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Abstract
The efficiency of the first-order reliability method (FORM) and the accuracy of Monte Carlo simulations (MCS) are coupled 
in probability-based designs of reinforced rock slopes, including a Hong Kong slope with exfoliation joints. Load–resist-
ance duality is demonstrated and resolved automatically in a foundation on rock with a discontinuity plane. Other examples 
include the lengthy Hoek and Bray deterministic vectorial procedure for comprehensive pentahedral blocks with external 
load and bolt force, which is made efficient and more succinct before extending it to probability-based design via MCS-
enhanced FORM. The FORM–MCS–FORM design procedure is proposed for cases with multiple failure modes. For cases 
with a dominant single failure mode, the time-saving importance sampling (IS) and the fast second-order reliability method 
(SORM) can be used in lieu of MCS. Two cases of 3D reinforced blocks (pentahedral and tetrahedral, respectively) with 
the possibility of multiple sliding modes are investigated. In the case of the reinforced pentahedral block, direct MCS shows 
that there is only one dominant failure mode, for which the efficient method of importance sampling at the FORM design 
point provides fast verification of the revised design. In the case of the reinforced tetrahedral block, there are multiple failure 
modes contributing to the total failure probability, for which the proposed MCS-enhanced FORM procedure is demonstrated 
to be essential. Comparisons are made between Excel MCS and MATLAB MCS.

Highlights

•	 Probability-based design of a Hong Kong slope via coupled FORM and Monte Carlo methods.
•	 Efficient analysis of a bolted pentahedral block based on Hoek-Bray procedure and Excel Solver.
•	 New extension of Low-and-Tang FORM algorithm to MCS involving correlated nonnormals.
•	 FORM-MCS-FORM method for design of 3D rock slopes with multiple failure domains.
•	 Importance sampling or SORM in lieu of MCS for cases with a dominant single failure mode.
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1  Introduction

The probability of failure (Pf) estimated from the FORM 
reliability index β using the following equation is approxi-
mate when the random variables are nonnormally distributed 
and/or the limit state surface (LSS) is curved:

In reliability-based design (RBD), it is desirable to deter-
mine Pf more accurately, by (i) direct Monte Carlo simula-
tion (direct MCS), or (ii) importance sampling (IS) around 

(1)FORM Pf ≈ 1 − Φ(�) = Φ(−�).
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the design point located by FORM, or (iii) the second-order 
reliability method (SORM) which estimates component cur-
vatures at the FORM design point. It is demonstrated in this 
study that the more accurate methods of determining Pf by 
direct MCS, IS and SORM can be easily implemented as 
extensions of the Low and Tang (2007) Excel FORM tem-
plate, such that FORM provides the basis for IS and SORM, 
which in turn provide a near-exact probability of failure for 
a revised design by FORM. It will be appreciated from the 
probability-based design examples in this study that the 
word coupled in the paper’s title implies “mutually advanta-
geous” for FORM and MCS. Note that importance sampling 
is a Monte Carlo method, which is less time-consuming than 
direct MCS. The FORM–MCS–FORM design procedure 
presented in this study is more accurate and efficient than 
using either FORM or MCS alone.

A quick grasp of the efficient Excel FORM method is 
presented next.

1.1 � Overview of the Low and Tang (2007) FORM 
Method Prior to Coupled FORM–MCS

The FORM extends the Hasofer–Lind (1974) index (for 
correlated normal variates) to deal with correlated non-
normal random variates, and hence includes the earlier 
Hasofer–Lind index as a special case. The classical intri-
cate FORM procedure in the rotated u space is mathemati-
cally elegant, as explained (or discussed) in commendable 
details in Ditlevsen (1981), Shinozuka (1983), Ang and 
Tang (1984), Der Kiureghian and Liu (1986), Madsen 
et al. (1986), Melchers (1987), Tichy (1993), Haldar and 
Mahadevan (2000), Rackwitz (2001), Baecher and Chris-
tian (2003), Kottegoda and Rosso (2008), and Melchers 
and Beck (2018), for example.

This study on the probability-based design of rock 
slopes uses the more intuitive and efficient Low and Tang 
(2007) spreadsheet-automated algorithm, which obtains 
the same solutions as the mathematically intricate classical 
FORM procedure.

In FORM, the reliability index β can be written as 
follows:

where R is the correlation matrix, and μi
N and σi

N are equiv-
alent normal mean and equivalent normal standard deviation 
values, which can be calculated by the Rackwitz–Fiessler 
(1978) transformation:
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where x is the original non-normal variate, Φ−1[.] is the 
inverse of the cumulative probability (CDF) of a standard 
normal distribution, F(x) is the original non-normal CDF 
evaluated at x, ϕ{.} is the probability density function (pdf) 
of the standard normal distribution, and f(x) is the original 
non-normal probability density ordinates at x. Equation 2 
was used in the Low and Tang (2004) Excel-automated 
FORM procedure. One can regard the computation of the 
FORM β by Eq. 2 as that of finding the smallest equivalent 
hyper-ellipsoid (centered at the equivalent normal mean-
value point μN and with equivalent normal standard devia-
tions σN) that is tangent to the LSS. Hence, for correlated 
non-normals, the ellipsoidal perspective still applies in the 
original coordinate system, except that the non-normal dis-
tributions are replaced by an equivalent normal ellipsoid.

An alternative FORM computational approach was given 
in Low and Tang (2007), summarized in Fig. 1, which uses the 
following equation for the reliability index β:

where n is the dimensionless vector defined by the brack-
eted term in Eq. 2(a). The above equation can be entered 
easily as an Excel array formula using Excel matrix func-
tions mmult, transpose and minverse. For each value of 
the vector n tried by the Excel Solver in the Low and Tang 
(2007) FORM method, a short Excel VBA function code 
x_i(DistributionName, para, ni), shown in Fig. 9 of the 
Appendix, automates the computation of xi from ni, for use 
in the constraint g(x) = 0, via the following equation:

in which F(xi) is the original non-normal CDF of xi, and 
Φ(ni) is the standard normal CDF.

Figure 1 provides an illustration involving three correlated 
non-Gaussian variables, for which the performance function is 
g(x) = VW − Z. Failure is reached when the resistances V and 
W decrease from their mean values to their most probable fail-
ure values of 33.12 and 40.12, and the load Z increases from 
its mean value to its most probable failure value of 1329. The 
most probable point (MPP) of failure (33.12, 40.12, 1329) is 
the point where the expanding 3D equivalent dispersion ellip-
soid first touches the LSS. This MPP is a failure state because 
33.12 × 40.12 = 1329. Much valuable information and insights 
are provided by the MPP of failure (the x* values) and the sen-
sitivity indicators (the n* values), as discussed in Low (2021; 
2022), and Low and Bathurst (2022). The focus in this paper is 

(2b)

Equivalent normal standard deviation ∶ �N =
�
{

Φ−1[F(x)]
}

f (x)
,

(2c)Equivalent normal mean ∶ �N = x − �N × Φ−1[F(x)],

(3)� = min
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different, namely on the integrated use of FORM, direct MCS, 
Importance sampling (IS), and SORM, where the design point 
located by FORM becomes the logical center of IS, and the 
“exact” failure probability from MCS, IS, or SORM allows a 
revised design much closer to the target failure probability. In 
this way, the merits of FORM, MCS, IS, and SORM comple-
ment one another.

