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Abstract
In this paper, an advanced rheological model for impacts of ellipsoidal blocks on deformable ground surfaces, introducing the 
effects of block eccentricity and orientation at impact, is presented. This allows us to assess impact penetration and force, restitu-
tion coefficients, and block trajectories. A parametric analysis was carried out by considering different block aspect ratios, impact 
angles and initial block orientations at impact. The results are presented in terms of restitution coefficients, penetration and force 
time histories, maximum penetration depth, maximum force and rotational/total kinetic ratios. Impacts along the major block 
axis, versus those along minor axis, are characterized by larger penetrations (ranging from 3.3 to 50%), shorter impact durations 
(ca 50%) and very slightly larger vertical forces (ranging from 0.3 to 60%) according to the model parameter used. In contrast, 
the impact angle is shown to strongly affect maximum penetration and force values, and markedly increase rotation at impact. 
Analogously, normal restitution coefficient is severely dependent on impact angle, with a variation of more than two orders of 
magnitude. A mathematical expression for computing the energetic restitution coefficient from the normal and tangential apparent 
restitution coefficients and the ratio between the rotation and total kinetic energy is proposed. This overcomes the drawback of 
classical restitution coefficients greater than one when a change in block rotation occurs allowing us to bracket the coefficient of 
restitutions values to support and improve classical rock fall simulations also highlighting their intrinsic limitations. Finally, the 
effects of block geometry and initial angular velocity on rockfall simulations were analyzed by implementing the approach in the 
HyStone simulation code. The simulated frequencies of the maximum height during each ballistic trajectory follow an exponential 
distribution, whereas those for normal and tangential apparent restitution coefficients follow normal distributions.

Highlights

•	 A new rheological model for impacts of ellipsoidal blocks is formulated.
•	 The model provides impact variables for different impact angles, initial orientations and block shape.
•	 Model results are used to compute restitution coefficients.
•	 Rockfall numerical simulations with HyStone implementing the extended impact model are performed.
•	 Statistical distributions of the normal and tangential apparent restitution coefficients are examined.
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1  Introduction

Rock falling starts from the release of one or more blocks 
from a source area (detachment phase) and a consequent 
downslope movement under the action of gravity (propa-
gation phase) (Varnes and Cruden 1996) until their arrest 
(deposition phase). As observed in Umili et al. (2023), the 
geological conditions of the rock mass govern the block 
geometry and volume statistics.

The motion of the blocks in the transition zone is char-
acterized by a succession of ballistic and bouncing motions 
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causing a sequence of interactions between block and ground 
surface.

In order to mitigate the rockfall risk, many defence 
systems have been conceived in the past and their design 
requires the definition of both kinematic and dynamic quan-
tities such as rockfall mass volume, horizontal and vertical 
travelling distances, falling height, block trajectory as well 
as energetic level and penetration at the impact on ground 
surface and defence structures (Chau et al. 2002; Zhang et al. 
2017; Lambert et al. 2021).

The above quantities are usually assessed by means 
of computer-based simulations and for this purpose 
many codes based on the lumped mass (material point) 
approach, the rigid body approach (Leine et al. 2014), and 
finally, the discrete element modelling method with either 
single or multi-particle blocks (Shen et al. 2020) have 
been implemented. Apart from Leine et al. (2014), the 
remaining models generally introduce a double descrip-
tion for the block geometry when the motion is computed: 
during free flying, the block geometry is summarized in 
the inertial moments, while during the impacts the block 
is assumed to be a rigid sphere or an ellipsoid (Bozzolo 
and Pamini 1986; Azzoni et al. 1995) in a point-like con-
tact with the ground surface.

Free flying, sliding and rotation are well understood 
and adequately modelled, whereas the impact on both sur-
face soil/rock material (Chau et al. 2002; Bourrier et al. 
2011) and protection structures (Lambert and Bourrier 
2013; Zhang et al. 2017) is still a major research subject.

The most commonly employed strategy to simulate 
the impact process consists in considering the block as 
a material point and assessing the bouncing velocity 
components by means of restitution coefficients (i.e. 
the ratio between pre- and post-impact velocity compo-
nents, Giani et al. 2004; Spadari et al. 2012; Pfeiffer and 
Bowen 1989; Gischig et al. 2015; Azzoni et al. 1995; 
Chau et al. 2002; Asteriou et al. 2012; Leine et al. 2014). 
Restitution coefficients are a whole measure implicitly 
including all the characteristics of an impact process, as 
block and substrate deformation, sliding at the contact 
point, changes between the linear and rotational momen-
tum. Consequently, all this information is lost in this 
approaches. Hence, the study of the impact process is 
reduced to the evaluation of the appropriate values of res-
titution coefficients. It has been suggested that these coef-
ficients depend only on the impacting materials (block 
and substrate) leading to miscalculations, because the 
block response is governed, as shown by the experimental 
evidence (e.g. Chau et al. 2002) by many factors. Habib 
(1977) introduced a scaling factor controlled by a param-
eter, kv , to discriminate between almost elastic impacts 
for low energetic contents and inelastic for high impact 
velocities (Asteriou et al. 2012). Based on this strategy, 

Pfeiffer and Bowen (1989) proposed empirical relation-
ships to correct the restitution coefficients by means of 
factors dependent on block velocity and mass.

Since restitution coefficients represent a measure of 
the energy dissipated during impact, with a lower value 
corresponding to a lower output mechanical energy (i.e. 
a larger dissipation) they should be less than or equal to 
one (no loss of mechanical energy).

As was already observed by Spadari et al. (2012), when 
the rotational degree of freedom is taken into account, 
the apparent restitution coefficients, evaluated with 
the reference of the block centre of mass, can be larger 
than one. This result apparently contradicting with the 
second thermodynamic principle, may be explained by 
taking block rotation into account (Leine et al. 2014). 
To solve this problem, some authors introduced the dis-
tinction between the contact and the apparent restitution 
coefficients according to the position where the velocity 
components are referred to the computation of the resti-
tution coefficients. Vijayakumar et al. (2012) proposed 
a mathematical relationship between the apparent and 
contact restitution coefficient in which the role of block 
geometry is evident.

Empirical relationships to evaluate the restitution coef-
ficients model only the velocity effect while the block 
size, shape and initial impact configuration are not taken 
into consideration because of their empirical nature not 
accounting for the physics of the impact. Bozzolo and 
Pamini (1986) introduced the shape effect by considering 
ellipsoidal blocks at the impact with rotation at the point-
like contact between block and slope surface. Yan et al. 
(2020) proposed a 3D approach in which the block has a 
complex polyhedron geometry randomly generated and 
satisfying two sphericity and concavity requirements. The 
contact force is computed by means of a bilinear function 
with parameters not depending on the block geometry, 
orientation and velocity at impact. Torsello et al. (2021) 
simulated blocks with a polyhedral geometry by using 
the RAMMS rock builder tool and the ROCKFALL code 
to simulate the generated blocks, whereas Bourrier and 
Acary (2022) studied propagation by considering the 
block geometry during free-fall and rolling phases.

The Distinct Element Method (DEM) and the Non-
Smooth Contact Dynamics (NSCD) can easily account for 
these factors (Bourrier et al. 2008, 2010; Shen et al. 2020). 
These simulations can provide information about the impact 
physics but they are still computationally consuming and for 
this reason, they cannot be used for multiple (determinist 
and stochastic) rockfall simulations requiring thousands of 
block simulations. This approach was also used by Chang 
et al. (2011) to investigate the effect of block shape on its 
rotation, trajectory and the main variables used in the design 
of protection structures, while Garcia et al. (2022) used a 
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DEM with sphero-polyhedral block shapes to reproduce the 
in situ experimental tests.

