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Abstract
Reliable shear strength determination of large in situ discontinuities is still a challenge faced by the rock mechanics field. 
This is principally due to the limited availability of surface roughness and morphology information of in situ discontinui-
ties and the unresolved management of the ‘scale effect’ phenomenon. Recently, a stochastic approach for predicting the 
shear strength of large-scale discontinuities was established, encompassing random field theory, a semi-analytical shear 
strength model, and a stochastic analysis framework. A key aspect of the new approach is the application at field scale, 
thereby minimising or bypassing the scale effect. The approach has been validated at laboratory scale and an initial large-
scale deterministic-based validation showed promising results. However, to date, no large-scale experimental-based valida-
tion has been undertaken. This paper presents the first rigorous application of the employed semi-analytical shear strength 
model and the stochastic approach on a 2 m-by-2 m discontinuity surface, with comparison of prediction to experimental 
shear strength data. The shear strength model was found to generally produce peak and residual predictions within a ± 10% 
relative error range, with good agreement between predicted and observed damage areas. It was observed that, applying the 
stochastic approach to seed traces with gradient statistics equivalent to that of the surface, produced predictions that closely 
resemble the experimental results. Whereas, predicting shear strength from different seed traces results in more variability 
of predictions, with many falling within ± 20% of the experimental data. The predictions of residual shear strength tended 
to be more accurate than peak shear strength.

Highlights

•	 The stochastic approach for discontinuity shear strength was applied to a 2 m per 2 m rock surface replica made of mortar.
•	 A sensitivity analysis conducted on the analytical shear strength model highlights the parameter influencing the most the 

shear strength prediction.
•	 The predictions of peak and residual strengths fall within 20% of the experimental data.
•	 The accuracy of prediction depends on the trace used to define the input statistics.
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1  Introduction

The shear strength of large discontinuities is an important 
parameter in stability assessment of rock slopes, especially 
where infrastructure, operations, and/or human life may be 

at risk. However, estimating shear strength for large in situ 
discontinues is challenging due to the limited visible mor-
phological and roughness features of the surface, and the 
non-trivial and generally prohibitive nature of large-scale 
experiments (Casagrande et al. 2018). Due to these chal-
lenges and a lack of alternative options, researchers and 
practitioners either test laboratory-sized samples and/or 
employ empirical methods for estimating shear strength of 
large discontinuities. This in turn introduces another chal-
lenge, accounting for change of scale. Indeed, small-scale 
predictions are not directly applicable at the project scale 
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but rather require an adjustment to account for the increase 
in scale, which is commonly referred to as “scale effect” 
(Barton and Bandis 1980).

The effects of scale on discontinuity roughness, shear 
strength, and deformability have been continually stud-
ied since the 1960s. The agreement that scale matters and 
advancements in testing apparatuses has facilitated various 
efforts to resolve our understanding of the scale effect and 
develop strategies to account for scale when estimating 
large-scale shear strength. However, conflicting observa-
tions and conclusions have been published. Researchers 
have observed or reported positive, negative, or no scale 
effects (Barton and Bandis 1980; Pratt et al. 1972; Muralha 
and Pinto da Cunha 1990a, 1990b; Ohnishi and Yoshinaka 
1995; Kutter and Otto 1990; Leal Gomes 2003; Johansson 
2016). The complexity of capturing the scale effect stems 
from the multiscale nature of surface roughness, a key fac-
tor influencing shear strength (Hencher et al. 1993; Barton 
and Choubey 1977; Maerz et al. 1990).

In practise, estimations of large-scale shear strength are 
typically derived from a small amount of roughness infor-
mation relative to the full surface and rely on an assump-
tion that this limited information is representative (either 
morphologically and/or statistically) of the whole surface. 
If this assumption is incorrect or overlooked, it is impor-
tant to have an understanding of the variability that may 
be introduced and how this will influence shear strength 
estimations (Fardin et al. 2001; Buzzi et al. 2017).

Despite years of research, leading to significant 
advancements in the characterisation, understanding, and 
modelling of mechanical response of discontinuities, the 
scale effect still remains not fully understood and mod-
elled. As it is difficult to determine the degree of scaling 
required, there is continued uncertainty towards an appro-
priate strategy to resolve the upscaling from small shear 
strength (Giani et al. 1995).

In practise, there are few methods for estimating the shear 
strength of large discontinuities. Versions of empirical JRC 
shear strength model modified to incorporate scale changes 
(Barton and Bandis 1982; Barton 1982) are commonly 
adopted. However, aspects of its implementation have raised 
concerns, most notably Barton (2013) commented that the 
JRC shear strength model is commonly incorrectly applied. 
Beer et al. (2002) showed that visually estimating JRC val-
ues via comparisons with the standardised JRC profiles 
can be a subjective process producing inconsistent results. 
Barton et al. (2023) recently stated that the JRC should 
capture the 3D morphology of a joint and its directional 
shear response, which can be achieved by back analysing 
JRC from tilt tests, and that JRC should not be seen as only 
reflecting 2D roughness.