One needs to appreciate the ease of moving from the n 
space (e.g., Fig. 1) to the rotated u space (in the classical 
FORM method) to understand the simple extensions of FORM 
to MCS, IS and SORM in the examples below. The vectors n 
and u can be obtained, one from the other, using the equations 
below (e.g., Low et al. 2011):

Fig. 1   The efficient Low and 
Tang Excel procedure for 
FORM, with more succinct 
VBA code for getting xi from 
ni made possible by recent 
Excel functions for BetaInv and 
GammaInv, as shown in the first 
figure of the Appendix



1198	 B. K. Low, C. W. Boon 

1 3

and

in which L is the lower triangular matrix of the Cholesky 
decomposition of the correlation matrix R. The lower tri-
angular matrix L is related to R by ��T = � , where super-
script T denotes the transpose of a matrix. The matrix L can 
be obtained easily using a very short Excel VBA code for 
Cholesky decomposition which is available in the public 
domain.

Only when the random variables are uncorrelated is 
� = � , because then L−1 = L = I (the identity matrix). In 
general � is not equal to �.

1.2 � More Accurate Failure Probability Using MCS, 
Importance Sampling, and SORM

This study shows that one can couple any of the following 
three methods (easily extended from the Excel FORM tem-
plate) to obtain near-exact Pf in a revised design. The Appen-
dix explains the extension for the simple g(x) = VW − Z case 
in Fig. 1. The procedure is the same for complicated cases like 
the reinforced pentahedral blocks in later sections.

(1)	 MCS with sampling emanating from the mean-value 
point. Setting up MCS requires only one more column 
to the right of the n* column in the FORM template of 
Fig. 1, as shown in Fig. 10 of the Appendix.

(2)	 Importance Sampling (IS) near the FORM design 
point, and achieving converged failure probability with 
a much smaller sample size than MCS. Setting up IS 
requires 3 additional columns in the FORM template, 
as shown in Fig. 11 of the Appendix.

(3)	 SORM to estimate curvatures at the FORM design 
point, and revised FORM Pf accordingly to a SORM Pf. 
Setting up SORM requires 5 additional columns in the 
FORM template, as shown in Fig. 12 of the Appendix.

MCS and IS for near-exact Pf estimation are easily extended 
from the Excel FORM template, with simple VBA codes, 
while SORM requires more VBA codes. In return, their near-
exact Pf values enable a much more accurate re-design via 
FORM, in the single loop FORM–MCS–FORM design proce-
dure for cases with multiple failure domains. The much faster 
IS and SORM can be used instead of MCS for cases with a 
dominant single failure mode, as illustrated next in an inter-
esting case where an inclined load is revealed by FORM as 
actually playing the role of resistance.

(5a)� = ��

(5b)� = �
−�
�,

2 � Foundation on Rock Containing a Planar 
Discontinuity

2.1 � Deterministic Model Based on Limit Equilibrium 
Considerations

Figure 2a shows the forces acting on a foundation on rock 
containing a planar discontinuity dipping out of slope face. 
The factor of safety against sliding on the discontinuity plane 
is the ratio of available resistance on the discontinuity plane, 
cA + N� tan� , to the sliding force Qsliding:

where N′ (the force perpendicular to the discontinuity plane) 
and the destabilizing Qsliding force are determined by the two 
equations below:

in which the symbols are as defined by the annotated inset 
at the top right of Fig. 2.

The deterministic analysis in Fig. 2b indicates that when 
an active bolt force T of 8 MN is applied over a 5 m width 
(out of plane), the factor of safety against sliding is 1.69, in 
agreement with Wyllie (1999, p195). If bolt force is zero, the 
factor of safety is 1.28.

For the given bolt force, Excel Solver indicates that a 
maximum Fs of 1.87 is obtained when ψT is 202.9°, which 
means 22.9° above horizontal, that is, 17.1° above the dis-
continuity plane. Wyllie aptly noted that it is, however, eas-
ier to drill and grout in a direction below horizontal.

2.2 � Statistical Inputs

The global (or lumped) factor of safety as defined by Eq. 6 
are typically based on mean values of the parameters (c, ϕ, 
Q1, Q2, a, W, ψp, …), and conveys no information on the 
chance of failure (defined by Fs ≤ 1.0). As an alternative, 
RBD via FORM can be conducted, based not only on the 
mean values but also the uncertainty of the input parameters. 
That the outcome of probability-based design depends on the 
inputs characterizing uncertainties is discussed in Sect. 6.

Figure 3a shows the simple template for RBD via FORM 
using the Low and Tang (2007) computational approach. 
The ten random variables are Q1V, Q1H, Q2, T,  a, W, hw, c, � 

(6)FS =
cA + N� tan�

Qsliding

,

(7)

N� =
(

Q1v +W
)

cos�p −
(

Q1H + aW
)

sin�p − V sin
(

�p − �v

)

− U

+T sin
(

�T − �p

)

+ Q2 sin
(
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,

(8)

Qsliding =
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(
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�p ,which have been defined in the top-right inset of Fig. 2a. 
Bounded non-Gaussian distributions are used.

In the bounded beta distribution BetaDist(λ1, λ2, min, 
max) used for seven of the ten random variables in Fig. 3a, λ1 
and λ2 are shape parameters which can define various shapes 

for the beta distribution. When λ1 = λ2, the beta distribution 
is symmetric (as in the unbounded normal distribution).

The following established relationships are useful to keep 
in mind:

Fig. 2   a Forces acting on a 
foundation on rock containing 
a planar discontinuity dipping 
out of slope face (top-right inset 
after Wyllie 1999). b Example 
deterministic evaluation of the 
factor of safety FS, inputs after 
Wyllie (1999)

(a)

(b)
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Fig. 3   a RBD of mean bolt force (μT) for a target reliability index (β); b Beta distribution of ϕ and PERT distribution of Q2; c Revised design of 
mean bolt force of 6.52 MN obtains a Pf of 0.133% based on IS, about equal to the target Pf of 0.13%
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When λ1 = λ2 = 7.5 in the beta distribution BetaDist(λ1, 
λ2, min, max),

where c.o.v. is the coefficient of variation (= σ/μ).
The μ and σ values are shown under the eponymous col-

umns in the middle of Fig. 3a. Figure 3b compares BetaDist 
(7.5, 7.5, 18, 42) for the friction angle ϕ, for which μ = 30 
and σ = 3 by Eqs.9a and 9b, with the normal distribution 
N(30, 3).

The 3-parameter PERT (also called beta-PERT) distri-
bution, PERTDist(min, mode, max), is used for random 
variables Q2, a and hw in Fig. 3a. The mean μ and standard 
deviation σ of PERTDist(.) can be calculated from the fol-
lowing established equations:

Figure 3b compares the PERT distribution with the trian-
gular distribution for the inclined load Q2.

The loads Q1V and Q1H are assumed to be positively cor-
related with a correlation coefficient equal to 0.5, and cohe-
sion c and friction angle ϕ of the discontinuity plane are 
negatively correlated with a correlation coefficient equal 
to − 0.5, as shown in the correlation matrix R. Also, the 
weight W will be larger when the discontinuity inclination 
angle ψp (Fig. 2a) is smaller, hence W and ψp are assumed 
negatively correlated with ρWψp = -0.5. The area (A) of 
discontinuity plane in Fig. 2b is 190 m2 when ψp = 40°. 
In probabilistic analysis, area A will vary according to 
A = 190 × sin 40◦

/

sin�p as ψp changes, assuming the dis-
continuity plane connects with the tension crack at the same 
constant elevation.

2.3 � Reliability‑Based Design (RBD) via FORM 
and Insights Provided by the FORM Design 
Point

The RBD-via-FORM procedure in Fig. 3a is similar to 
Fig. 1. It is easily linked to the deterministic set-up of Fig. 2b 
by replacing the numerical values of Q1V, Q1H, Q2, T, a, W, 
hw, c, � , �p in Fig. 2b with cell addresses which point to 

(9a)Mean value � = (min+max)∕2,

(9b)Standard deviation � = (max−min)∕8,

(9c)min = �(1 − 4 × c.o.v.) = � − 4�,

(9d)max = �(1 + 4 × c.o.v.) = � + 4�,

(10a)� =
min+4 ×mode +max

6
,

(10b)� =

√

(� −min)(max−�)

7
.

the cells under the x* column in Fig. 3a. The deterministic 
formulation is also needed in the performance function g(x) 
at the top of Fig. 3a, expressed as:

Or 

Equations 11a and 11b are mathematically equivalent 
when g(x) = 0.