Another approach makes use of rheological models to 
describe the impact process by using a combination of sim-
ple constitutive models to obtain the restitution velocity 
components and the restitution coefficients from numerical 
integration, once initial conditions and model parameters 
are set (Dattola et al. 2021). Such an approach based on a 
macro-element equivalent foundation was proposed by di 
Prisco and Vecchiotti (2006, 2010) to model the interaction 
between the block and the deformable ground surface. The 
macro-element constitutive relationship is based on a visco-
plastic model and an elasto-damping element introduced 
to represent the near field and deep substrate mechanical 
behavior, respectively. The block was assumed to be spheri-
cal, with inhibited rotation so that two degrees of freedom, 
normal and tangential displacements, were considered. Since 
the rheological approach allows to reproduce all the above-
mentioned dependencies by improving the corresponding 
constitutive equations, this strategy was followed by Dattola 
et al. (2021) to consider also the rotational component for 
prismatic blocks with a polygonal base.

In this paper, this last advanced model has been modified 
with the following aims: (i) introducing an advanced macro-
element model in which the block has an ellipsoidal shape 
with an additional rotational degree of freedom; (ii) inves-
tigating the influence of ellipsoidal shape, and especially 
force-eccentricity, on the block rotational behaviour, (iii) 
analysing restitution coefficients dependency and proposing 
a generalization of the restitution coefficient approach by 
taking the rotational energy and the transition between rota-
tional and translational moments into account; (iv) studying 
the effect of block geometry on rock fall run-out.

The paper is organized as follows: in the second section, 
the ellipsoidal shape model, the generalization of the restitu-
tion coefficient and the Vijayakumar et al. (2012) expression 
relating the effective and apparent restitution coefficients are 
presented. The third section presents numerical results in 
terms of block penetration (displacement), impact force, 
rotation and coefficients of restitution. Finally, the discus-
sions and the conclusions sections are presented.

2 � Model

The here proposed model extends the one proposed in Dat-
tola et al. (2021) for prismatic blocks, in which eccentricity 
does not play a role because of symmetry and, consequently, 
variation of rotational velocity is less relevant for the final 
block trajectory.

2.1 � Model Formulation

Mathematical expressions and unknowns vectors are for-
mulated in the local reference system, in which normal and 
tangential directions (perpendicular and parallel to the slope, 
respectively) are considered (Fig. 1).

During the impact, block and soil interact with each other 
exchanging contact forces and contact momentum applied 
at the centre of gravity of the contact surface which evolves 
during the impact. This interaction between soil and block 
is modelled by means of an equivalent foundation, whose 
size is a function of block penetration and rotation, as well 
as the block shape. Therefore, the problem of evaluating 
the block motion during the impact and the force acting on 
the soil is split up in two sub-systems: (i) the rigid block 
motion and (ii) an equivalent foundation with its constitu-
tive relationships.

I

B

Fig. 1   Reference system of normal and tangential axes n − t adopted 
to analyze the block impact on a slope with inclination, � . The 
impact angle �in and restitution angle �out are shown together with the 
impact and bouncing translational and angular velocities. Impact (I) 
and the bouncing (B) points are also shown

Block

Visco-plastic slider

Elastic element Dashpot

Fig. 2   Rheological models for the case of normal impact
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The block motion is described by means of three degrees 
of freedom, the normal and tangential displacements of its 
centre of gravity and the block rotation around it assumed to 
be positive in clockwise direction. The block obeys the linear 
momentum balance equation written considering both the 
contact forces and the block self-weight. The linear momen-
tum equation is the same as in Dattola et al. (2021) in which 
both the mass and inertia moment referred to the axis orthogo-
nal to the motion plane n − t and passing through the center of 
gravity are updated considering the new block shape.

The constitutive macro-element relationships are based 
on the same rheological model proposed in Dattola et al. 
(2021) (see Fig. 2 for the normal impact case) in which the 
constitutive equations of each element are updated to take 
into account of the ellipsoidal shape without changing the 
model parameters apart the block dimensions. The updated 
equations are given briefly in the Appendices B and C.

The impact between the block and the soil is considered 
concluded, when at least one of the conditions between loss 
of adherence and toppling of the equivalent foundation is 
satisfied. In the former case, the block detaches from the 
ground surface and it flies, whereas toppling of the equiva-
lent foundation takes place when the block touches the 
ground and the resultant of the contact forces lies on one 
side vertex of the equivalent foundation (i.e. the downward 
vertex of the equivalent foundation), which is also the point 
of instantaneous rotation, and the block starts rolling.

The linear moment equilibrium equation applied to the 
block, together with the compatibility and constitutive equa-
tions, forms a system of differential equations that admits a 
unique solution during block impact. The solution of this 
system provides the evolution of all contact variables, such 
as block displacement, velocity, acceleration, contact forces 
and energies.

2.2 � Block Geometry

Many authors (e.g., Bozzolo and Pamini 1986; Cancelli and 
Crosta 1994; Chau et al. 2002) demonstrated that the block 
geometry affects the impact process and the restitution coef-
ficients, by controlling both bouncing velocity and block 
angular velocity. In the proposed rheological constitutive 
equations, the geometry is taken into account synthetically 
by means of three functions of the block displacement com-
ponent: the tangential and out-of-plane dimensions of the 
equivalent foundation Bt = Bt(u

bl
n
, �bl) and Bw = Bw

(
ubl
n
, �bl

)
 , 

the normal and tangential arms of the contact force compo-
nents, rn = rn(u

bl
n
, �bl) and rt = rt(u

bl
n
, �bl) , respectively (see 

Fig. 17 in the D.4 Appendix D) where ubl
n

 and �bl are the 
normal displacement of the block centre of gravity and the 
block rotation, respectively.

In appendix C , the above functions are derived for ellip-
soidal blocks (Fig. 3), starting from those for spherical 
(di Prisco and Vecchiotti 2006), prismatic and cylindrical 

Fig. 3   Evolution of the impact 
of an ellipsoidal block at four 
different steps: a at the impact 
onset for an impact velocity 
v
in and impact angle �in for an 

initial block orientation �bl
0

 ; b 
block penetration phase with 
a downward oriented normal 
velocity component and inner 
block rotation �bl ; c block 
rebound phase with an upward 
normal velocity component 
and inner block rotation �bl, 
and finally d the exit phase (i.e. 
loss of contact) with restitu-
tion velocity vout , restitution 
angle �out and restitution block 
orientation �bl

f

(a) (b)

(c) (d)
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blocks (Dattola et al. 2021). For the sake of simplicity, the 
cross-section orthogonal to the major axis of ellipsoid is 
assumed to be circular with a radius of Rbl (Fig. 3). The 
block shape is described by the aspect ratio Ar = Hbl∕Rbl 
(i.e. Ar = 1 represents a spherical block).

In principle, the model can take into consideration the 
out-of-plane dimension, related to the block mass value and 
to the out-of-plane pseudo-foundation dimension, affecting 
the block motion and the restitution coefficients. Neverthe-
less, for the sake of simplicity, this factor is not discussed 
in the following, since as was already clarified in Fig. 3, the 
authors considered exclusively rotational ellipsoids (i.e. with 
a circular section).

The block initial orientation ( �bl
0

 ) is the angle between the 
major semi-axis and the normal direction.

2.3 � Energetic Restitution Coefficient

In this section, a mathematical relationships connecting the 
apparent normal and tangential restitution with the energetic 
restitution coefficient is derived. The obtained expression 
highlights also the role played by the impacting angle, the 
rotational kinetic energy ratio before and after the impact.