Alternatively, back analysis techniques and observations 
of large discontinuity failures have been used to estimate 

various design parameters, such as Mohr–Coulomb param-
eters (apparent cohesion c and friction angle ϕ), first-order 
roughness inclination angles, JRC values, and/or other fric-
tion angle parameters (basic, ϕb, and ultimate/residual ϕu/ϕr) 
(Barton 1971; Kim et al. 2014; Amarasekera 2015; Markov 
et al. 2019), which can then be used to inform and guide 
future designs and stability assessments for similar discon-
tinuities in the same location. Whilst providing insightful 
observations and design information, back analysis tech-
niques require a failure to have occurred, which is typically 
not acceptable in many situations.

In recent years, a new stochastic philosophy and method-
ology has been proposed for estimating large-scale discon-
tinuities shear strength (Casagrande et al. 2018; Buzzi et al. 
2017; Buzzi and Casagrande 2018). Referred to in this paper 
as the Stochastic Approach for Discontinuity Shear Strength 
(STADSS), it offers a shift from conventional deterministic 
methods to rigorous stochastic analyses.

The STADSS relies on two key components: (1) a random 
field model for producing 3D synthetic rough surfaces with 
controlled statistics from the statistics of a seed trace (2D 
profile of a discontinuity daylighting at the rock face), and 
(2) a semi-analytical shear strength model capable of pre-
dicting the peak and residual shear strength of 3D synthetic 
surfaces, given a shear direction, a normal stress, and mate-
rial strength properties. By predicting the shear strength of 
all synthetic surfaces, STADSS produces a distribution of 
peak and residual shear strength and, because it is applicable 
at problem scale, it can bypass potential scale effect issues. 
The key steps of the STADSS are illustrated in Fig. 1, after 
Casagrande et al. (2018).

Buzzi and Casagrande (2018) applied the STADSS to 
a 2 m per 2 m natural surface but could not compare the 
STADSS prediction to experimental data and several issues 
were identified. Nonetheless, the preliminary results were 
encouraging.

This paper presents the first rigorous application of the 
STADSS to a large (2 m per 2 m) rock discontinuity surface 
where STADSS predictions are compared to experimental 
values of shear strength. For this study, the computation-
ally efficient semi-analytical shear model, presented in 
Casagrande et al. (2018) (referred to here as the Newcastle 
Discontinuity Shear Strength (NDSS) model), was coupled 
with the multiscale approach for generating large-scale 
rough rock surfaces established by Jeffery et al. (2021). The 
experimental data were obtained on 2 m per 2 m disconti-
nuity replicas tested under initial normal stresses ranging 
from 5 to 31 kPa; for details pertaining to the creation of the 
2 m PER 2 m surface replicas and very large direct shearing 
apparatus, refer to Jeffery et al. (2022).

The first part of the paper explores the reliability of the 
NDSS predictions at large scale, by comparing deterministic 
predictions to experimental results. The second part of the 
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paper deals with the application the STADSS to the large 
surface with a focus on selection of seed traces, comparison 
of stochastic predictions and experimental shear strength, 
and, finally, limitations and uncertainties of the approach. 
This is the first time the NDSS model and STADSS have 
been compared to experimental data at large scale, hence 
offering a first step towards validation of the STADSS.

2 � Characteristics of the Surface and Replicas 
Tested

2.1 � Material Characterisation

The surface replicas were cast using a mortar mix compris-
ing of a 4:2:1 ratio of sand, cement, and water. Due to the 
high cement ratio, several admixtures (superplasticiser, 
water reducer, and retarder) were incorporated into the mix 
to assist with placement into the moulds. Once cast, the rep-
licas were cured for 7 weeks (Jeffery et al. 2022).

The NDSS model can use either Mohr–Coulomb (c and 
ϕ) or Hoek–Brown (σci and mi) and a basic friction angle, ϕb, 
parameters to describe the material strength properties. For 
this research, the mortar material strength was characterised 
in terms of the Hoek–Brown parameters, σci and mi, which 
were estimated using unconfined compression strength tests 
(15 tests) and triaxial tests (utilising a Hoek cell, 20 tests) as 
per ISRM suggested methods (International Society of Rock 
Mechanics, 1983). The triaxial compression tests were con-
ducted under confinement stresses (minor principal stresses, 
σ3) of 10, 20, 30, and 40 MPa. Note that these stress values 
are much larger than the normal stress to be applied to the 
discontinuity (up to 31 kPa), but it is essential to capture 

the effect of localised stress concentration developing in a 
sheared discontinuity. With less than 1% of the surface in 
contact during shearing (Jeffery et al. 2022), the local nor-
mal stress is multiplied by a factor 100 or more. Characteris-
ing material strength under a normal stress equivalent to the 
“average” normal stress acting on the whole surface is likely 
to result in an inadequate estimate of the failure criterion, 
especially for a non-linear strength envelope.

The mortar cylinders used for the compressive strength 
testing were cored from each surface replica and trimmed 
to a length-to-diameter ratio of 2.5:1. Estimation of the 
material’s basic friction angle, ϕb, was achieved from direct 
shear tests (using a Geocomp ShearTrac II direct shear 
box), following revised ISRM suggested methods (Muralha 
et al. 2013). In total, 16 direct shear tests were conducted 
on 100 mm × 100 mm planar mortar surfaces, tested under 
constant normal stress conditions for normal stresses of 20, 
50, 100, and 250 kPa. Figure 2 presents a summary of the 
material characterisation data and determination of the mor-
tar material parameters. Table 1 reports the results of mate-
rial characterisation.