Initially the n* column values in Fig. 3a were zeros. Excel 
Solver was then invoked (as in Fig. 1), to minimize the β 
cell, by changing the n* column values, subject to the con-
straint that the g(x) cell is equal to zero. A mean bolt force 
(μT) of 7.32 MN (over a 5 m width) was found to be required 
to achieve a β of 3.001 (≈ 3.0, typical target for ULS), as 
shown in Fig. 3a under the column labeled μ.

The ten x* values represent the first point of contact with 
the limit state surface (defined by g(x) = 0) when an equiva-
lent hyper-ellipsoid expands from its equivalent normal 
mean-value point, as explained in connection with Eq. 2. 
The point represented by the x* values which render g(x) = 0 
is the design point (or checking point), also referred to as the 
most probable point (MPP) of failure.

The following are noteworthy:

	 (i)	 When the n* values are initially zeros, the g(x) cell 
displays a positive value. This means that the mean-
value point is in the safe domain; only then can the 
reliability index (β) value obtained by Excel Solver 
be regarded as a positive reliability index.

	 (ii)	 The values of the sensitivity indicators under the n* 
column are positive for Q1V and W, being 0.21 and 
0.34, respectively. Both are destabilizing load entities 
(hence positive n* values), and both have the same 
coefficient of variation of 0.1. If W is independent, 
its much bigger mean value 30 MN relative to the 
mean value of 5 MN for Q1V would make its sensitiv-
ity indicator (n*) value even higher. But being nega-
tively correlated with ψp (n* value = 1.16 in Fig. 3a) 
restrains the n* value of W. (Correlated sensitivities 
are demonstrated and explained in Low (2020)).

	 (iii)	 A significant revelation from FORM is the negative 
sensitivity indicator value of -0.81 (under the n* col-
umn) for load Q2. Its design value (under the x* col-
umn) is 27.39 MN, a decrease from its mean value of 
30.17 MN (under the column labeled μ). This reveals 
the resistance nature of “load” Q2 with respect to 
sliding along the discontinuity plane. Designers not 
aware of this might multiply Q2 by a load factor big-
ger than 1, heading in a wrong direction. Had Q2 

(11a)g(�) = Qresist − Qsliding

(11b)g(�) =
Qresist

Qsliding

− 1.
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acted in a vertical direction, it will be a load like 
Q1 and W. In other directions between vertical on 
the one hand and perpendicular to the discontinuity 
plane on the other, it may not be clear to the designer 
whether to treat it as a load or a resistance. FORM 
will resolve such ambiguous load–resistance duality 
automatically.

	 (iv)	 When considering the bearing pressure on the pad 
or intact rock acted on by Q2, the load Q2 should of 
course be multiplied by a load factor greater than 1.0.

	 (v)	 The revelation by FORM in (iii) could have been per-
ceived by a deterministic designer who notes that the 
value of 130° for ψQ2 means that Q2 is perpendicular 
to the discontinuity plane. It increases the normal 
force N and hence acts like a resistance. This can 
be verified deterministically (via Fig. 2b), by vary-
ing the magnitude of Q2. Also, if ψQ2 = 90°, a Q2 
value of 30 MN is a destabilizing vertical load, like 
Q1v, causing the Fs value to drop from1.69 to 0.81. 
However, deterministic perception of such underly-
ing subtleties may not be straightforward. FORM 
automatically reveals such subtleties and offers 
other insights and information at the MPP of failure. 
Hence, it is beneficial to conduct FORM in tandem 
with partial factor design approaches like Eurodoce 
7 and LRFD. (Simpson (2007) discussed the differ-
ent ways of combining partial factors in the three 
design approaches (DA) in Eurocode 7, and the mer-
its of Design Approach 1 (DA1) relative to DA2 and 
DA3.) FORM automatically reveals the sensitivity of 
the input parameters, and the calculation procedure 
is impartial toward biases between DA1, DA2, and 
DA3.

	 (vi)	 The absolute values under the column labeled n* 
suggest that the critical parameters (for this case 
and the assumed statistical inputs) are friction angle 
ϕ, horizontal earthquake acceleration coefficient a, 
inclination angle ψp of the discontinuity plane, and 
Q2, in decreasing order of significance. 

	(vii)	 The design value of c (0.027 MPa), under the x* 
column, automatically found by FORM, is slightly 
above its mean value of 0.025 MPa. This is due to 
its being negatively correlated with the more pivotal 
parameter ϕ (the design value of which, 24.70°, is 
1.77 times its equivalent normal standard deviation 
below its equivalent normal mean. The values of 
sensitivity indicators can be affected (logically) by 
parametric correlations, as explained in Low (2020) 
in another context. In this case, the mean value of 
N′ tan� is several times the mean value of cA, caus-
ing the design value of cA to be dragged upwards as 
the design value of ϕ decreases significantly below 
its mean.

2.4 � Revised Design of Mean Reinforcing Force µT 
via FORM–IS–FORM

The failure probability based on FORM reliability index 
(Eq. 1) is approximate when the LSS is nonplanar and/or 
the random variables obey non-normal distributions. Having 
obtained a required design of mean bolt force μT = 7.32 MN 
(over a 5 m width) for a β of 3.001 in Fig. 3a, it is desirable 
to check the accuracy of Pf ≈ Φ(−3.001) = 0.134, and to get 
a new design mean bolt force of μT that satisfies the target Pf 
of 0.13% more closely, as illustrated below.

Section 1.2 and Fig. 10 in the Appendix present the 
simple extension of the FORM template to MCS, IS, and 
SORM, each of which can be coupled with FORM to 
converge to a target failure probability in the single loop 
FORM–MCS–FORM. Of particular efficiency are IS and 
SORM (instead of MCS) for cases with a dominant single 
failure mode (e.g., Fig. 3), as illustrated in the steps below:

	 (i)	 For the RBD-via-FORM design in Fig. 3a, impor-
tance sampling (IS) on the FORM design point indi-
cates a failure probability of 0.0766%, significantly 
lower than the Pf of 0.134% based on Eq. 1 for the β 
value of 3.001 in Fig. 3a.

	 (ii)	 A new target β (different from the original target β of 
3.0) is calculated from the following equation:

new �2 = Φ−1
(

1 −
0.134%

0.0766%
× 0.13%

)

= 2.84 , with the aim 
of target Pf of 0.13%.

 In Microsoft Excel, this is �2 = NormSInv
(

1 − �pT
)

 η 
= 0.134/0.0766.

	 (iii)	 RBD via FORM obtains a new mean bolt force 
μT = 6.52 MN that achieves the new β2 in (ii).

	 (iv)	 It is verified in Fig. 3c (left) by Excel MCS, Excel IS 
and MATLAB MCS that the new mean bolt force of 
μT = 6.52 MN obtains the small target Pf of around 
0.13%. SORM indicates a Pf of 0.14%.

The above-coupled FORM and near-exact Pf methods are 
summarized by the following expressions:

The Pf1 in the denominator of Eq. 12a can be evaluated 
by one of three methods, as follows:

(12a)�2 = Φ−1

(

1 −
Φ
(

−�1
)

Pf1

Ptarget

)

,

(12b)
followed by verification to checkthat MCS (or IS) Pf2 = Ptarget.

(13)
(Option 1) FORM−���−FORM, obtaining �1, Pf1, �2,
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Option 1 must be used (i.e., using MCS to determine Pf1) 
if there are multiple failure domains, as in Sects. 4.2 and 5.1 
later where sliding mode can be along both planes, or along 
one of the two planes.