Let us consider an impact with the following assumptions: 
(i) the block impacts on a planar substrate with a fixed inclina-
tion; (ii) no dissipation is due to the air drag (i.e. air resistance 
is considered to be negligible if compared with the dissipated 
energy during the impact) and (iii) differently from Bozzolo 
and Pamini (1986), in which the instantaneous rotation centre 
coincides with the contact point, we does not impose the posi-
tion of instantaneous rotation centre, (iv) the block is rigid 
so that no block shape and/or size changes are admitted and, 
finally, (v) neither fragmentation, nor spalling and chipping 
are considered, implying the block mass and inertia moment 
do not change during impact. During impact the block total 
kinetic energy reduces due to dissipation. If it is assumed that 
the z-coordinate value of the block centre of gravity does not 
change just before and after the impact (i.e. the block poten-
tial energy does not change), then the variation in the block 
mechanical energy is due only to the change in kinetic energy. 
Since block rotation is enabled the kinetic energy is the sum of 
the translational kinetic energy Ekt (t) and the rotational kinetic 
energy Ekr(t) . Furthermore, during impact the block centre of 
mass moves in a vertical plane, then it is possible to split up the 
velocity vector in the normal ( vn ) and tangential ( vt) compo-
nents and, in turn, by using the apparent normal ( en = −v

f
n∕v

0
n
) 

and tangential ( et ) apparent restitution coefficients, the velocity 
components can be written in terms of vn0 and vt0 , the normal 
and tangential components (before the impact), respectively. 
The translational kinetic energy can be written as:

(1)Ekt (t) = Ekt0

(
e2
n
cos2�in + e2

t
sin2�in

)
,

where Ekt0 is the initial value of the translational kinetic 
energy, and �in is the impact angle, (i.e. the angle between 
the initial velocity vector and the ground normal) (Fig. 3b). 
The rotational kinetic energy ratios at the beginning and the 
end of impact are:

and

in which Ekr0 and Ek0 are the initial rotational kinetic energy 
and the initial kinetic energy, respectively. The kinetic 
energy is written as:

and, therefore, the following formulation for the energetic 
restitution coefficient (Heidenreich 2004) is obtained:

2.4 � Apparent Normal Versus Effective Normal 
Restitution Coefficients

When both block shape and size are taken into account, 
the above definition of restitution coefficients is not suf-
ficient. In fact, if the restitution coefficients are referred to 
the velocity components at the centre of mass, they embed 
both the ground material dissipation and the block rotation 
effects. For this reason, Vijayakumar et al. (2012), in their 
analysis based on the rigid body approach, distinguished 
the effective normal from the apparent normal restitution 
coefficient. The first one was defined by using the normal 
velocity components at contact point, whereas the sec-
ond one at the gravity centre of the block. In the case of 
an elliptical block, under the assumption of instantane-
ous impact, rigid block and rigid impacted material, these 
authors found that the apparent restitution coefficient en is 
given by the following expression:

being e∗
n
 the contact restitution coefficient. In this formula 

the geometrical effects are included in the inertia moment 
Ibl , the initial block configuration in the horizontal arm rt and 
the block angular velocity in the 𝜃̇0∕vbl0,n ratio.

(2)Rr0 =
Ekr0

Ek0

,

(3)Rr =
Ekr(t)

Ek(t)
,

(4)Ek(t) =
1 − Rr0

1 − Rr

(
e2
n
cos2�in + e2

t
sin2�in

)
Ek0,

(5)e =

√
Ek

Ek0

=

√
1 − Rt0

1 − Rt

(
e2
n
cos2�in + e2t sin

2
�in

)
≤ 1.

(6)

en =
Ibl

Ibl + mblr
2
t

e∗
n
−

mblr
2
t

Ibl + mblr
2
t

+
(
1 + e∗

n

) r2
t
Ibl

Ibl + mblr
2
t

𝜃̇0

vbl0,n
,
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Vijayakumar et al. (2012) proved, by using the above 
expression, that:

	 (i)	 for spherical blocks (as a special ellipsoid of revolu-
tion), e∗

n
 and en are coincident;

	 (ii)	 increasing the shape ratio for low values of contact 
restitution coefficients, the apparent restitution coef-
ficients can be negative (Fig. 8);

	 (iii)	 when the initial rotational velocity is increased the 
apparent restitution coefficient increases and, for high 
values of normal restitution coefficients, the apparent 
restitution coefficients can be larger than one.

3 � Parametric Analyses

In this work, a series of parametric simulations was carried 
out to investigate the impact process for ellipsoidal blocks 
and to evaluate the change in rotation and rotational velocity. 
The model parameters employed in all simulations (Table 1), 
which are the same of the set 02 by Dattola et al. (2021) 
concern a very dense sand stratum.

The parametric analysis included five groups of numerical 
simulations in which some parameters are changed within a 
prefixed range. The list of the varied parameters along with 
the groups and the range of values is reported in Table 2.

For the sake of comparison, block mass mbl and its initial 
velocity modulus vin were kept constant and equal to 100 kg 
and 14.0 m/s, respectively, so that the initial kinetic energy 
at impact was equal for all the simulations. To this purpose, 
the block sizes were conveniently adjusted in terms of aspect 
ratio by means of the following relationships:

being �bl the density of the block material.
It is worth noting that the variable parameters were only 

geometrical and kinematical, that is block shape ratio, ori-
entation, and impact angle.

Initially, vertical impacts on a horizontal ground surface, 
considering only the orientations along the major or minor 
axes, were considered. This allowed to exclude rotational 
components generated at the impact by force moments (i.e. 
eccentricity). Then, inclined impacts were taken into con-
sideration with blocks characterized by a rotational motion. 
Results were expressed initially in terms of vertical displace-
ments and forces to put in evidence the impact dynamics, 
and, subsequently normal and tangential restitution coeffi-
cients were used and discussed since these coefficients are 
commonly implemented, owing to a series of simplifying 
assumptions, in many rockfall simulation codes.

(7)Rbl = 3

√
3mbl

4��blAr

;Hbl = Ar
3

√
3mbl

4��blAr

,

Table 1   Model parameter values adopted in the parametric analyses following Dattola et al. (2021)

Explaining list of symbols is reported in the Appendix

Geotechnical parameters

�bl [kg/m3] � [kN/m3] �′ [°] D
r0

 [%] � [°] �b [°]

2577.8 18.00 30.0 90.0 0.0 30.0

Elasto-damping parameters

kE [–] nE [–] � [–] Sef �N [–] �T [–] �R [–]

900.0 0.40 0.30 1.0 0.0 0.0 0.0

Visco-plastic parameters

� [–] cv [–] �v [–] Δ
1
 [–] Δ

2
 [–] �vT [–] �vR [–] � [–] �

s

0.90 1.0 8.7 5.0 1.0 2.53 0.0 0.33 0.0

Table 2   List of variables 
changed in the parametric 
analyses for different impact 
modes

θin: impact angle; �bl
0

 : initial orientation; A
r
 : aspect ratio

Set Description Tested value ranges

I Vertical impacts along major axis �in = 0◦ , �bl
0
= 0◦ , A

r
= 1.0 ÷ 4.0

II Vertical impacts along minor axis �in = 0◦ , �bl
0
= 90◦ , A

r
= 1.0 ÷ 4.0

III Inclined impacts with major axis normal to the ground �in = 10◦ ÷ 80◦ , �bl
0
= 0◦ , A

r
= 1.0 ÷ 4.0

IV Vertical impact with different initial orientations �in = 0◦ , �bl
0
= 0◦ ÷ 170◦ , A

r
= 1.0 ÷ 4.0
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3.1 � Block Dynamics

As previously mentioned, block geometry and orientation at 
impact play an important role, in affecting both block pen-
etration and generated force, the main variables in the design 
of rockfall protection structures. In the parametric analysis, 
spherical blocks were also considered for comparison since 
this shape is commonly employed in rockfall analyses.

In Fig. 4a, b, the evolution with time of vertical displace-
ment and vertical force are reported, considering blocks with 
different aspect ratios impacting along the major axis. The 
vertical displacement trends are characterized by an incre-
ment up to a peak. Then, blocks with a low value of the 
aspect ratio stop while blocks with higher aspect ratio expe-
rience a vertical displacement reduction till block detach-
ment from the soil. Both peak vertical displacement and time 
increase with Ar.

The maximum force reduces with increasing Ar , while 
the peak time increases with Ar.

A comparison between blocks impacting vertically with 
major and minor axes with different Ar values was per-
formed and the results were plotted in terms of maximum 
vertical displacement in Fig. 5a and maximum vertical force 
in Fig. 5b.

For all the aspect ratios, the blocks impacting along the 
major axis exhibit larger values of the maximum vertical 
displacement, that increases with Ar , and the same trend is 
observed for impacts along the minor axis. The maximum 
vertical displacement of the spherical block is the minimum 
of the two trends. The maximum vertical forces are affected 
by the block Ar for both the orientations (Fig. 5b) and in 
particular, they decrease with Ar for blocks impacting with 
both the minor axis and the major axis.