2.2 � Morphology and Statistics of the Whole Surface

The surface of the bottom wall replicate (Fig. 3a) was digi-
tally reconstructed prior to shearing using photogrammetric 
methods and 29 ground control points (GCP), setup around 
(16 of 29 GCP), and on the surfaces (13 of 29 GCP). The 
local spatial positions (x,y,z) of the ground control points 
were surveyed using a theodolite (Leica MS60 total station) 
and were utilised as spatial control points in the imagery 
reconstruction process. Using a Nikon D850 DSLR camera 
with a 24 mm lens, 100 photos were taken of the surface 

Fig. 1   Overview of the steps 
in the STADSS for estimating 
shear strength of large in situ 
discontinuities (after Casa-
grande et al. 2018)
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from multiple perspectives. Using Agisoft Metashape, the 
surface was modelled as a 3D point cloud with average 
reconstruction x, y, and z spatial errors of 560 μm, 720 μm, 
and 430 μm, respectively. For numerical and mapping pur-
poses, the point cloud data were transformed into a 1 mm 
resolution gridded structure of points with x, y, and z coordi-
nates using the mapping software package Surfer 13. The 3D 
contoured representations of the bottom experimental sur-
faces overlayed with 5 mm contours are presented in Fig. 3b.

The first step of the application of the STADSS to any 
surface is to statistically characterise the input information. 
The asperity points of the 3D digital surface model were 
statistically analysed to obtain the distribution of the asper-
ity heights (z) and directional gradients between adjacent 
points (at a 1 mm increment along X and Y) in both X and 
Y directions.

Casagrande et al. (2018), Buzzi and Casagrande (2018), 
and Jeffery et al. (2021) characterised many discontinuity 
surfaces for which the distribution of asperity height did 
not follow any recognised distribution. Therefore, it is sur-
prising to notice that the distribution of asperity heights of 
the experimental surface selected for this study resembles 
a Gaussian distribution (Fig. 3c). Both gradient distribu-
tions (Fig. 3d and e) tend to follow Gaussian distributions, 
which is consistent with observations made by Casagrande 

et al. (2018), Buzzi and Casagrande (2018), and Jeffery et al. 
(2021).

2.3 � Statistics of Selected Seed Traces

Casagrande et al. (2018) recognised that all STADSS pre-
dictions of shear strength are influenced by the statistics of 
the seed trace. As the seed trace statistics are influenced by 
the morphological features and roughness textures the trace 
transects across, it is hence relevant to investigate the vari-
ability of input statistics across the study surface.

The discretised surface is made of a series of adjacent 
traces oriented along X (at constant Y value) and of adja-
cent traces oriented along Y (at constant X value). A trace 
with a constant X value is referred to as an X trace. The 
same concept applies to Y. For each X and Y trace (made 
of 2001 points, 1 mm increment over 2 m distance), the 
mean and standard deviation of heights and gradients (μz, 
μi, σz, and σi) is calculated and their evolution as a func-
tion of the position of the trace (along X and Y axis) is 
reported in Fig. 4a–d.

Figure 4a–d reveals a significant variability of statistics, 
from trace to trace, which is expected given observations 
of Casagrande et al. (2018), Buzzi and Casagrande (2018) 
and Jeffery et al. (2021). Figure 4d and Figs. 5a and b show 
that, whilst the maximum standard deviation of gradient is 
similar in both directions (approximately 10.6°), the range is 
slightly wider in the Y direction (by approximately 1°) than 
for the X direction. The influence and implications of seed 
trace variability on shear strength predictions is explored in 
a later section.

Here, a total of 16 seed traces were selected, both in X 
and Y directions:

•	 Along X: five traces were chosen in the direction of 
shearing. Given the narrow distribution of σz, traces X1–
X4 were chosen to cover a wide range of σi. In addition, 

Fig. 2   Experimental results and 
characterisation of the mortar 
material; a unconfined and tri-
axial compressive strength tests 
results (grey circles) plotted in 
terms of major principal stress 
(σ1) as a function of minor 
principal stress (σ3); b residual 
shear strength as a function 
of normal stress obtained by 
direct shear tests on flat mortar 
surfaces (Color figure online)

Table 1   Material strength parameters for the mortar used to cast the 
surface replicas; unconfined compressive strength, σc Hoek–Brown 
intact material parameters, σci and mi and basic friction angle, ϕb

Unconfined com-
pressive strength σc 
(MPa)

Hoek–Brown intact 
parameters

Basic friction angle, 
ϕb (°)

Unconfined com-
pressive strength σci 
(MPa)

mi

Mean: 68.0
stdev: 8.8

67.8 8.5 Mean: 36.2
stdev: 2.3
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a trace that possesses statistics equivalent to the average 
trace statistics in the X direction was considered (trace 
identified as AvX).

•	 Along Y: Four traces (noted Y2, Y4, Y5, and Y6) were 
selected to capture the full range of σi; five traces (noted 
Y1, Y3, Y8, and Y9) were selected with a common σi (of 
about 8°), but with various σz to investigate the influence 
of σz (at constant σi) on the shear strength predictions. 
Additionally, two traces possessing the statistics of the 
average trace statistics in the Y direction (noted AvY) 
and of the whole surface (noted WSE) were selected.