Options 2 and 3 are faster than Option 1, and either can be 
used if there is a single dominant failure mode, as in Fig. 2 
where the sliding mode is down the discontinuity plane. 
(Option 3, in which SORM is used to determine the Pf1 in 
Eq. 12a, was suggested in Low and Einstein (2013, Eq. 15)).

The verification (Eq. 12b) can be done using the faster 
IS or SORM (as in Fig. 3c) if there is a single dominant 
failure mode. Otherwise MCS must again be used for Pf2, 
as in Sect. 5.1.

Figure 3c shows that three Importance Sampling each 
of 8,000 trials show much smaller scatter than three direct 
MCS each of 300,000 trials. This is because the center of 
importance sampling is at the FORM design point (i.e., 
the MPP of failure located by FORM), whereas in direct 
MCS the samples emanate from the mean-value point, 
and require larger sample size than IS.

The next section applies the coupled FORM and 
importance sampling method to design the reinforcing 
force for a potentially unstable rock slope in Hong Kong. 
Other derisking measures and the final option adopted 
will be mentioned.

3 � FORM–IS–FORM Procedure for a Failure 
Probability of 0.5% of a Hong Kong Slope

A rock slope adjacent to the Sau Mau Ping road in Kowloon 
of Hong Kong was analyzed in Hoek (2023) using MCS. 
Hencher et al. (2011) also mentioned this case. The granitic 
block above the exfoliation joint (sheet joint) has a height 
H of 60 m, Fig. 4a. Resistance against sliding of the block 
along the sheet joint derives from the shear strength param-
eters of friction angle ϕ and cohesion c. The destabilizing 
forces are the weight W of block, water forces U and V on 
the discontinuity planes, and earthquake-induced horizontal 
force αW. Various derisking measures were mentioned in 
Hoek (2023), including drainage, external reinforcing force, 
and slope re-profiling. The risk of the block sliding along 
the sheet joint was finally eliminated by removing the block 
(Hoek 2023), although stabilization by bolt force was con-
sidered up to the last stage.

What follows is this paper’s new contribution to prob-
ability-based design via coupled FORM and importance 
sampling for the design of bolt force for the Sau Mau Ping 
slope, aiming at 0.5% failure probability against sliding of 

(14)
(Option 2) FORM−��−FORM, obtaining �1, Pf1, �2,

(15)(Option 3) FORM−����−FORM, obtaining �1, Pf1, �2.

the block. Hoek’s MCS assumed (for simplicity) the five 
random variables ϕ, c, z, zw, and α to be independent, but 
both Hoek (2023) and RocScience (2002) mentioned that 
cohesive strength generally drops as the friction angle rises 
and vice versa. Also, Hoek (2023) discussed concerns about 
uncertain long-term durability and quality of installed rein-
forcing force. Hence in what follows, c and ϕ are modeled 
by a negative correlation of  − 0.5, and the uncertainty of the 
(active) reinforcing force T is characterized by a c.o.v. of 0.1. 
The variables T, ϕ, c, and z are normally distributed, while 
zw/z and α obey the highly skewed truncated exponentials. 
The probability distributions of the five random variables ϕ, 
c, z, zw/z, and α in Fig. 4b follow those used by Hoek (2023), 
which also discussed the reasoning behind the choice of the 
probability distribution functions.

The negative correlation coefficient of -0.5 between ϕ 
and c shown in the top left of the 6-by-6 correlation matrix 
R in Fig. 4b means that low values of cohesion c tend to 
occur with high values of friction angle ϕ, and vice versa. 
In addition, one may logically infer that the tension crack 
depth z and the extent to which it is filled with water (as 
characterized by the ratio zw/z) are also negatively corre-
lated. This means that shallower crack depths tend to be 
water-filled more readily (i.e., zw/z ratio will be higher) than 
deeper crack depths, consistent with the scenario suggested 
in Hoek (2023) that the water which would fill the tension 
crack in this Hong Kong slope would come from direct sur-
face run-off during heavy rains. For illustrative purposes, a 
negative correlation coefficient of -0.5 is assumed between z 
and zw/z, as shown in entries R45 and R54, where Rij denotes 
entry in row i and column j of the correlation matrix R in 
Fig. 4b. Even though there are no data to quantify this corre-
lation between z and zw/z, it is still useful to explore possible 
correlations to get a feel for its influence on the reliability 
index. This is a sensible approach commonly applied in 
engineering practice for important but not well-characterized 
parameters.

When there is no reinforcing force, i.e., µT = 0, the reli-
ability index obtained by Excel Solver is β = 1.887, implying 
a probability of failure of about 3%, based on Pf = Φ(−�) , 
which is unacceptably high. (For uncorrelated random vari-
ables, and with µT = 0, the reliability index is 1.556, with 
FORM Pf = Φ(− β) = 6%, compared with 6.5% from impor-
tance sampling, virtually the same as the Pf of 6.4% using 
MCS by Hoek (2023)).

Figure 4b, c shows that a mean reinforcing force (µT) of 
123 tons/m is required to obtain the target failure probability 
of about 0.5%, after revising the design of µT twice based 
on Eqs. 12 and 14.

Hoek (2023) rightly noted that the permissible failure 
probability (target Pf) can be higher if the consequence of 
failure is low, and lower if the consequence of failure is high.
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For the case in hand, the RBD is most sensitive to the 
coefficient of horizontal earthquake acceleration α and 
the ratio zw/z. The values of the sensitivity indicators of α 
and zw/z, under the column labeled n* to the right of the R 
matrix, are 1.325 and 1.213, respectively, higher than the 
absolute values of the other four n values.

A reliability-based design via FORM is able to locate the 
design point case by case, and in the process reflect para-
metric sensitivities as affected by case-specific limit state 
surface, statistical inputs, and correlation structure in a way 
that design based on prescribed partial factors cannot.

SORM can also be used for a near-exact Pf estimation. 
SORM analysis requires the FORM β value and design point 
values as inputs, and therefore is an extension dependent on 
FORM results. Using the Chan and Low (2012) Excel-based 
SORM, the average Pf(SORM) value of 0.44% was obtained 
when the 10 sample points for estimating the 5 components 
of curvature at the design point in the six-dimensional ran-
dom variable u space are based on sampling grid coefficient 
k = 1. If the sampling grid coefficient k is 2.0, the average 
Pf(SORM) is 0.54%.

Fig. 4   Coupled FORM and 
Importance Sampling (IS) 
applied to the Sau Mau Ping 
slope of Hong Kong, for a target 
failure probability of 0.5%

(a)

(b)

(c)
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The above RBD of a reinforced rock slope illustrates that 
RBD can be used when (i) there are no EC7 recommended 
partial factors yet (e.g., the parameters zw/z and α in Fig. 4b), 
(ii) when the design show context-dependent sensitivities to 
the underlying parameters which cannot be reflected by fixed 
partial factors, (iii) when the parameters are statistically cor-
related based on physical considerations (e.g., between c and 
ϕ, and between z and zw/z in Fig. 4b), and (iv) when there is 
a failure probability which can be higher or lower depend-
ing on the consequence of failure or non-performance (for 
serviceability limit states).

One may note the following connections between EC7 
and the RBD example in Fig. 4b:

(1)	 The design point (the six values under the column 
labeled xi*) has the same qualitative meaning as the 
design point in EC7. However, the FORM design point 
is the most probable point of failure at the contact point 
of an expanding equivalent dispersion ellipsoid with 
the limit state surface (defined by Fs = 1) in 6D space, 
and reflects context-sensitivity and parameter correla-
tions in a way the design point of EC7 cannot; this is 
because the design point in EC7 is obtained by apply-
ing code-specified partial factors to conservative char-
acteristic values.