For inclined impacts, the problem is not symmetric any-
more and block rotation takes place coupling the block 
displacements, since normal and tangential forces gener-
ate momentum. Under this condition, the impact process 
depends on block shape, orientation at impact ( �0 ) and 
impact angle ( �in ). The impact angle ( �in = 20◦ ) and the 
initial block orientation ( �0 = 0◦-impacting along the major 

Fig. 4   a Vertical displacement 
versus time and b vertical force 
as a function of time for blocks 
with different aspect ratio, A

r
 

( A
r
= 1 for a sphere), impacting 

vertically and aligned to major 
axis

Fig. 5   a Maximum vertical 
displacement and b maximum 
vertical impact force for differ-
ent values of the aspect ratio, 
A
r
 , considering blocks impact-

ing parallel with the major and 
minor axis (filled and empty 
squares) with no rotational 
component
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axis) were fixed and results are reported in Fig. 6, where 
block rotation and rotational energy ratio ( Rr ), defined as the 
ratio between rotational ( Ekr ) and total kinetic energy ( Ek ), 
were used. The trends of vertical displacement and force, 
as a function of Ar , coincide with those relative to vertical 
impacts (Fig. 6a, b).

During impact, the rotation increases monotonically 
(Fig. 6c). The rotational energy ratio increases monotoni-
cally until a maximum. Subsequently, blocks with lower 
shape ratios experience a slight reduction.

In Fig. 7, the results obtained by considering different 
impact angles, �in , and Ar are illustrated. The maximum 
vertical displacement reduces with increasing the impact 
angle and increases with Ar . On the contrary, the maximum 
vertical force reduces with increasing Ar and for increas-
ing impact angles. For increasing Ar values, the increment 
of block rotation reduces apart from the spherical block, 
whose value is intermediate. Furthermore, the trend of block 
rotation with Ar is characterized by a peak for all Ar val-
ues. The evolution of the maximum rotational energy ratio 
with impact angle is characterized by a peak and its value 
increases with Ar , although this increment is less evident for 
higher values of Ar.

3.2 � Apparent Restitution Coefficients

The proposed model describes in detail the impact process, 
but in practical problems, global variables such as appar-
ent normal and tangential restitution coefficients, maximum 
penetration depth and block rotation are usually employed or 
required for defensive work design. In particular, restitution 
coefficients make the simulations for extended stochastic 
modelling more efficient.

It is well known (Asteriou et  al. 2012; Asteriou and 
Tsiambaos 2018; Asteriou 2019) impacts and relative 
coefficients of restitution are influenced, among the oth-
ers, by block geometry, size and orientation, impact angle 
and velocity. In this section, the effects of block geometry 
and orientation, as well as �in on the global variables were 
investigated.

In Fig. 8, the effects of block orientation and Ar on global 
variables are shown. Normal restitution coefficient for blocks 
impacting with the major axis (Fig. 8a) increases with Ar , 
whereas an opposite trend is observed for blocks impact-
ing along the minor axis. Furthermore, the normal restitu-
tion coefficients for blocks impacting with the major axis 
are larger than the normal restitution coefficient for blocks 

Fig. 6   Results for an ellipsoidal 
block for impacts with �in = 20◦ 
and �

0
= 0◦ . The blocks differ 

for Ar: a time evolution of 
vertical displacement; b vertical 
force vs time; c increment of 
inner block rotation, �bl − �bl

0
 , as 

a function of time; d rotational 
kinetic energy ratio with time
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impacting along the minor axis while the spherical block 
takes an intermediate value.

When �bl
0

 (Fig. 8b) is considered, a symmetric trend is 
observed with respect to the 90° and a “swallow wings” 
trend is observed and the difference between maximum and 
minimum values of normal restitution coefficient, obtained 
by changing the block orientation, increases with Ar . Analo-
gous consideration holds true for the maximum penetration 
depth (Fig. 8c).

When the line between contact point and the center of 
gravity is not aligned to either major or minor axes, even a 
vertical impact produces, as shown in Fig. 8d, a variation in 
block rotation. The variation in the rotation is antisymmetric 
because if the initial block orientation causes the center of 
mass to move to the right with respect to the normal then the 
block rotates clockwise. In the opposite condition, the block 
undergoes an anti-clockwise rotation. The variation of the 
block orientation, for the same �bl

0
 , increases with Ar until 

2.5 then it reduces. This is due to two antagonistic factors: 
the increase in Ar causes not only an increase in rt (tangential 
arm) but also an increase in block penetration. The former 
effect facilitates the block rotation, the latter one prevents it.

In Fig. 8e, the evolution of the maximum normal force 
with the initial block orientation and for different Ar values 
is reported. The trend is symmetric with respect to 90° (i.e. 
impact along the minor axis) and for this limit value the 
influence of the Ar is reversed (i.e. larger Ar corresponds 
to lower maximum normal force). The maximum absolute 
value of the contact moment versus the initial block orienta-
tion, for different aspect ratios, is shown in Fig. 8f. The trend 
is symmetric with respect to the 90° initial block orientation 
for lower values of Ar a clear trend is visible but for higher 
values of Ar no specific trend is observed.

When inclined impacts of blocks aligned along the major 
or the minor axis are considered, the results, in terms of 
normal and tangential restitution coefficients, shown in 
Fig. 9 are obtained. When Ar increases normal restitution 
coefficients decrease whereas an opposite trend is observed 
for the tangential one (Fig. 9a, b). For Ar > 1, the trend 
of normal restitution coefficient is not monotonic and for 
0 < 𝜃in ≤ 50◦ becomes negative. en is these cases negative 
since en is calculated as a function of the center of mass 
velocity, whereas the detachment between block and soil is 
a function of the contact velocity. For sufficiently large of 

Fig. 7   Influence of impact angle 
for different Ar and  �in values 
for blocks impacting along the 
major axis. a Maximum vertical 
displacement, b maximum nor-
mal force; c inner block rotation 
( �bl ), d maximum value of the 
rotational energy ratio
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�in values the normal restitution coefficient rapidly increases 
since the plastic slider activates at the very beginning of 
the impact. In contrast, when the blocks impact with the 
minor axis, both coefficients decreases with increasing Ar 
(Fig. 9c, d).

Numerical simulations were also performed by assuming 
cv = 0.5 , �v = 1.70 and �v = 0.85 . The results are shown in 
the supplementary materials. The observed trends are qual-
itatively similar to those discussed in this section. These 

parametric numerical simulations were performed to inves-
tigate the effects of viscous parameters on kinematic and 
dynamic variables.

3.3 � Multi‑Impacts and Block‑Run‑Out

As already stated, rockfall simulations describe blocks 
trajectories during impacts, free fly, rolling and sliding 
motions, ending up when the block kinetic energy is very 
small. The assessment of the block trajectory allows to 

Fig. 8   Vertical impacts con-
sidering different �

0
 values: a 

normal restitution coefficient 
for vertical impacts and blocks 
oriented along either major and 
minor axes; b normal restitu-
tion coefficient for blocks with 
different A

r
 values impacting 

vertically and with different �
0
 

values; c maximum penetration 
depth as a function of the initial 
block rotation and d variation 
of the block rotation as a func-
tion of the initial block rotation 
and A

r
 considering vertical 

impacts; e maximum values of 
the normal force, vs initial block 
orientation; f maximum contact 
moment as a function of initial 
block orientation
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compute important variables for the design of protection 
structures, such as the maximum trajectory height, the run-
out distance and the maximum block velocity.