The selected traces are presented in Fig. 5a–c together 
with the evolution of σi with σz along both directions. The 
statistics of the selected traces in the X and Y directions are 
provided in Tables 2 and 3.

3 � Results

3.1 � Deterministic Prediction of Peak and Residual 
Shear Strength

The predictive ability of the NDSS model at large scale was 
first tested by comparing predicted peak and residual shear 
strength of the surface in Fig. 6 to the experimental results 
obtained by Jeffery et al. (2022) (reproduced in Fig. 6). The 
NDSS deterministic predictions were obtained for four ini-
tial normal stresses (5, 14, 22, and 31 kPa) using the mate-
rial parameters presented in Table 1 and shearing direction 
orientation as per Fig. 3a.

Figure 6 compares the deterministic prediction and the 
experimental values of peak and residual shear strength, 
obtained under four initial normal stresses. The black solid 

Fig. 3   a Photograph of the bottom experimental surface prior to 
shearing (after Jeffery et al. 2022); b 3D digital representation of the 
bottom experimental surface using Surfer 13, overlain with 5  mm 

contours; c, d and e histograms of asperity heights and gradients in 
the X and Y direction, respectively
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line has a gradient of 1:1, whilst the red dashed lines repre-
sent a relative prediction error of ± 10%. The predicted shear 
strength, both peak and residual, are in good agreement with 
the experimental values, which shows an excellent predictive 
ability of the NDSS model. The maximum relative error is 
-17%, but, for most predictions, the relative error is lower 
than ± 10%.

The NDSS model produces a post-shearing surface (as 
shown in Casagrande et al. (2018)), highlighting the degra-
dation incurred at peak shear strength. Figure 7 compares 
the post-shearing degradation of the experimental surface 
(tested under an initial normal stress of 31 kPa) alongside the 
predicted degradation produced by the NDSS model under 
the same testing conditions (right and left, respectively).

The first observation is that, in both cases (prediction 
and experimental), the degraded areas are few and small. 
These degraded areas reflect the localised interaction of both 
walls upon shearing and correspond to features with steep 
inclines, such as steps and/or localised bumps. Although 
all predicted sheared areas can be found on the real sheared 
surface (zones circled in red), the damage is more extensive 
on the experimental surface (Fig. 7b), because damage is not 
only generated at the peak shear stress but also during the 
residual phase of shearing. This latter damage mechanism 
is not captured in the NDSS model, which focuses only on 
degradation under peak stress.

3.2 � Sensitivity Analysis of the NDSS Model

The accuracy of the NDSS shear strength predictions relies 
on the use of adequate material parameters. To explore how 
sensitive the NDSS model is to each of the key strength 
parameters (σci, mi and ϕb), a parametric study was 
undertaken.

For each parameter, a series of deterministic peak and 
residual shear strength prediction were obtained using a 
range of values, whilst the other two parameters were kept 
constant (and equal to the values reported in Table 1). For 
the parametric study:

•	 The magnitude of unconfined compressive strength 
σci ranged from 50 to 100 MPa, which corresponds to 
the ISRM field estimate strength classification32 of R4 
‘Strong Rock’.

•	 The range of mi explored includes values from 5 to 30, 
which covers estimates for different rock types, as pre-
sented by Hoek and Brown (1997).

•	 Finally, the basic friction angle was varied from 20 to 
40, which covers the basic friction angle of sedimentary, 
igneous, and metamorphic rocks (Barton 1973, 1976; 
Alejano et al. 2012).

The results of the NDSS sensitivity parametric study are 
presented in Fig. 8, which shows the value of predicted peak 
and residual shear strength as a function of each parameter 

Fig. 4   Asperity statistics of 
each trace as a function of their 
position along the axis; a mean 
height σz, b mean gradients μi, 
c standard deviation of height 
σz and d standard deviation of 
gradients σi. X and Y direction 
traces represented by black 
and grey continuous lines, 
respectively
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(σci, mi and ϕb). On each sub-figure, four curves are drawn, 
corresponding to four values of initial normal stress.

Figure 8a and d shows that changing σci only has a minor 
effect on the strength predictions. Indeed, increasing σci from 

50 to 100 MPa results in an average maximum increase of 
peak and residual shear strength by a factor 1.1 and 1.1, 
respectively.

Figure 8b and e shows that mi has a marginal effect of 
the predicted peak shear strength but a strong influence on 
the predicted residual shear strength. Under all four normal 
stresses considered, the residual shear strength approxi-
mately doubles as mi increases from 5 to 30.

Finally, Fig. 8c and f shows that ϕb has a more influence 
on the peak shear strength than on the residual shear strength 
predictions. When the base friction angle increases from 20° 
to 40°, the peak shear strength increases by a factor 1.8 (on 
average), whilst the residual shear strength only increases by 
a factor 1.3 (on average).

Fig. 5   a Values of standard deviation of gradients σi vs. standard 
deviation of heights σz for all traces in the X direction. Each grey dot 
represents a trace. The selected traces in the X direction are repre-
sented by black symbols. b Values of standard deviation of gradients 
σi vs. standard deviation of heights σz for all traces in the Y direction. 