(2)	 The sensitivity indicator values of ϕ and c, equal to 
-0.803 and -0.673 under the n* column in Fig. 4b, 
means that their influence on the design is similar. This 
outcome is opposite to the foundation on rock with a 
discontinuity case in Figs. 2 and 3, where the design is 
much more sensitive to ϕ than c. This context-depend-
ent sensitivity is attributable to N′tanϕ and cA are of 
comparable magnitude in Fig. 4b (but not in Fig. 3): 
being of values 867 and 699 at the MPP of failure in 
Fig. 4b, and 1264 and 802 at the mean-value point. In 
contrast, in Fig. 2, N′tanϕ is 33.28, much bigger than 
the value 4.75 of cA, and similar situation (23.79 versus 
4.90) in Fig. 3.

Sections 2 and 3 deal with reinforced two-dimensional 
blocks in rock slope with a discontinuity plane. The next 
section investigates (first deterministically, then proba-
bilistically) the stability of a bolted and externally loaded 
pentahedral (five-faced) block formed by two intersecting 
discontinuity planes, the slope face, the upper crest surface, 
and an inclined tension crack. Different failure modes need 
to be considered, including sliding on both discontinuity 
planes along the line of intersection, or sliding on only one 
of the two discontinuity planes.

4 � Stability of a Reinforced Pentahedral 
Block Using Vector Analysis and Excel 
Solver

The stability analysis of polyhedral wedges in rock slopes 
involves resolution of forces in three-dimensional space. The 
problem has been extensively treated, for example in Good-
man and Taylor (1967), John (1968), Londe et al (1969), 
Hendron et al (1971), Jaeger (1971), Hoek et al (1973), 
Hoek and Bray (1981), Wittke (1990), Priest (1993), Good-
man (1995), Low (1997), Kumsar et al. (2000), Park and 
West (2001), Wang et al. (2004), Jiminez and Sitar (2007), 
Dadashzadeh et al. (2017), Wyllie (2018), Low (2021), and 
RocScience (2022), for example. The methods used include 
stereographic projection technique, engineering graphics, 
vector analysis, response surface method as a bridge between 
numerical procedure and FORM, and closed form equations. 
From another perspective, a methodology for quantitative 
risk assessment of slope hazards in the Canadian Cordillera 
was presented by Macciotta et al. (2016), with consideration 
of the uncertainty in the results.

In Appendix 2 of Hoek and Bray (1981), the compre-
hensive solution (hereafter called H&B Comprehensive) 
requires 113 equations based on vectorial procedures (of 
dot products and cross-products), for analyzing the stability 
of pentahedral (five-face) blocks in rock slopes containing 
two intersecting discontinuity planes and a tension crack, 
a reinforcing bolt force T, and an external load E. A more 
rapidly implemented “short solution” (hereafter called the 
H&B Short) in the same H&B Appendix 2 consists of 20 
equations (including three factor of safety equations for three 
modes of sliding) for analyzing the stability of tetrahedral 
(four-face) blocks. The H&B Short does not allow for ten-
sion crack or external forces/loads, and yields the same fac-
tor of safety values as the Low (1997, 2021) closed form 
solution for tetrahedral wedge mechanism without tension 
crack and external forces/loads.

The link between the pentahedral block (with tension 
crack) in the H&B comprehensive and the tetrahedral block 
(without tension crack) in the H&B Short is L, which is the 
distance of tension crack from crest, measured along the 
trace of discontinuity plane 1, Fig. 5. If the value of L (in the 
H&B Comprehensive) is chosen such that the area of tension 
crack (and height of tension crack) become zero, the H&B 
Comprehensive reduces to a case without tension crack, and, 
if external load E and reinforcing force T are absent, and if 
water pressures u1 and u2 of the H&B Comprehensive cor-
responds to those of the H&B Short, the computed Fs values 
will be the same, provided the dip directions of planes 3 and 
4 are the same or differ by 180° (which renders the crest 
horizontal, as assumed in the H&B Short).



1206	 B. K. Low, C. W. Boon 

1 3

Fig. 5   Deterministic verification of stability analysis of a pentahedral block in rock slope, bounded by two intersecting discontinuity planes (1 
and 2), upper ground surface (3), slope face (4), and tension crack (5). (Deterministic questions after Hoek and Bray 1981)
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4.1 � Verifying with the Deterministic Examples 
in Pages 348–351 of Hoek and Bray (1981)

Figure 5 shows the deterministic questions on a pentahedral 
block from Hoek and Bray (1981, p348 & 351), in S.I. units. 
The solutions for questions 1(a) and 1(b), F = 1.1379 (when 
planes 1, 2, and 3 are filled with water), and F = 1.7360 
(when the three planes are dry), obtained using the first 80 
equations in H&B Comprehensive formulations, are identical 
to the F values given in Hoek and Bray (1981).

The solution for question 2 of Fig. 5, obtained read-
ily using the Excel Solver constrained optimization tool, 
yields the same Fmin of 1.04 and the same worst direction 
(ψe =  − 1.61°, αe = 173.03°) as those in Hoek and Bray 
(1981, Eqs. 81–98). In the efficient Excel Solver approach, 
the initial trial worst direction was (plunge ψe = 0, trend 
αe = 185°), where 185° was the dip direction of the slope 
face. Excel Solver was used to minimize the F cell, by chang-
ing (automatically) both the ψe and αe cells. An F value of 
1.037 was obtained as the minimum, together with a worst 
direction of (ψe =  − 1.611°, αe = 173.03°).

The solution for question 3 of Fig. 5 was also obtained 
efficiently using the Excel Solver constrained optimi-
zation tool. Initially the value in the T cell was zero and 
plunge angle ψt = 0, and the initial trial trend direction (αt) 
of T is taken to be opposite to the trend (αi) of the line of 
intersection (Eq. 47 in Fig. 5), that is, initial trial value 
of αt = 157.73 + 180, or 338°. The Excel Solver tool was 
invoked, to minimize the T × 1 formula cell, by changing 
(automatically) the three cells of T, ψt and αt, subject to the 
constraint that the F cell value is 1.50. Excel Solver first 
reported a converged solution, then, when run a second time, 
found a solution (T = 15265 kN, ψt =  − 6.99°, αt= 349.42°) 
which is virtually identical to that in Hoek and Bray (Hoek 
and Bray, 1981, Eqs. 99–113).

(Note: The plunge ψI and trend αi of the line of intersec-
tion are calculated from arcsine and arctangent functions, 
respectively, as given by Eqs. 46 and 47 in Hoek and Bray 
(1981, Appendix 2) and Wyllie (2018, Appendix III). Arc-
sine and arctangent can return two principal values. Nev-
ertheless, one can decide the correct trend direction for a 
downward plunging line of intersection by requiring the 
trend to be between a right-angle quadrant to the left and 
right of the dip direction of a non-overhanging slope face 
(i.e., Plane 4 in Fig. 5), or within ± 90° opposite to the dip 
direction of an overhanging slope face.)

4.2 � Probability‑Based Design of a Reinforced 
Pentahedral Block via Coupled FORM and MCS

The deterministic case of the Hoek and Bray pentahedral 
block of Fig. 5 is extended in this section to reliability-based 

design of the bolt force T for a target probability of failure 
of 0.1%.

4.2.1 � Considerations on Statistical Inputs

The uncertainties and probability distribution of the orienta-
tions (ψ1, α1, ψ2, α2) of discontinuity planes 1 and 2 of Fig. 5 
are the same as the SWedge example of RocScience (2002, 
p41–45) which has the same geometry as the Hoek and Bray 
example of Fig. 5), namely the standard deviations are 3° for 
the dip and dip directions of the two discontinuity planes, 
and normally distributed, as shown in Fig. 6.