These variables are also important rockfall hazard map-
ping, and they are controlled by slope inclination, block 
geometry and orientation, angular velocity, normal and 
tangential restitution coefficients. To study the influence of 
block geometry and initial angular velocity on the trajec-
tory, the HyStone numerical simulation code (Agliardi and 
Crosta 2003) was extended by implementing the proposed 
impact model. In order to focus the attention on block 
geometry and its angular velocity, a bi-planar topogra-
phy was used (Fig. 10), with a 230 m slope height ( Hs ), 
inclined at � = 30◦ with respect to the horizontal plane 
(horizontal projected distance Ls1 = 400 m) and a final 600 
m long horizontal plateau ( Ls2 ). The initial block trans-
lational velocity was 20 m/s inclined of 10◦ with respect 
to the horizontal axis, while, in agreement with Caviezel 
et al. (2021) and Buzzi et al. (2012), the initial angular 
velocity ranged from 0◦ /s to 20,000◦/s. To study the block 
geometry effects, Ar was varied between 1.0 (sphere) and 
4.0 (markedly elongated ellipsoid), by keeping constant 
the block mass m = 100 kg, whereas both initial block 

translational and rotational kinetic energies were the same 
for all the numerical simulations.

The impact parameters were maintained as those of the 
previous simulation (reported in Table 1).

The first investigated parameter was Ar , by assuming 
blocks to be initially oriented along the major axis and ini-
tial angular velocity to be nil. The results, together with the 
slope profile, are reported in Fig. 11. Since initial conditions 
(i.e., velocity, angular velocity and orientation) coincide and 
motion equations during the first free-flight are independent 
of block shape, all blocks (Fig. 11a) trajectories superimpose 
for x < 250 m. Except for the spherical block, after the first 
impact, blocks start rolling. The spherical block starts rolling 
after three small bouncing (Fig. 11b, c). All the blocks reach 
the horizontal plane where they stop at different distances 
(Fig. 11c).

As is well known, the maximum vertical elevation of 
falling blocks is essential to design position and dimen-
sions of protection structures (e.g. fences, nets and 
embankments). For this reason, in Fig. 11b, block eleva-
tion histories are illustrated. Again, only spherical block 
elevation history differ from the others.

Fig. 9   Model results for 
inclined impacts for different 
A
r
 : a, b normal and tangential 

restitution coefficients versus 
impact angle considering blocks 
oriented along the major axis; c, 
d normal and tangential restitu-
tion coefficients vs impact angle 
considering blocks oriented 
along the minor axis
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The translational velocity moduli, referred to the centre 
of mass, histories are reported in Fig. 11c: four phases are 
evident:

	 (i)	 the free-fall phase, from the source area to the 
impact, during which the trend is parabolic, typical 
of ballistic-type motion,

	 (ii)	 a practically instantaneous energy reduction, due to 
the energy dissipation associated with the impact,

Fig. 10   Biplanar slope profile 
and describing parameters used 
in the HyStone numerical simu-
lations with ellipsoidal blocks 
of different aspect ratio Ar

1st impact

Source area

Arrest pointHs
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Ls2
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Fig. 11   Simulation results 
obtained by the HyStone code 
considering ellipsoidal blocks 
with A

r
 values ranging between 

1.0 (spherical block) and 4.0 
(strongly elongated ellipsoidal 
block) with parameters cv = 1.0 
and �v = 8.70 : a block trajec-
tory; b block vertical elevation 
with respect to the ground; c 
block translational velocity; d 
block rotational velocity. Thick 
black line represents the bilinear 
slope profile (Fig. 10)
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	 (iii)	 a subsequent linear increase, occurring during roll-
ing, accelerated for the steep inclination,

	 (iv)	 a parabolic reduction due to the achievement of the 
horizontal plane, where the energy dissipation for 
rolling is not balanced by a change in altitude, until 
the arrest of the block.

Apart from the spherical block, the results relative to the 
different blocks markedly differ when the horizontal plane is 
reached (along the inclined plane the translational velocity 
differs but the scale employed in the plot does not allow to 
capture such a difference).

The evolution of the rotational velocity component is illus-
trated in Fig. 11d. The rotational velocity components are con-
stant when blocks fly, whereas at impact, they vary abruptly, 
since contact forces generate moments. Finally, during the roll-
ing phase, the rotational velocity components increase linearly 
when the blocks move along the inclined slope and decrease 
with parabolic trends until the blocks stop, when they move 
along the horizontal plane.

Subsequently, the role of initial angular velocity has been 
investigated for all the previous  Ar values (in this case all 
blocks are oriented along the major axis). The initial angular 
velocity was varied in the range 0°/s–20,000°/s, a range suf-
ficiently wide in the light of the real case data available in the 
literature (e.g. Buzzi et al. 2012; Caviezel et al. 2021).

The values of the maximum vertical elevation above the 
slope profile for each portion of ballistic trajectory and for 
all the block trajectories are expressed in terms of number of 
blocks in Fig. 12.

As is evident, the trend of these histograms and data scatter 
markedly depend on block shape, even if, in general, the num-
ber of blocks reduces progressively with vertical elevation.

In the supplementary material, the results obtained by 
performing the same simulations but by using  cv = 0.5 and 
�v = 1.70 and �v = 0.85 are reported.

4 � Discussion

4.1 � Impact Force and Penetration

Block shape role in affecting impacts and bouncing (Bozzolo 
and Pamini 1986; Azzoni et al. 1995; Vijayakumar et al. 
2012; Leine et al. 2014; Glover 2015) is largely recognized 
in the scientific literature. As stated by Yan et al. (2018), 
the effects of both block shape and orientation are usually 
neglected, due to the difficulties to study irregular shapes, 
lithology and rock mass subdivision (Fityus et al. 2013). 
Block shape affects impact force and penetration depth, nor-
mal and tangential restitution coefficients and, thus, block 
velocity after the impact. These, in turns, are fundamental 
to simulate block trajectory and, consequently, to locate and 

design correctly protection structures and to prepare hazard 
maps, when using models based on restitution coefficients. 
As well, the contact force and its maximum value at impact 
are fundamental in the design of protection structures in 
case of direct impact on the structure or on a cushion layer 
interposed between block and structure. The effects of the 
geometry on the contact force was investigated by Yan et al. 
(2018), by means of the finite element method (LS-DYNA 
code), in which the contact option is enabled to study the 
interaction between a concrete slab and the ellipsoidal block. 
Block shape was described through the sphericity index Sp , 
defined as:

making possible a comparison with our results. Yan et al. 
(2018) computed, the evolution of the impact force for three 
block orientations and different impacting velocities, but for 
the same block mass. They found that a reduction in Sp (i.e. 
passing from spherical to ellipsoidal blocks) or, equiva-
lently, an increase in Ar , induces a reduction in the maxi-
mum impact force. We confirmed this result for all impact 
inclinations and Ar values, although the impacted material 
is different (Figs. 6, 7b). Shen et al. (2019, 2020) performed 
DEM simulations with ellipsoidal and irregularly shaped 
blocks constituted by a clump of particles, impacting on 
horizontal layers made up of the same particles used for the 
block. They confirmed the decrease in the maximum impact 
force for increasing Ar values and for different falling heights 
(i.e. velocity), in agreement with our results (Fig. 5b).

As far as block penetration is concerned, Shen et al. 
(2019) demonstrated its increase with Ar . This was con-
firmed by our simulations (Fig. 6a) for vertical impacts 
with vertex (Dattola et al. 2021), for inclined (Fig. 7a) and 
for vertical impacts (Fig. 8c) and different orientations of 
ellipsoidal blocks. Hence, our results allow a more general 
description of impact and could definitely support the design 
of countermeasures.