Each grey dot represents a trace. The selected traces in the X direc-
tion are represented by hollow symbols. c Contoured map of the dig-
itised bottom surface with selected seed traces superimposed (Color 
figure online)

Table 2   Statistics of selected seed traces in the X direction

Trace X1 X2 X3 X4 AvX

X position(mm) 257 633 1251 1571 997
σz (mm) 15.2 13.2 13.3 12.0 13.4
μz (mm) 23.4 49.2 30.0 37.2 34.5
σi (0) 10.59 8.41 5.86 6.60 7.57
μi (mm) − 0.63 − 0.48 1.01 1.81 0.19
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The observed influences can be explained by the shearing 
mechanics implemented in the NDSS model:

•	 The peak shear strength is computed from the sliding 
resistance of all sheared asperities, which is governed 
by ϕb. σci and mi are strength parameters used to assess 
whether active asperities are sheared or not, and to 
terminate the shearing iterations. Although σci and mi 
affects the progressive shearing process and mechani-
cal equilibrium, they are not used to compute the val-
ues of peak shear strength, which is why its influence 
on peak shear strength is only minor.

•	 The residual shear strength is computed from the peak 
shear strength (influenced by ϕb), from which a cohe-

sion force (obtained from mi) is subtracted, which is 
why the residual shear strength is strongly affect by mi 
and, to some extent, by ϕb.

The sensitivity analysis was conducted by varying one 
parameter at a time and with ranges of parameters which 
wider than those observed in Table 1.

Consequently, to assess how the measured variability of 
the strength parameters (reflected by the standard deviation 
of Table 1) affects the prediction, two series of determin-
istic shear strength predictions were performed. An upper 
bound prediction was achieved with values of σci, mi and ϕb 
equal to the estimated mean value plus one standard devia-
tion (76.6 MPa, 8.5 and 37.6°, respectively), whilst a lower 

Table 3   Statistics of selected 
seed traces in the Y direction

Trace Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 AvY WSE

Y position (mm) 8 112 414 744 901 1248 1409 1651 1957 1050 279
σz (mm) 25.2 22.7 19.6 20.9 17.1 11.6 10.3 5.0 14.6 14.4 16.5
μz (mm) 37.1 41.2 53.3 39.6 36.5 48.7 50.4 44.4 46.9 39.4 48.5
σi (°) 8.06 4.85 8.07 10.70 8.81 6.61 8.01 8.13 8.00 7.60 7.86
μi (mm) − 1.64 − 1.38 − 0.71 0.18 0.32 − 0.33 − 0.52 − 0.32 0.64 − 0.42 − 0.97

Fig. 6   Evolution of measured 
and predicted shear strength 
as a function of normal stress: 
peak (a) and residual (b). Com-
parison of NDSS deterministic 
predicted shear strength and 
experimental shear strength at 
peak (c) and residual state (d). 
The continuous black line has a 
gradient of 1:1, red dashed lines 
indicate a ± 10% relative error, 
and grey dashed lines provide 
maximum value of relative 
error. τP_Exp: peak experimental 
shear strength; τR_Exp: residual 
experimental shear strength; 
τP_Det: peak deterministic shear 
strength; τP_Det: residual deter-
ministic shear strength (after 
Jeffery et al. (2022)) (Color 
figure online)
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bound series had for input the mean value minus one stand-
ard deviation (59.0 MPa, 8.5 and 34.8°, respectively).

Figure 9 compares the predicted upper bound and lower 
bound to the experimental values of peak shear stress (a) 
and residual (b). The figure also provides an indication of 
relative error (± 10% dashed lines). Given the variability of 
inputs considered, the range between upper and lower bound 
is quite narrow for all simulations conducted. Also, most 
predictions fall within a ± 10% band. The maximum predic-
tion errors are − 20% and + 18% for the peak and residual 
shear strength, respectively.

3.3 � Statistics of the Randomly Generated Synthetic 
Surfaces

In line with recommendations by Casagrande et al. (2018), 
100 synthetic surfaces were generated for each seed trace, 
using the multiscale random field model developed by Jef-
fery et al. (2021) For conciseness, details pertaining to spa-
tial increment length used to decouple the roughness and all 
random field modelling parameters are presented in Appen-
dix A (Tables 4 and 5, respectively).

Figure 10 presents the average random field modelling 
error (in terms of σz and σi) of the 100 synthetic surfaces 
generated from each seed trace (Fig. 10a) and examples 
of synthetic surface from seed traces WSE, X4, and Y1 
(Fig. 10b, d, respectively). The modelling error is calculated 
as a relative error defined as the ratio of difference between 
the average of the 100 simulation statistics and the seed trace 
(average absolute error), to the value of the seed trace statis-
tics (true value). Here, it is expressed as a percentage.

Figure 10a shows that most synthetic surfaces were gener-
ated with a relative error on the surface statistics, compared 
to the input statistics within a band of ± 10%, which Jeffery 
et al. (2021) deemed as acceptable. The synthetic surfaces 
tend to possess an average σz smaller than that of the seed 
trace (negative relative error), which is attributed to the local 
averaging process (basis of the 2D LAS algorithm), where 
the random field is slightly smoothened, thereby lowering 
the modelled σz (Casagrande 2018).

A visual comparison of the composite synthetic surface 
examples presented in Fig. 10b, d to the 3D digital represen-
tation of the experimental surface (Fig. 3b) suggests that the 
generated surfaces tend to possess more small-scale rough-
ness than the experimental surface.