Instead of the orientation (dip angle ψ5, dip direction α5) 
of the tension crack, the uncertainty of its trace length L 
on the crest could have a more significant influence on the 
probability of failure, because L affects the vertical height 
h5 of the tension crack. In the Hoek and Bray water pres-
sure model of “filled fissures”, the water pressure increases 
hydrostatically from zero at the top of the tension crack, to a 
maximum value at the intersection point between the line of 
intersection of the two discontinuity planes and the bottom 
of the tension crack, then decreases linearly to zero at where 
the line of intersection daylights on the slope face; water 
pressure is assumed to be zero around the edges of the pen-
tahedral block on the upper ground surface (plane 3) and the 
slope face (plane 4) in Fig. 5. With this in mind, the length L 
of 12.2 m in Fig. 5 is treated as mean value, and the standard 
deviation of L is 0.8 m, obeying the bounded BetaDist (7.5, 
7.5, 9, 15.4), as shown in Fig. 6a. This means that the prob-
ability density function (PDF) of L is symmetric (as in the 
normal distribution), but bounded between min and max, 
and with mean = 0.5*(min + max), and σ = (max − min)/8, 
(See also Eq. 9 and Fig. 3b; the PDF of BetaDist(α1, α2, 
min, max) can assume various non-symmetric shapes when 
α1 ≠ α2.).

The height H1 is also treated as a random variable, obey-
ing the bounded BetaDist (7.5, 7.5, 22.5, 38.5), with a mean 
value 30.5 m and a standard deviation of 2 m, as shown in 
row 2 of Fig. 6a.

The bolt force T, to be designed, is also regarded to have 
some uncertainty, represented by a coefficient of variation 
(c.o.v., i.e., σ/μ) of 0.1.

The standard deviations of c1 and c2 are assumed to be 4 
and 8 kPa, respectively, and that of ϕ1 and ϕ2 are 2° and 3°, 
respectively, as shown in the last 4 rows of Fig. 6a.

The cell g(x) at the top right of Fig. 6a contains the for-
mula “ = F − 1”, and the cell β contains the array formula 
Eq. 3. The 11 random variables in Fig. 6a are assumed to be 
independent to appreciate their uncorrelated sensitivities; 
correlated sensitivities are demonstrated and discussed in 
Low (2020) for a horizontally loaded light-weight structure.

The link between Fig. 5 and Fig. 6 is readily accom-
plished by replacing the numbers in cells T, H1, L, ψ1, 
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α1, ψ2, α2, c1, c2, ϕ1, and ϕ2 of Fig. 5 with cell addresses 
referring to the corresponding cells under the x* column in 
Fig. 6a. The cells in the x* column contain the simple func-
tion x_i(DistrinutionName, para, ni), which obtains xi value 
from ni value by Eq. 4.

The initial values under the n* column in Fig. 6 were 
zeros. FORM analysis using Excel Solver was done using 
different trial mean T values until μT = 16,420 achieves a 
target β value of 3.1, corresponding to a FORM Pf of about 
0.1%. Three direct MCS each of 400,000 trials were then 
conducted for this case with multiple failure domains, and 
yielded an average MCS Pf of 0.0623%, as “remarked” in 

Fig. 6b. The ratio of Φ(− β1)/(MCS Pf1) then led to a revised 
target FORM β2 of 2.956, which was achieved by a μT of 
14,915 kN, first row of Fig. 6a. All the failure modes in the 
MCS for Pf1 were sliding on both planes (which is, there-
fore, the single dominant failure mode); hence, the verifica-
tion Pf2 was done using the much faster importance sam-
pling at the FORM design point of β2, confirming that, for 
μT = 14,915 kN, the failure probability Pf2 (in 60,000 trials) 
is 0.104% (nearly the target 0.1%), as remarked in Fig. 6b. 
Also remarked in Fig. 6b is the Pf2 of 0.099% obtained by 
MATLAB MCS in 1.2 million trials.

Fig. 6   RBD of the mean bolt 
force μT of the pentahedral 
block of Fig. 5, for a target 
probability of failure (Ptarget) of 
0.1%, by coupling FORM and 
MCS, then FORM and IS

(a)

(b)
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In this case where there are multiple potential failure 
modes, direct MCS with sampling emanating from the 
mean-value point should be conducted first, in case other 
sliding modes (apart from sliding on both planes in Fig. 5) 
also contribute non-negligibly to the total failure probability. 
The faster IS was used only after MCS indicated a dominat-
ing failure mode.

The approximate nature of Eq. 1 is again demonstrated in 
Fig. 6b: the small target Pf of 0.1% was achieved by a FORM 
β of 2.956, not 3.10.

The absolute values of the sensitivity indicators ni suggest 
that, for the given statistical inputs, the three most significant 
parameters affecting reliability are height H1 of the pentahe-
dral block, cohesion c2, and friction angle ϕ1. When uncor-
related, a negative n* value indicates a resistance parameter 
(for T, c1, c2, ϕ1 and ϕ2) and a positive n* value indicates 
a load parameter. It is also notable that the MPP value of 
L under the x* column (11.79 m) is smaller than its mean 
value of 12.2 m. Smaller trace length L implies greater ten-
sion crack depth and higher water pressures of u1, u2 and 
u5, but smaller L also reduces the weight of the pentahedral 
block and the areas A1 and A2 on which shearing resistance 
and water pressures u1 and u2 act and increases the area A5 
on which u5 acts. Compensatory effects are involved, and 
whether the MPP value of L should be bigger or smaller 
than its mean value will be resolved automatically on a 
case-specific basis during the determination of FORM β by 
Excel Solver. The same automatic FORM resolution of the 
critical directions in arriving at the MPP of failure (the x* 
values) also applies to the geometrical random variables ψ1, 
α1, ψ2 and α2, which interact intricately not merely among 
themselves in a three-dimensional way but also with the 3D 
forces acting on the discontinuity planes.

The Hoek and Bray “filled fissures” water pressure model 
of the pentahedral block in Figs. 5 and 6 implies u1 = u2 = u5. 
We next consider a tetrahedral block without tension crack, 
in which water pressures u1 and u2 on discontinuity planes 
1 and 2 can have different values, and more than one failure 
mode contributes to the failure probability.

5 � Probability‑Based Design of a Reinforced 
Tetrahedral Block

A tetrahedral block from Priest (1993, Example 8.4, possi-
bly a site case) is analyzed deterministically in this section, 
using the H&B Comprehensive vectorial procedure in Excel, 
for comparison with the stereographic-projection-and-equa-
tions method in Priest (1993). (Note: The H&B Short vecto-
rial procedure cannot be used for this example because there 
are external loads and the intersection line (“crest”) between 
planes 3 and 4 is not horizontal.)

The deterministic analysis is extended below to a reliabil-
ity-based design of bolt force for a target failure probability 
of 0.1%.

As shown in Fig. 7a, a non-overhanging rock slope face 
of orientation (dip direction/dip angle) 230/60 and its upper 
ground of orientation 225/05 are intersected by two discon-
tinuities of orientations 203/47 and 287/52, to form a kin-
ematically feasible tetrahedral block. The information on the 
volume of the block and triangular surface areas of planes 
1 and 2 given in Priest (1993) means that the height H1 is 
6.8 m. For the tetrahedral wedge with no tension crack, the 
trace length L of discontinuity 1 on plane 3 must satisfy 
the equation L = Mh/|p|, so that height h5 and area A5 of 
tension crack are zero, where the entities M, h and p are 
given by Eqs. 41, 43 and 19 in Hoek and Bray (1981). The 
equation for L must be entered in the eponymous cell in 
Fig. 7a, because during subsequent RBD the values of H1 
and the orientations of planes 1 and 3 will change, and the 
cell labeled L must change accordingly.