4.2 � Coefficients of Restitution

As mentioned above, modelling based on coefficients of 
restitution is still adopted in many analyses and modelling 
codes. Experimental and in situ results showed that normal 
restitution coefficients can be larger than one, especially 
when the angle between block velocity vector and ground 
surface normal (i.e. the complementary of the impact angle) 
is very low. This effect was attributed to block rotation, 
increasing the normal restitution velocity component in 
comparison with the corresponding one at impact. Since the 
amount of rotation is controlled by the arms of the normal 
contact force components, elongated blocks markedly show 
this effect. Generally, the proposed solutions started from the 

(8)Sp = A
−

2

3

r ,
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hypothesis of a point-like contact around which the block 
rotates (Bozzolo and Pamini 1986; Azzoni and De Freitas 
1995; Azzoni et al. 1995; Glover 2015). Usually, restitu-
tion coefficients can be computed by employing different 
approaches being the rigid body impact mechanics the most 
popular. According to it, both body and contact plane are 
rigid, and the deformations, developing in regions near the 
contact point, are taken into account by a dummy element, 
virtually interposed between block and contact plane (Ash-
ayer 2007). The equations have been expressed in impulse 
terms with additional assumptions needed to solve the prob-
lem (see Bozzolo and Pamini 1986; Descoeudres and Zim-
mermann 1987; Azzoni et al. 1995). Unlike our approach, 
no constitutive equations describing the impacted material 
were proposed. This implies irreversible deformations were 
not considered and, therefore, block sinking into the contact 
plane (material) is not calculated. In addition, the absence of 
constitutive equations prevents the calculation of the contact 

forces. Hence, in our approach, the penetration of the block 
into the ground surface introduces a major improvement in 
the model capabilities strongly influencing the results.

To highlight the relationship among block rotation, 
contact geometry and apparent restitution coefficients, the 
contact restitution coefficients are compared with appar-
ent restitution coefficient values calculated by using our 
impact model (Eq. 6) and the Vijayakumar et al. (2012) 
model (Fig. 13). The comparison is accomplished for dif-
ferent initial block orientations and initial rotational veloc-
ities, in the case of an ellipsoidal block with Ar = 2.0 . In 
case of no initial rotation, all the graphs (Fig. 13a) are 
symmetric with respect to the initial block rotation at 90◦ . 
This symmetry is lost when blocks have an initial rota-
tional velocity and the degree of asymmetry increases with 
its intensity (Fig. 13b–d). The apparent restitution coef-
ficients, both for the proposed and the Vijayakumar et al. 
(2012) model, become negative (i.e. the normal velocity 
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Fig. 12   Number of blocks distribution of the above ground verti-
cal elevation for each ballistic jump considering different A

r
 , for 

�v = 0.85 and 1.70, and different initial rotational velocity v
r
 (0.0°/s, 

2500°/s, 5000°/s, 7500°/s, 10,000°/s, 12,500°/s, 15,000°/s, 17,500°/s, 
20,000°/s). The best fitting exponential equation is reported
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after the impact referred to the block centre of mass is 
directed downward, nevertheless the normal velocity at 
the contact point is directly upward) for a large range of 
initial block orientations and initial angular velocity. On 
the contrary, both contact and energetic restitution coeffi-
cients are always positive. In fact, the contact coefficient is 
computed considering the normal velocity at contact point 
which is always positive since the blocks bounce. This is 
not true for the apparent restitution coefficient even if the 
blocks bounce. In fact, the block rotational velocity at the 
exit is so high that causes a reversal of the normal velocity 
at the centre of mass where the apparent coefficients are 
computed. Therefore the contact velocity after the impact 
is directed upward while the normal velocity at the cen-
tre of mass, due to the rotation, is directed downward. In 
case of no initial rotational velocity, all the coefficients 
are the same for blocks impacting with the major or minor 
axes, because in these cases, the blocks do not generate 
rotational velocities. In case of spherical blocks, appar-
ent and contact restitution coefficients coincide since the 
block rotation does not affect the normal velocity at the 
centre of mass.

Rigid body contact mechanics was used by Ashayer 
(2007) in case of ellipsoidal blocks to obtain normal resti-
tution velocities, normal restitution coefficient and restitu-
tion angular velocity. Under the same initial conditions, the 
results agree both in terms of normal restitution coefficient/
normal velocity and rotation with those reported in Fig. 8.

Ashayer (2007) performed also DEM numerical simula-
tions of ellipsoidal blocks constituted by a clump of cir-
cular particles by means of a modified particle–particle 
and particle–wall contact law. By increasing the number 
of clump particles the results converge to those obtained 
by performing rigid body simulations and, thereby, to our 
results. This furtherly supports the capabilities of the here 
proposed model.

Bozzolo and Pamini (1986) proposed a rigid body model 
for ellipsoidal blocks calculating translational and rotational 
velocity components after impact by imposing rigid rotation 
at the contact point and conservation of angular momen-
tum. They validated the model by discussing the experimen-
tal results of three real rock falls. Although geometry and 
parameters are different from those employed by the authors, 
their number of blocks distribution of the maximum ballistic 

Fig. 13   Apparent normal, 
contact point (i.e. contact res-
titution coefficient) and global 
restitution (Eq. 18) coefficients 
computed by using the here 
proposed model, the Vijayaku-
mar et al. (2012) model (Eq. 20) 
for different values of the initial 
block rotational velocity: a no 
rotational velocity; b 500°/s; c 
1500°/s and d 2000°/s

(c) (d)Rotational velocity = 1500 °/s Rotational velocity = 2000 °/s

(a) (b)No initial rotation Rotational velocity = 500 °/s
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height decreases similarly to our results (Fig. 12) and the 
same holds for simulations by Azzoni et al. (1995).

Finally, with the reference the numerical results obtained 
by employed HyStone code and describe in Figs. 11 and 
12, the authors assessed en and et for all impacts. The num-
ber of blocks distributions of all these values are plotted 
Fig. 14. The higher value of number of blocks have normal 
restitution coefficient in the range from 0.75 to 1.0 (mean 
values of � = 0.67 ) and a tangential coefficient from 0.7 to 
1.1 ( � = 0.92) . As already observed by Bourrier et al. (2012) 
for in situ tests, owing to block rotation and block elongated 
geometry, both coefficients the number of blocks follows a 
normal distribution and both coefficients can reach values 
well above 1.

5 � Conclusions

In situ observations and laboratory experimental results have 
demonstrated that the block shapes and their orientations 
at impact central restitution coefficients and consequently 
the block trajectory simulations. This information is not 
usually taken into account in rockfall simulation codes in 
which simplified block geometries are usually employed and 
the observed variabilities of the real cases are simulated by 
a stochastic approach. This work partially overcomes the 
previous drawbacks because the effects of block geometry 
and initial block orientation are simulated by means of an 
advanced and flexible impact model that extended our pre-
vious model to blocks with ellipsoidal shape with different 
aspect ratios and consequently embedding block eccentricity.

The model successfully reproduced the trends of main 
design variables and restitution coefficients observed in the 
laboratory and DEM numerical models, stressing the role of 
the block shape ratio, initial orientation and impact angle.

Inclined impacts reveals analogous trends and conse-
quently the previous considerations can be shared.

For block impacting vertically with the longest axis 
or inclined the maximum penetration increases and the 

maximum vertical forces decrease with the increase of 
the block aspect ratio. An opposite trend was observed for 
blocks with horizontal long axis. Hence, the design of pro-
tection structures by using spherical design blocks is not 
conservative.

The importance of initial block orientation in vertical 
impacts on restitution coefficients and block rotation was 
shown. The main result is the strong variation of the res-
titution coefficients for slight variation of the initial block 
orientation. Furthermore, this work confirm that the block 
shape and rotation can result in negative values of the appar-
ent restitution coefficients as observed in situ tests. We dem-
onstrated that block rotation is not sufficient to generate 
negative values of restitution coefficients, but they are the 
result of the combinations of block rotation and elongated 
geometries: in these combinations upwardly vertical veloc-
ity at the contact point and downwardly vertically velocity 
at the centre of mass was observed. A comparison between 
the contact restitution coefficients, two apparent restitution 
coefficients and energetic restitution coefficient demon-
strated that the negative values of the apparent restitution 
coefficients increase with initial block rotation, affectingly 
consequently the rockfall simulations.

The impact model was implemented into the HyStone 
rockfall simulation code and a parametric analysis on a bi-
planar slope at varying the block shape ratio, block angular 
velocity and initial block orientation were carried out. The 
results in terms of maximum height and the apparent restitu-
tion coefficients were in accordance with the in situ observa-
tion and numerical simulation results. The HyStone numeri-
cal simulations allowed us to conclude that the variability 
observed both in situ and experimentally can be predicted 
in a deterministic way considering directly the block rota-
tion and the block shape and referring the variability only to 
the initial condition. This implies that the effects due to the 
block geometry that are usually modelled in rockfall simu-
lations by modifying the model parameters can be directly 
obtained by considering the variability in the initial block 
conditions.

