signal on system
(nucleic acids come out of nanopores) are used together. Com-
pared with the proteins, the size of nucleic acids are smaller
which requires smaller and special character of nanopores,
such as protein nanopores and graphene nanopores.

Furthermore, taking advantage of nucleic acids are designable
and modified, the NPA can combined with conventional char-
acterization techniques such as gel electrophoresis, atomic
force microscopy, transmission electron microscopy and laser
scanning confocal microscopy. The amplification method
such as the interaction with protein can improve the detection
limit of nucleic acids by the NPA technology.

Detection of small molecules

The NPA technology can be used to detect and select small
molecules by binding them in nanopores. Bayley H et al.
equipped α- hemolysin nanopore with cyclodextrins to detect
of organic molecules [104]. Kasianowicz and Bezrukov group
studied the interaction between polymer molecules and pro-
tein nanopores [105–107]. Both of them examine the block-
ages of ion current when analysts through nanopores, which
belongs to signal off system. Till now, small molecules and
nucleic acids cannot be analyzed simultaneously in a
nanopore sensor. Xia et al. have found that a more complex
DNA nanostructure can be introduced to the nanopore [31].
The complex DNA nanostructure contains multiple target-
binding sites on each of its long concatamers and provides a
built-in amplification mechanism (Fig. 4a). This nanopore is
prepared from poly(ethyleneterephthalate) membranes. It has
a diameter of 79±7 nm. When target nucleic acids exist, the
DNA supersandwich structures are assembled to decrease the
effective diameter of the nanopore; while ATP exists, the
DNA supersandwich structures are disassembled to increase
the effective diameter of the nanopore, that means both the

Fig. 3 a The nanopore is used in
strand-sequencing detection. The
ionic current amplitude through a
α-hemolysin nanopore changes in
the two statuses, an open pore and
a blocked one by a single-strand
DNA. The red bracket means this
system cannot distinguish the ~12
nucleotides [67]. Copyright ©
2008, Rights Managed by Nature
Publishing Group b Side view of
α-hemolysin pore from Staphy-
lococcus aureus is presented [69].
Copyright © 1996, American
Association for the Advancement
of Science c The specific miRNA
is detected using solid-state 3-nm-
diameter nanopore in a 7-nm-
thick membrane [82]. Copyright
© 2010, Nature Publishing Group
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signal off and signal on system in this nanopore detection
platform. This nanopore sensor has many advantages, such
as enhancing signal intensity, a better detection limit (the de-
tection limit of DNA is 10 fM and ATP is 1 nM), and anti-
interference capability. More importantly, it can be used to
analysis single-base mismatch resolution and discrimination
among different types of nucleoside triphosphates. It could
also be used in complex matrices when the interfering sub-
stances concentration is high in the buffer solution. It even can
be directly used in serum.

Li et al. report a simple enantioselective device. They mod-
ify a single artificial β-cyclodextrin (β-CD) to the single con-
ical nanopore system (Fig. 4b) [108]. Putting this β-CD-
modified nanopore into a solution of L-His, they find a de-
crease of the transmembrane ionic current due to the selective
binding of L-His to the nanopore wall that is occurs inside the
confined geometry. While, immersing this β-CD-modified
nanopore in solutions of D-His or other aromatic amino acids,
no significant changes of ionic current are found. It shows that
this β-CD-modified nanopore has high selective recognition
of histidine enantiomers by monitoring of ionic current signa-
tures. They also find that the ionic currents decrease gradually
with increasing L-His concentration from 0 to 1 mM.

There are some characteristics of the NPA using in the
detection of small molecules. (1) With the size of small mol-
ecules down, the detection by binding event direct which re-
quire the smaller diameter of nanopores (most of protein
nanopores); (2) Detecting of small molecules using the NPA,
the signal changes are inconspicuous without the amplified

technology. (3) Statistical analysis of each blockage should
be investigated in nanopore experiments [109]. (4) The NPA
detection platform is expected to develop into a live assay for
disease related molecular targets, and with many practical ap-
plications in biotechnology and life science.