In the context of this study, the resultant roughness tex-
tures of the composite synthetic surfaces are a product of 
(i) the combination of random field modelling parameters 
(i.e., resolution, correlation length, and standard deviation 
of height) used to generate the daughter surfaces (here using 
the 2D LAS RFM) and (2) the superposition process to cre-
ate the composite surface from the three daughter surfaces 
(refer Jeffery et al. 2021). Additionally, the observed surface 
roughness expression is likely to differ with employment of 
an alternate modelling process (refer Buzzi and Casagrande 
2018) and/or random field model.

The key objective of the composite surface generation 
process is to create synthetic surfaces that possess distribu-
tion of gradients that are representative of the seed trace 
(granted within an acceptable modelling error tolerance). 
Therefore, if this objective is met, the visual expression of 
the surface is deemed not be important to the shear strength 
estimation process within STADSS.

Fig. 7   Comparison of experimental (left) and NDSS model predicted (right) shear-induced surface degradation under an initial normal stress of 
31 kPa. Matching damage zones are highlighted by red continuous circles (Color figure online)
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3.4 � STADSS Predictions: Interpretation of Shear 
Strength Distributions

All synthetic surfaces were digitally sheared using the NDSS 
model and the material parameters presented in Table 1 
under initial normal stresses of 5, 14, 22, and 31 kPa (as per 
experimental testing conditions).

Examples of the predicted peak and residual shear 
strength cumulative distributions for seed trace WSE, 
X4, and Y1 are presented in Fig. 11 (note that the hori-
zontal scales differ between figures, but each has a range 
of 20 kPa). For conciseness, only results for initial normal 
stress 5 kPa and 31 kPa are presented, but similar results 
were obtained for all seed traces and initial normal stresses.

Except for peak shear strength under 31 kPa of normal 
stress, all distributions appear to be very steep, almost uniform, 
which reflects the high level of control used in the process, 
from the quality control of mortar and curing of specimens 

to the rigorous application of random field model to produce 
synthetic surfaces. Visually, only the distribution of peak shear 
strength under 31 kPa seems to show scatter in the results, but 
the coefficient of variation of the results is in the order of 2%.

For natural in situ discontinuities, features that are not yet 
captured in the STADSS or NDSS model (e.g., mismatched 
surfaces, presence of infill, variable material strength, the 
presence of infill material, and discontinuity persistence) 
will introduce more uncertainty in the prediction and will 
result into broader distributions of shear strength, but explo-
ration of these features is out of the scope of the present 
paper.

3.5 � STADSS Predictions: Comparison of Predictions 
and Experimental Data

In this section, all results of shear strength presented are an 
average value of 100 simulations.

Fig. 8   Evolution of peak shear strength (τP_Det) and residual shear 
strength (τR_Det) as a function of unconfined compressive strength 
σci (a and d), Hoek–Brown parameter mi (b and e) and basic friction 

angle ∅b (c and f). Shear simulations conducted under initial normal 
stresses of 5, 14, 22, and 31 kPa
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3.5.1 � Predictions from a Seed Trace with Whole Surface 
Equivalent Statics

Figure 12a and b shows that when using a seed trace with 
statistics equivalent to the whole surface (WSE), the pre-
dicted peak and residual shear strength are very close to 
their experimental counterparts.

Figure  12a shows the STADSS tends to underesti-
mate peak shear strength. The relative error is the high-
est (− 30%) under a normal stress of 5 kPa initial nor-
mal stress, but otherwise, it is in the order of − 10%. The 
underestimation of shear strength is due to the relative 
error on gradients of all synthetic surfaces (in the order of 
− 5%), as shown in Fig. 10a.

The relative error is quite small for the residual shear 
strength (typically within ± 5%) and there is no clear ten-
dency for underestimation or overestimation (Fig. 12b).

These results corroborate the observations of Casagrande 
et al. (2018), that creating synthetic surfaces from the statis-
tics of the whole surface produces satisfactory shear strength 
estimates. Unfortunately, the whole surface is seldom acces-
sible, and one has to rely on information available on a sin-
gle trace.

3.5.2 � Predictions from the Statistics of a Random Seed 
Trace

Figure 13a–d compares experimental values of peak and 
residual shear strength to STADSS predictions obtained 
from seed traces in the X and Y directions. The first notice-
able observation is the variation of predictions, ranging from 

good agreement (AvX and AvY) to significant overestima-
tions (X1 and Y4) and underestimations (X3 and Y2) with 
relative deviations in the order of a factor of 1.4 and 0.5, 
respectively. With reference to Fig. 4a and b, seed traces 
X1, X3, Y4, and Y2 represent the traces with the largest and 
smallest standard deviation of gradients σi, which in turn 
have produced the roughest and smoothest series of syn-
thetic surfaces. In contrast, the prediction of residual shear 
strength generally shows good agreement with the experi-
mental results, with errors typically within ± 10%. The pre-
dicted shear strength criteria presented in Fig. 13 confirm 
Buzzi and Casagrande’s (2018) view that the accuracy of 
stochastic shear strength predictions is strongly correlated 
to the gradient statistics of the seed trace and, therefore, the 
synthetic surfaces.