Fig. 14   Number of blocks 
distributions of a the apparent 
normal restitution coefficient 
and b the apparent tangential 
restitution coefficient obtained 
by the HyStone simulations for 
a bi-planar slope (see Fig. 11) 
considering all the block shapes 
and all the initial angular veloc-
ity values
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Appendix A List of Symbols

Scalar

�vt : tangential coefficient of the hardening rule
�vR : rotational coefficient of the hardening rule
� : soil unit weight
�v : viscou-plastic coefficient
Δ1 : visco-plastic coefficient
Δ2 : viscous plastic coefficient
𝜆̇ps : plastic slider multiplier
� : Poisson’s coefficient
�′ : soil friction angle
��
b
 : block soil friction angle

�N : normal visco-damping coefficient
�T : tangential visco-damping coefficient
�R : rotational visco-damping coefficient
�in : impact angle
�out : bouncing angle
�bl
0

 : initial block orientation
𝜃̇0 : angular velocity at impact
𝜃̇f : angular velocity at bouncing
� : coefficient for the computation of the rotational gen-

eralized force
�bl : block density
�c : visco-plastic hardening variable
𝜌̇c : visco-plastic hardening variable rate
� : slope angle
Ar : aspect ratio
b� : visco-plastic hardening rule
Bt : equivalent foundation size along the tangential 

direction
Bw : equivalent foundation size along the out-of-plane 

direction
cv : visco-plastic coefficient
Dr0 : initial soil density
Ekt : block kinetic energy
Ekt0 : block kinetic energy at impact
en : apparent normal restitution coefficient
e∗
n
 : contact normal restitution coefficient

et : apparent tangential restitution coefficient
e : energetic restitution coefficient
f ps : plastic function of the plastic slider
Js : shape correction factor
kE : coefficient of the elastic law
Hbl : block major axis
mbl : block mass nE : exponent of the elastic law
Rbl : block minus axis or radius
rn : normal arm
Rr0 ∶rotational kinetic ratio
Rr0 : rotational kinetic ratio at impact
Rs : shape ratio

rt : tangential arm
Sef : shape coefficient of the elastic law
Sp : sphericity index
vbl
0

 : impact velocity modulus
vbl
f

 : bouncing velocity modulus
ubl
D

 : normal block sinking

Vector

bL : elasto-damping function
bps : plastic slider flow rule function
bvp : visco-plastic flow rule function
L : contact force
Q : generalized force
ubl : block displacement
ued : elasto-damping displacement
u̇ed : elasto-damping velocity
ubl
D

 : generalize block displacement
ups : plastic slider displacement
uvp : visco-plastic displacement
u̇vp : visco-plastic velocity
vbl
0

 : impact velocity
vbl
f

 : bouncing velocity

Matrix

Cbl : Compatibility matrix

Appendix B Model Equations 
and Compatibility Equation for an Ellipsoidal 
Block

The rheological model system equation (see Dattola et al. 
2021) can be synthetically by the following system of six dif-
ferential equations

The other equations represent the constitutive equa-
tions of each element of the rheological model as sum-
marized in the following. bL is a function depending on 

ubl = C−1
bl
(uvp + ups + ued) Compatibility condition

L = bL
(
Bt,Bw, u

ed, u̇ed
)

Elasto-damping element

u̇vp = bvp
(
Q
(
L,Bt

)
, 𝜌c

)
Visco-plastic flow rule

𝜌̇c = b𝜌
(
Q
(
L,Bt

)
, 𝜌c

)
Visco-plastic hardening rule

u̇ps = bps
(
𝜆̇ps,L

)
Plastic slider flow rule

(9)f ps(L)𝜆̇ps = 0 Consistency condition.
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the visco-elastic displacement ( ued) and velocity 
(
u̇ed

)
 , uvp 

stands for visco-plastic displacement, Q is the general-
ized force vector for the macro-element, Bt and Bw are 
the equivalent foundation sizes along the tangential and 
out-of-plane directions, respectively (i.e. the size of the 
instantaneous block footprint during the impact), �c is an 
hardening variable and bvp is a function representing the 
visco-plastic flow rule; b� is a function representing the 
hardening rule describing the evolution of the hardening 
variable, ups is the plastic slider displacement, �ps is the 
plastic multiplier for the plastic slider, bps represents the 
plastic slider flow rule. Finally, f ps is the plastic func-
tion for the plastic slider. The mathematical expressions 
of the above functions and vectors are the same as in Dat-
tola et al. (2021) apart from the expressions regarding the 
block geometry which are reported in the appendixes.

Differently from the spherical blocks, in the ellipsoidal 
blocks, the sinking of the block normal into the ground 
does not coincide with the normal displacement of its cen-
tre of gravity. Indeed, in Fig. 15 it is shown that the normal 
displacement of centre of gravity ubl

n
 in case of spherical 

block coincides with normal block sinking ubl
D

 , whereas the 
ubl
D

 in case of an ellipsoidal block is a function of ubl
n

 and 
the block rotation �bl.

Therefore the compatibility equation proposed in Dattola 
et al. (2021) must be updated to take into account the differ-
ence between ubl

n
 and ubl

D
.

The normal displacement of the elasto-damping compo-
nent becomes

(10)
⎡⎢⎢⎣

ued
n

ued
t

�ed

⎤⎥⎥⎦
=

⎡⎢⎢⎣

1 0 0

0 1 −rn
0 0 1

⎤⎥⎥⎦

⎡⎢⎢⎣

ubl
D

ubl
t

�bl

⎤⎥⎥⎦
−

⎡⎢⎢⎣

u
vp
n

u
vp

t

�vp

⎤⎥⎥⎦
−

⎡⎢⎢⎣

u
ps
n

u
ps

t

�ps

⎤⎥⎥⎦
,

or in compact form

being uvp , ups and ued the visco-plastic, plastic slider and 
elasto-damping displacement vectors, respectively defined 
as in Dattola et al. (2021), Cbl the compatibility matrix, and 
finally vector ubl

D
 is:

The computation of ubl
D

 is given in the Appendix C after 
introducing ellipsoidal shape equations.

Appendix C Correction Factor for the Elastic 
Stiffness Coefficient

The effect of the block shape on the normal elastic stiffness 
coefficient ( kn ) is enclosed in the correction factor which, in 
turn, depends on the shape ratio Rs Dattola et al. (2021). In 
this appendix only the updating of the shape ratio and the 
correction factors for the blocks with ellipsoidal shape are 
reported with respect to Dattola et al. (2021). The shape 
ratio is updated as:

where Bt and Bw are the sizes of the equivalent founda-
tion footprint along the tangential and out-of-plane axes. 
To obtain an expression for the correction factor the values 

(11)ued = Cblubl
D
− uvp − ups,

(12)ubl
D
=

⎡
⎢⎢⎣

ubl
D

ubl
t

�bl

⎤
⎥⎥⎦
.

(13)Rs =
max

(
Bt,Bw

)

min
(
Bt,Bw

) ≥ 1,

(a) (b)

Fig. 15   Comparison between the block normal sinking, ubl
D

 , into the ground and the normal displacement for center of mass ubl
n

 for the: a spheri-
cal block; b ellipsoidal block
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reported in Gazetas (1983) were interpolated resulting in 
the equation:

Appendix D Ellipsoidal Shape Equations

Differently from the spherical and prismatic blocks (see Dat-
tola et al. 2021), the ellipsoidal blocks imply a more sophis-
ticated computation of the equivalent foundation footprint 
defined as the intersection of the impacting block with the 
impact plane considering both the extremes points. This 
complexity is due to the out-plane size of the equivalent 

(14)Js
(
Rs

)
= 0.957 ⋅ exp

(
0.0394Rs

)
.

foundation that in general evolves differently from the in plane 
size. Therefore the problem cannot be solved in two dimen-
sions and a 3D local reference system was introduced. This 
system has a normal ( n ) and tangential axis ( t ) as in Dattola 
et al. (2021) and a third axis ( w ) perpendicular to the others.