In Fig. 7a, the values of cohesions (c1, c2), angles of fric-
tion (ϕ1, ϕ2), and average water pressure (u1, u2) of the two 
discontinuities are as given by Priest (1993). The founda-
tions of a pylon to be sited on the block will exert a force of 
180 kN downwards along a line of trend/plunge 168/70, as 
shown by the values under the column labeled E.

The factor of safety against sliding is calculated to be 
1.4966, Fig. 7a, in which the label F12 means that the poten-
tial mode of sliding is on both planes 1 and 2, along the line 
of intersection. This example is also analyzed deterministi-
cally in SWedge of RocScience (2022, Verification Problem 
#6, p31-33), which also reports an Fs of 1.4966.

5.1 � From Deterministic Analysis to Design of Bolt 
Force for a Target Failure Probability of 0.1%

The 11 random variables in Fig. 7b are those related to (i) 
geometry: H1, dips (ψ1, ψ2) and dip directions (α1, α2) of 
the two discontinuities, (ii) water pressure (u1,u2) and shear 
strength parameters of the discontinuities (c1, c2, ϕ1, ϕ2). 
Their mean values μ (first column) are the same as those 
in the deterministic example in Fig. 7a. The values of their 
standard deviations σ (second column) are illustrative but 
realistic and within the typical range. All are assumed to 
follow the 4-parameter bounded BetaDist(λ1, λ2, min, max), 
which is symmetric when λ1 = λ2, and, when λ1 = λ2 = 7.5, 
obeys the relationships min = μ − 4σ and max = μ + 4σ. We 
already encountered an example of BetaDist (7.5, 7.5, min, 
max) in Fig. 3b. These bounded symmetric beta distributions 
are intentionally selected as approximations of the symmet-
ric but unbounded normal distributions, which are not used 
here because occasional extremely large or extremely small 
(or negative) values of random numbers generated from nor-
mal distributions may cause numerical errors (during MCS 
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(a)

(b)

Fig. 7   a Deterministic analysis of a tetrahedral block (after Example 8.4 in Priest 1993); b RBD of required bolt force T by coupling FORM and 
MCS.
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involving huge sample size of hundreds of thousands) in the 
H&B comprehensive vectorial procedure which has around 
100 equations. The deterministic set-up of Fig. 7a is easily 
linked to the FORM template of Fig. 7b by replacing 11 
numerical inputs in the former with cell addresses reading 
values from the x* column in the latter. The performance 
function g(x) is “ = F − 1”. The β cell contains an array 
formula as explained in Fig. 1. The 11 random variables are 
assumed uncorrelated in this illustrative example.

The bolt force T (next to the load E from the foundations 
of a pylon) in Fig. 7a was zero. It is now required to find 
the (active) bolt force T for a target failure probability of 
0.1%. The bolt force T is taken to act horizontally (ψt = 0) 
with a trend direction of 59°, that is, opposite to the trend ψi 
(= 239.4°) of the line of intersection. A first-design T value 
of 19.3 kN was required to achieve a β of 3.1 using FORM. 
The FORM Pf of 0.1% by Eq. 1 is approximate. The Pf1 by 
MCS was 0.168%, as shown in Fig. 7b bottom left. A revised 
β2 of 3.251 was computed from Eq. 12a, which is satisfied by 
a revised T of 31.6 kN. Three MCS runs each with sample 
size of 400,000 obtained a Pf2 of 0.112%, which suggested a 
β3 of 3.282, satisfied by a revised T of 34 kN (Fig. 7b). The 
optional Pf3 by Excel MCS in 1.2 million trials is 0.101%, 
which agrees with Pf3 of 0.099% via MATLAB MCS using 
the same number of trials.

Measurements obtained from instrumentation and moni-
toring such as load cells for active anchors (Boon et al. 
2015b, 2019) may suggest realistic coefficient of variation 
(c.o.v.) if the uncertainty in the bolt force is to be modeled. 
(In Figs. 3 and 6, the c.o.v. of the bolt force T is assumed 
to be 0.1). Alternatively, numerical analysis may be used to 
obtain c.o.v. of bolt forces (Boon et al. 2015a).

For cases with multiple failure modes, direct MCS should 
be done first despite its time-consuming nature and large 
sample-size requirement when failure probability is small, 
because MCS can sample into the failure domains of the 
different failure modes. For the pentahedral case in Figs. 5 
and 6, MCS must be used for Pf1 because of multiple failure 
domains. The faster IS can be used for verifying Pf2 only 
after MCS indicates all failure modes are sliding on both 
planes. The single dominant failure mode of Fig. 6 should 
not be presumed, as direct MCS for Pf1 revealed that for the 
tetrahedral block in Fig. 7, the number of sliding failures on 
plane 1 is more than twice that of sliding on both planes, 
even though the failure mode is sliding on both planes when 
the random variables are at their mean values. More about 
this phenomenon in the next section.

5.2 � A Tetrahedral Block That Slides on a Single 
Plane

For the pentahedral block in Fig. 5, the mean-value mode 
(sliding on both planes) was revealed to be the single 

dominant mode in the MCS of Fig. 6. For the tetrahedral 
block in Fig. 7, although the mean-value mode is also slid-
ing along both planes, the more likely failure mode in MCS 
is sliding on plane 1, with other modes also contributing to 
failure probability. In contrast, for the tetrahedral block in 
Fig. 8, the governing sliding mode is along plane 2 for the 
given water pressures u1 and u2, but the sliding mode can 
change to a different one (along both planes) when the water 
pressures are different.

The deterministic data in Fig. 8 are the same as Priest 
(1993, Example 8.5), which compute the Fs using equations 
and the graphical stereographic projection method. The 
F = 0.8493 in Fig. 8, obtained using the H&B Comprehen-
sive vectorial procedure, is identical to the F value reported 
by SWedge (RocScience 2022, Verification Problem #7). 
The “F2 = 0.8493” in Fig. 8 means that the mode of sliding 
is along plane 2, sliding away from the line of intersection 
and from plane 1. One may note the factors contributing 
to this single-plane sliding mode: discontinuity 1 is steep 
(ψ1 = 74°), and its water pressure (u1 = 25 kPa) is high rela-
tive to the water pressure (15 kPa) on the less steep discon-
tinuity 2 (ψ2 = 41°).

Had the slope been dry, with u2 = u2 = 0, the Fs is 2.3716, 
and the sliding mode is along both planes.

For other pressures of u1 and u2 between the dry sce-
nario and the scenario represented by the data in Fig. 8 
(where u1 = 25 kPa, u2 = 15 kPa), the governing sliding 
mode could be either sliding on both planes, or on plane 
2 only. For example, with u2 = 15 kPa, the both-planes 
mode (i.e., sliding along the line of intersection) governs 
when u1 ≤ 21.91 kPa), and Plane 2 mode governs when 
u1 > 21.91 kPa. There is an abrupt drop of F at the transi-
tion from both-planes mode to the Plane 2 mode, caused by 
the sudden loss of cohesive resistance c1A1 when the block 
detaches from plane 1. For cases with multiple failure modes 
(i.e., multiple failure domains), direct MCS (with sampling 
emanating from the mean-value point) must be used when it 
is possible that more than one failure mode will contribute 
toward the total failure probability.

Simpson et al. (2011) reviewed case histories of failures 
caused by water pressure and the safety provisions related to 
water pressure in some existing geotechnical codes, includ-
ing Eurocode 7.

6 � Computed Probability of Failure 
is not Unique nor Intrinsic, but Depends 
on Inputs

Rock density is an intrinsic and endogenous property of 
a piece of rock. In contrast, computed failure probability 
is neither intrinsic nor unique, but depends on statistical 
inputs. The same limitations to probabilistic approaches 
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with respect to approximate inputs, idealized formulations 
in the performance function, non-exhaustive factors and 
unknown unknowns also apply to the outputs of determin-
istic analysis, for example computed Fs and FEM-calculated 
displacements.