Detection of ions

Jiang et al. report a potassium-responsive nanopore (Fig. 5a)
[110]. It is mainly rely on the conformational changes of the
G4 DNA chains in the presence of potassium ions (K+). The
reason is that the structure transition of the G4 DNA chains
from loose packing to the i-motif structure after binding with
K+. Thus the effective pore sizes decrease which leading to the
ionic current drop. As shown in Fig. 5b, this nanopore/DNA
hybrid system has an ion concentration effect that provides a
nonlinear response to K+ at the concentration ranging from 0
to 1500 μM. They also construct a biomimetic zinc activated
ion channel by introducing the zinc fingers into the nanopores
(Fig. 5c) [111]. This nanopore is responsive to zinc ions. In the
presence of zinc ions, the zinc fingers fold into finger like
conformations, thus the effective diameter of the channel in-
crease. In turn, the biomimetic ion channel is activated. How-
ever, in the absence of zinc, they find a low ion conductance.
This nanopore has high specificity. As shown in Fig. 5d, it is
not responsive to other metal ions. If introduce a T-rich
ssDNA to the nanopores, it can construct a biomimetic mer-
cury (II)-gated nanopore by forming a stable T-Hg2+-T

Fig. 4 a The scheme of two-way nanopore sensor. A more complex
DNA nanostructure (supersandwich structures) can be introduced to the
nanopore. It shows high sensitive to DNA or ATP. The detection limt of
DNA is 10 fM and ATP is 1 nM. More importantly, it could also be used
in complex matrices when the interfer substances concentration is high in
the buffer solution. It even can be directly used in serum [31]. Copyright

© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim b The
scheme of β-CD modified nanopore system. It is responsive to L-His
and induce a large difference in the enantiomeric ionic currents which
makes it can be used in practical application [108]. Copyright © 2011,
American Chemical Society
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complex [112]. Cu2+ also is detected by peptide conformation-
al changes in nanopores [113].

The dimension of ions is the smallest among targets, which
means that they can only be detected by indirect analysis, such
as the interactions with nanopores, the conformation transition
between ions and the nucleic acids or polypeptide et al. The
conformational change induces the change in the effective size
of nanopores and these are either signal on or signal off sys-
tem. The key features of the NPA using for ions detection is
closely imitate these molecular interactions happening in liv-
ing organisms.

Summary

The advantages of the NPA for detection of biochemical spe-
cies are as follows:

(1) The NPA has high sensitivity; even the single molecule
can be detected.

(2) The NPA has high specificity; the target can be detected
from the analogues or in the presence of interfering
substance.

(3) The NPA for target detection requires very low sample
volumes and without sample complicated preparation.

(4) Study the dynamics of interaction between receptors and
targets in nanopores by the patch clamp technique can
promote the understanding of the molecular mechanism.

(5) The NPA has the broad analytical range. In addition to
the biomolecules, small molecules and ions, other mole-
cules such as nanoparticles [114], inorganic molecules
[115–117] and organic molecules [118] can also be
detected.

There are also many challenges in application the NPA for
detection of biochemical species.

(1) The limit of materials and dimensions cause that the NPA
for detection platform can only be used in vitro.

(2) How to further improve the NPA technology for detec-
tion of targets specificity. Especially for proteins which

Fig. 5 a A single nanopore is fabricated by conformational transition of
G4 DNAwhich can response to K+ [110]. Copyright © 2009 American
Chemical Society b The current data of the NPA system. The blue line is
the absence of G4 DNA modification. The red line is the presence of G4

DNA modification. The green line is the addition of the complementary
DNA strands. c The scheme of biomimetic zinc activated ion channel. d
The histogram of the nanopore. It shows the specificity of the system
[111]. Copyright © 2010 Royal Society of Chemistry
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have complex spacial structures, the specificity is even
more important in bimolecular analysis.

Considered that with the development of nanotechnique,
the fabrication of nanopores will be more diverse and accu-
rate. The NPA as a new kind of detection methods arouses
widespread interest for its incredibly merits and wide applica-
tion. It presents improved capabilities for the area of single
molecule detection, discriminating molecules with different
configuration and mimicking the transmembrane protein fea-
tures. The NPA is expected that the simple electronic device
fabricated with high sensitivity and specificity, which can be
used in practical life, such as clinic diagnostics, routine labo-
ratory detection, food safety, and environmental monitoring.
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