This appendix presents mathematical expressions for the 
size of the equivalent foundation along the tangential ( Bt ) 
and out-plane ( Bw) axes, the normal, rn , and tangential rt 
arms of the contact forces components with respect to the 
block centre of mass and the block sinking into the soil ( uD).

in �p ∈ [0;�] and �p ∈ [0;2�] where  ry0 is the normal coor-
dinate of the block centre of mass at the impact onset com-
puted by imposing is tangency condition to the impact plane. 
Its value is given by the following expression:

The Cartesian equation of the ellipsoid is given by:

Intersection Between the Ellipsoidal Surface 
and the Impact Plane

Once the block penetrates into the substrate material, the 
impact plane (i.e. ground surface) intersects the block. Here 
we present the mathematical expression for: (i) the equivalent 
foundation size and, (ii) the normal and tangential arms.

The intersection of the ellipsoid with the impact plane is 
solved by imposing the following algebraic system

(15)

⎧⎪⎨⎪⎩

n = ubl
n
− ry0 +

�
Hblsin�pcos�p

�
cos�bl +

�
Rblsin�psin�p

�
sin�bl

t = −
�
Hblsin�pcos�p

�
sin�bl +

�
Rblsin�psin�p

�
cos�bl

w = Rblcos�p

,

(16)ry0 =

√(
Hbl

)2
cos2�0 +

(
Rbl

)2
sin2�0.

(17)
[(
n − ubl

n
+ ry0

)
cos

(
�bl
0
+ �bl

)
−
(
t − ubl

t

)
sin

(
�bl
0
+ �bl

)]2
(
Hbl

)2 +

[(
n − ubl

n
+ ry0

)
sin

(
�bl
0
+ �bl

)
+
(
t − ubl

t

)
cos

(
�bl
0
+ �bl

)]2
(
Rbl

)2 +
w2

(
Hbl

)2 = 1.

(18)
⎧⎪⎨⎪⎩

�
(n−ubln +ry0)cos(�

bl
0
+�bl)−(t−ublt )sin(�

bl
0
+�bl)

�2

(Hbl)
2 +

�
(n−ubln +ry0)sin(�

bl
0
+�bl)+(t−ublt )cos(�

bl
0
+�bl)

�2

(Rbl)
2 +

w2

(Hbl)
2 = 1

n = 0
.

After some algebraic manipulation, the following equation 
is obtained:

which is an ellipse centred in 
(
0;ubl

t
−

b1

ry
;0
)
 and semi-axes:

(19)

(
t +

b1

ry
− ubl

t

)2

b2+b
2
1

r2
y

+
w2

b2+b
2
1

(Hbl)
2

= 1,

(20)at =

√√√√b2 + b2
1

r2
y

,

Initially both the parametric and the Cartesian equations 
of the ellipsoid surface were written. Subsequently the inter-
section of the ellipsoidal shape with the impacting plane 
was taken into consideration. Finally the computation of the 
block sinking in the normal direction ( ubl

D
 ) was carried out.

Parametric and Cartesian Equations 
of the Ellipsoidal Block

The parametric equation of the ellipsoidal block is given by 
the following equations system:
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where

The vertex points of this ellipse are

Extremes Points

According to the ellipsoidal position, the equivalent foun-
dation size computed considering also the extremes points 
(Fig. 16) ( Ct and At ) computed by imposing the vertical tan-
gency to the meridian section of the ellipsoidal block.

The extremes point coordinates are given by the follow-
ing expressions:

or

(21)aw =

√√√√b2 + b2
1(

Hbl
)2 ,

(22)

⎧
⎪⎪⎨⎪⎪⎩

ry =

��
Hbl

�2
cos2

�
�bl
0
+ �bl

�
+
�
Rbl

�2
sin2

�
�bl
0
+ �bl

�

b1 =
(ry0−ubln )

�
(Rbl)

2
+(Hbl)

2
�
sin(�bl0 +�

bl)cos(�bl0 +�
bl)

ry

b2 =
�
Rbl

�2�
Hbl

�2
−
�
ry0 − ubl

n

�2��
Hbl

�2
+
�
Rbl

�2
− r2

y

�
.

(23)

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

At1 =
�
0, ubl

t
−

b1

ry
− at;0

�

At2 =
�
0, ubl

t
−

b1

ry
+ at;0

�

Aw1 =
�
0, ubl

t
−

b1

ry
; − aw

�

Aw2 =
�
0, ubl

t
−

b1

ry
; + aw

�
.

(24)
{

Ct1 =
(
n1, t1;0.0

)
Ct2 =

(
n2, t2;0.0

) if t1 ≤ t2 ,

and

where

and

and the angles �p1 and �p2 are

Normal and Tangential Arms During Block Sinking

From Fig. 16 it is possible to define the following points:

(25)
{

Ct1 =
(
n2, t2;0.0

)
Ct2 =

(
n1, t1;0.0

) if t1 > t2 ,

(26)
{

Cw1 =
(
−H + ubl

t
, 0.0; − Rbl

)
Cw2 =

(
−H + ubl

t
, 0.0; + Rbl

) ,

(27)

{
n1 = ubl

n
− ry0 + Hblcos�p1cos

(
�bl
0
+ �bl

)
+ Rblsin�p1sin

(
�bl
0
+ �bl

)
t1 = ubl

t
− Hblcos�p1sin

(
�bl
0
+ �bl

)
+ Rblsin�p1cos

(
�bl
0
+ �bl

) ,

(28)

{
n2 = ubl

n
− ry0 + Hblcos�p2cos

(
�bl
0
+ �bl

)
+ Rblsin�p2sin

(
�bl
0
+ �bl

)
t2 = ubl

t
− Hblcos�p2sin

(
�bl
0
+ �bl

)
+ Rblsin�p2cos

(
�bl
0
+ �bl

) ,

(29)

⎧⎪⎨⎪⎩

�p1 = −arctan
�

Rbl

Hbltan(�bl0 +�bl)

�

�p2 = � − arctan
�

Rbl

Hbltan(�bl0 +�bl)

� .

(30)Dt1 =

{
At1 ifnCt1 < 0

Ct1 ifnCt1 ≥ 0
,

(31)Dt2 =

{
At2 ifnCt2 < 0

Ct2 ifnCt2 ≥ 0
,

Fig. 16   Extremes points ( C
t
 ), 

intersection point ( A
t
 ) and 

equivalent foundation size ( B
t
 ) 

along the tangential direction 
( t  ) for the case with: a the 
extreme points above the impact 
plane; b only one extreme point 
below the impact plane and c 
both extreme points below the 
impact plane

(a) (b) (c)
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Consequently the equivalent foundation sizes are:

and for the out of plane:

The normal and tangential arms are given by, respectively:

By imposing the tangency block condition at impact, the 
block sinking is computed as:

where

where �p1 and �p2 are the solutions of the following trigono-
metric equation:

which is are

(32)Dw1 =

{
Aw1 ifnCw1 < 0

Cw1 ifnCw1 ≥ 0
,

(33)Dw2 =

{
Aw2 ifnCw2 < 0

Cw1 ifnCw2 ≥ 0
.

(34)Bt = tDt2 − tDt1,

(35)Bw = wDw2 − wDw1,

(36)rn = ry0 − ubl
n
,

(37)rt =
tDt1 + tDt2

2
− ubl

t
.

(38)ubl
D
= max

{
n1;n2

}
,

(39)

{
n1 = ubl

n
− ry0 + Hblcos�p1cos

(
�bl
0
+ �bl

)
+ Rblsin�p1sin

(
�bl
0
+ �bl

)
n2 = ubl

n
− ry0 + Hblcos�p2cos

(
�bl
0
+ �bl

)
+ Rblsin�p2sin

(
�bl
0
+ �bl

) ,

(40)−Hbltan�pcos
(
�bl
0
+ �bl

)
+ Rblcos�psin

(
�bl
0
+ �bl

)
,

in case cos�p ≠ 0 or otherwise (Fig. 17)
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