One is reminded of Terzaghi’s pragmatic approach of 
aiming at designs such that unsatisfactory performance is not 
likely, not aiming at designs which would behave precisely 
(e.g., not aiming at footing settlement of exactly 25 mm). It 
is in the same spirit that probability-based-design aims to 

achieve sufficiently safe design, not at a precise probabil-
ity of failure. One may note that a EC7 design (or LRFD 
design) via conservative characteristic/nominal values and 
code-specified partial factors also aims at a sufficiently safe 
design by implicit considerations of parametric uncertain-
ties. In contrast, the uncertainties, correlations and prob-
ability distributions of random variables are open to view 
in a probability-based-design. Instead of shunning proba-
bilistic approaches, case-specific scrutiny and counter-sug-
gestions for more reasonable statistical inputs and related 

Fig. 8   a A tetrahedral block 
that slides on discontinuity 2 
when the water pressure (u1) on 
discontinuity 1 is 25 kPa (after 
Example 8.5 in Priest 1993). b 
Factor of safety versus water 
pressure on discontinuity 1, 
with u2 = 15 kPa

(a)

(b)
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issues in probability-based design are more likely to result 
in advancements and improvements of the design approach.

A probability-based design requires additional statistical 
inputs which are not required in a deterministic analysis, but 
results in richer information pertaining to the performance 
function and the design point that is missed in a determin-
istic analysis.

Like Fs, a computed probability of failure is an outcome 
that will change if the inputs are different. Nevertheless, reli-
ability analysis and probability-based-design are valuable 
for improving design rationale, resolving ambiguities (e.g., 
load–resistance duality), and revealing occasional subtleties. 
Hence, conducting reliability analysis and probability-based-
design in tandem with Eurocode 7, LRFD and other design 
approaches can be enlightening and insightful.

7 � Summary and Conclusions

This study provides an efficient Excel template for ana-
lyzing the Fs of reinforced and externally loaded penta-
hedral (five-faced) blocks in rock slopes, based on the 
first 80 equations of the comprehensive vectorial proce-
dure of Hoek and Bray (1981), which is also in Wyllie 
(2018). An alternative Excel-Solver procedure is dem-
onstrated, for determining the worst direction of a load 
and the best direction of a bolt force, in lieu of Hoek and 
Bray Eqs. 81–113. The deterministic computational pro-
cedures in this study are verified against cases in Hoek 
and Bray (1981), Priest (1993), Wyllie (2018), and Roc-
Science (2002, 2022). This study then extends the deter-
ministic template to RBD of reinforced rock slopes aim-
ing at a small target failure probability (e.g., Pf = 0.1%). 
Instead of iterative trial designs via repeated MCS alone, 
this study illustrates the more efficient and time-saving 
FORM–MCS–FORM design approach, with a second 
round of MCS for verification if desired. Computed fail-
ure probabilities were also verified by comparisons with 
MCS using MATLAB.

Apart from coupled FORM and MCS for probability-
based design of 3D reinforced pentahedral and tetrahedral 
blocks, this study also demonstrates the automatic resolu-
tion of load-resistance duality and case-specific parametric 
sensitivities of reinforced 2D blocks, including a site case 
of Hong Kong slope, and other insights and information at 
the design point provided by FORM. The need for more 
thoughts in applying load factors is indicated. FORM would 
facilitate the engineer to verify automatically whether a vari-
able acts as a load or resistance; variabilities in parameters 
(e.g., relative inclinations) which affect whether a variable 
is a load or resistance are accounted for.

While it is widely appreciated that FORM Pf is approxi-
mate in cases involving nonlinear LSS and non-normal dis-
tributions, the coupled FORM–MCS–FORM design proce-
dure is more accurate and efficient than implementing either 
FORM or MCS by itself alone. It is demonstrated that for 
cases with multiple failure domains, it is necessary to ascer-
tain the different failure modes with a run of MCS (as in 
Figs. 6 and 7). The direct MCS in the FORM–MCS–FORM 
design method can be done using available user-friendly 
MCS software such as @RISK of palisade.com, SWedge of 
RocScience.com, MATLAB, or the easy Excel-based direct 
MCS method (Appendix Fig. 10) for correlated non-normal 
variates. The Excel-based MCS requires adding only one 
column to the Low and Tang (2007) FORM template.

When only a single dominant failure mode is involved 
(e.g., Figs. 2 and 3, and Figs. 4, 5, and 6), one can use the 
faster importance sampling (IS, centered at the design point 
provided by FORM), in which case the single design method 
becomes FORM–IS–FORM. The fast SORM can also be 
used when only a single dominant failure mode is involved, 
in which case the method becomes FORM–SORM–FORM. 
(MCS should be used when it is not clear whether a single 
dominant mode exists, followed in the verification stage 
by the faster IS or SORM once the dominant single failure 
mode has been confirmed by MCS). Given that probabilistic 
calculations are becoming more prevalent in rock engineer-
ing, an understanding of limitations and solutions to over-
come these are important. The FORM–MCS–FORM design 
method (or FORM–IS–FORM for cases with dominant sin-
gle failure mode) proposed here is useful for probability-
based design aiming at a target Pf.

Appendix A

(See Figs. 9, 10, 11, 12).
The more succinct Excel algorithm for obtaining xi from 

ni via xi = F−1
[

Φ
(

ni
)]

 and the easy extension of the FORM 
template to Monte Carlo simulation (MCS) are shown in 
Figs. 9 and 10 below, respectively, for the g(x) = VW − Z 
case in Fig. 1 of this paper. The extensions from FORM 
to importance sampling (IS) and second-order reliability 
method (SORM) are shown in Figs. 11 and 12 below. The 
procedures are the same for more complicated cases, for 
example Figs. 3 and 4 in the paper, which coupled FORM 
and IS for cases with a single dominant failure mode, and 
Figs. 6 and 7, which coupled FORM and MCS for cases with 
multiple failure modes. The procedure can also be applied to 
cases in which VBA functions and macros are required for 
evaluating the performance functions g(x).
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Fig. 9   More succinct Excel 
algorithm for obtaining xi from 
ni

Function x_i(DistributionName, para, ni) As Double
'Revised by B.K.Low, more succinct for BetaDist, Gamma, and PertDist, n 2023
a1 = para(1):   a2 = para(2):   a3 = para(3):   a4 = para(4)
With Application.WorksheetFunction
Select Case UCase(Trim(DistributionName))
Case "NORMAL":      x_i = a1 + ni * a2
Cases LOGNORMAL, TR_EXP, EXTVALUE1, 

EXPONENTIAL, UNIFORM, TRIANGULAR, 
WEIBULL

Case "BETADIST":   a1 = para(1):   a2 = para(2):   a3 = para(3):   a4 = para(4)
x_i = .BetaInv(.NormSDist(ni), a1, a2, a3, a4)

Case "GAMMA":     alpha = para(1): lambda = para(2)
x_i = .GammaInv(.NormSDist(ni), alpha, lambda)

Case "PERTDIST":     a1 = para(1):   a2 = para(2):   a3 = para(3)
lambda1 = 4 * (a2 - a1) / (a3 - a1) + 1: lambda2 = 4 * (a3 - a2) / (a3 - a1) + 1
x_i = .BetaInv(.NormSDist(ni), lambda1, lambda2, a1, a3)

End Select
End With
End Function

As in 
Low and Tang 
(2007)

M
ore succinct than 

the 24 lines in
Low

 and Tang (2007)

Each case one or 
two lines only

Transforming ni to original random variables xi for use in performance function g(x) 

Fig. 10   Tranforming FORM 
template to MCS by adding a 
random u column
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Fig. 11   The Monte Carlo 
method of importance sampling 
(IS) at the FORM design point

Fig. 12   SORM extended from 
FORM
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