As discussed previously, the shearing direction is along 
Y and traces numbered X provide gradient information in 
the direction of shearing (traces numbered X have a constant 
X value and are oriented along Y, see Fig. 4). Interestingly, 
Fig. 13 shows that using gradient information in the direc-
tion of shearing (X traces) results in a narrower range of pre-
dictions than when using gradient information perpendicular 
to the direction of shearing (Y traces).

One aspect of the approach that has not been explored 
previously is whether the standard deviation of asperity 
heights σz influences the prediction of shear strength. Fig-
ure 14 presents the stochastic shear strength predictions for 
seed traces selected with a common σi but different σz val-
ues (see Fig. 9). Figure 14 shows that there are only minor 
differences between the predicted peak and residual shear 
strength, which can be associated with slight differences in 

Fig. 9   Peak and residual shear strength prediction accuracy for 
the upper and lower bound material cases (blue and green crosses, 
respectively) as a function of the experimental values for initial nor-
mal stresses ranging from 5 to 31 kPa. The continuous black line has 
a gradient of 1:1, red dashed lines indicate a ± 10% relative error and 

grey dashed lines provide maximum value of relative error. τP_Exp: 
peak experimental shear strength; τR_Exp: residual experimental shear 
strength; τP_Det: peak deterministic shear strength; τP_Det: residual 
deterministic shear strength (Color figure online)
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the statistics of the synthetic surfaces (see Fig. 10) despite 
similar seed trace inputs.

3.6 � Effect of Seed Trace Variability

One assumption of STADSS is that the seed trace used to 
predict shear strength is representative of the whole sur-
face. However, Casagrande et al. (2018), Buzzi and Casa-
grande (2018), and this study have shown that there exists 
a degree of variability of asperity statistics between traces 
over a discontinuity surface, which Buzzi and Casagrande 
referred to as “seed trace variability”. Such variability of 
statistics is illustrated in Fig. 15, where the distributions 
of gradients in the X (a) and Y (b) directions are plotted. 
Considering the Gaussian nature of gradient distributions 
previously reported (Casagrande et al. 2018; Buzzi and 
Casagrande 2018; Jeffery et al. 2021), it is not unreason-
able to assume that the distribution of all seed trace σi 

of the surface is also Gaussian. In fact, when superim-
posing theoretical normal cumulative frequency distribu-
tions to the cumulative frequency distribution of standard 
deviation of gradients σi for seed traces in the X and Y 
directions for the experimental surface (Fig. 15a and b, 
respectively), it shows that: 1) the experimental distribu-
tions are close to Gaussian in nature, albeit the X traces 
presenting with a ‘heavy tailed’ distribution and 2) there is 
approximately a 70% chance of selecting a seed trace with 
a σi that is within one standard deviation of the mean. For 
a Gaussian distribution, approximately 68% of the seed 
traces would lie within one standard deviation either side 
of the mean. In the rest of this section, for each direction, 
peak and residual shear strength have been computed from 
the traces indicated in Fig. 15 (AvX, X1 to X4, AvY, Y2 
to Y6) to assess the sensitivity of the prediction to the 
input statistics.

Fig. 10   a Relative error between statistics of seed traces and statis-
tics of synthetic surfaces generated from these seed traces, plotted 
in terms of standard deviation of gradients (average value computed 
over 100 realizations) and standard deviation of heights (average 

value computed over 100 realizations); b–d Example of the compos-
ite synthetic surfaces generated from WSE, X4, and Y1 seed traces, 
respectively
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Fig. 11   Cumulative distribution of peak shear strength under an ini-
tial normal stress of 5 kPa a; residual shear strength under an initial 
normal stress of 5  kPa b; peak shear strength under an initial nor-
mal stress of 31 kPa (c); residual shear strength under an initial nor-

mal stress of 31 kPa (d). For each sub-figure, distributions are shown 
for 100 synthetic surfaces generated from traces WSE, X4; and 
Y1. < τ> mean value of shear strength, stdev: standard deviation of 
shear strength

Fig. 12   Evolution of experi-
mental and predicted peak (a) 
and residual (b) shear strength 
as a function of applied normal 
stress, σn. Predictions made 
from a seed trace possessing 
statistics equivalent to the whole 
surface (WSE). τP_Exp: peak 
experimental shear strength; 
τR_Exp: residual experimental 
shear strength; < τP > : peak sto-
chastic shear strength; < τR > : 
residual stochastic shear 
strength
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Figure 16a and b shows how the peak and residual shear 
strength changes with the standard deviation of the seed 
trace (data for both X and Y directions are plotted in the 
figure). For reference, the standard deviation of the whole 
surface (noted WSE) and the associated shear strengths 
are reported as crosses in the figure. The range of standard 
deviation of gradients in Fig. 16a and b corresponds to the 

range within the surface, as indicated by the distributions of 
Fig. 15a and b.

The absolute difference between the shear strength at a 
given σi and that of the whole surface (cross WSE) increases 
with the difference in standard deviation of gradients 
between the seed trace and the surface. This suggests that the 
less representative of the whole surface a trace is, the poorer 
the prediction. The absolute difference in shear strength 

Fig. 13   Values of experimental 
and predicted peak (a and c) 
and residual (b and d) shear 
strength as a function of applied 
normal stress, σn. Predictions 
made from a selection of seed 
traces: X traces (a and b) and 
Y traces (c and d). τP_Exp: peak 
experimental shear strength; 
τR_Exp: residual experimental 
shear strength; < τP > : peak sto-
chastic shear strength; < τR > : 
residual stochastic shear 
strength

Fig. 14   Evolution of experimental and predicted peak (a) and resid-
ual (b) shear strength as a function of applied normal stress, σn. Pre-
dictions made from Y seed traces possessing different standard devia-
tion of heights but similar standard deviation of gradients. τP_Exp: 

peak experimental shear strength; τR_Exp: residual experimental shear 
strength; < τP > : peak stochastic shear strength; < τR > : residual sto-
chastic shear strength
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Fig. 15   Cumulative distribu-
tion of standard deviation of 
gradients of all X traces (a) and 
all Y traces (b) of the surface 
(black line) and equivalent 
theoretical Gaussian cumulative 
distributions (red lines) (Color 
figure online)

Fig. 16   a and b Peak (a) and 
residual (b) shear strength 
as a function of the standard 
deviation of gradients used for 
the prediction for four values of 
normal stress. Traces in both X 
and Y direction were used. The 
coloured crosses correspond to 
the prediction made using sta-
tistics that are representative of 
the whole surface (WSE). c and 
d Relative difference in peak (c) 
and residual (d) shear strength, 
expressed as a percentage of 
the prediction made using the 
statistics of the whole surface, 
and plotted as a function of the 
standard deviation of gradients 
used for the prediction for four 
values of normal stress
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(peak and residual) also increases with normal stress: the 
maximum difference in peak shear strength is 4 kPa under 
5 kPa of normal stress and about 25 kPa under 31 kPa of 
normal stress. Finally, the difference in shear strength is less 
pronounced for the residual shear strength than for the peak 
shear strength.

When the difference is expressed as a percentage of the 
shear strength predicted from the statistics of the whole 
surface (WSE crosses in the figure), the value of normal 
stress becomes irrelevant (see Fig. 15c and d). In the fig-
ure, it is also indicated the range of standard deviation of 
gradients corresponding to ~ 70% of traces, derived from 
Fig. 15. Figure 16 shows that for the surface studied, there 
is a 70% probability that the seed trace used for prediction 
will yield a relative difference in peak and residual shear 
strength of less than 20% and 10%, respectively.

4 � Conclusion

This paper presents the first rigorous application of the 
Newcastle Discontinuity Shear Strength (NDSS) model 
and Stochastic Approach for Discontinuity Shear Strength 
(STADSS) on a 2 m-by-2 m discontinuity surface, with 
comparison of prediction to experimental shear strength 
data.

The first part of the paper presents the application of 
the semi-analytical NDSS model to a digital capture of the 
2 m-by-2 m experimental surface. A key component of the 
STADSS, the efficient NDSS model, is used to process large 
3D synthetic surfaces. The predictive ability of the NDSS 
model was found to be satisfactory, as most predictions have 
a relative error within a ± 10% range. Good agreement was 
also observed between the predicted and observed damage 
areas. A material parameter sensitivity study of the NDSS 
model found the prediction of the peak and residual shear 
strength to be sensitive to the basic friction angle parameter 
and the Hoek–Brown parameter mi.

The second part of the paper presents the application 
of the STADSS to the 2 m-by-2 m experimental surface, 
with 16 seed traces selected to generate synthetic surfaces. 
For each seed trace, 100 synthetic surfaces were generated. 
Analysis of synthetic surfaces revealed that their statistics 

are within ± 10% of the statistics of the input seed trace. 
The paper then examines the shear strength distributions 
produced by the STADSS.

The paper goes on to explore the peak and residual pre-
diction capability of the STADSS by comparing the 16 
peak and residual shear strength predictions to the avail-
able experimental data. It was observed that, for seed traces 
with gradient statistics equivalent to that of the surface, 
the predictions closely resemble the experimental results. 
Predicting shear strength from different seed traces results 
in more variability of predictions, although the majority of 
predictions fall within ± 20% of the experimental data. The 
predictions of residual shear strength tended be more accu-
rate than peak shear strength.

The variability of the asperity statistics between seed 
traces influences the accuracy of the stochastic prediction, 
which is referred to as trace variability. The paper finishes 
with proposing a means of quantifying the likelihood and 
accuracy impact that trace variability may have on the 
shear strength predictions. Based on the Gaussian nature 
of surface and seed trace gradient statistics, it is reason-
able to assume that the distribution of standard deviation of 
gradients for all seed traces of a surface is also Gaussian. 
Hence, the results of this study suggest that there is a 68% 
chance that the observable seed trace will produce stochas-
tic peak and residual shear strength estimates within ± 20% 
and ± 10% of the true strength.

The application of STADSS presented in this paper con-
stitutes the first stage of large-scale validation. The encour-
aging results add merit to the overall validity of the approach 
for predicting the shear strength of large in situ discontinui-
ties, in slope stability and civil infrastructure development 
situations where the availability of surface roughness may be 
limited. The authors recommend further large-scale valida-
tion, encompassing but not limited to a variety of surfaces, 
increase ranged of applied normal stresses, and validation 
context (experimental verses field application), to gain more 
insight on this novel approach and its possible limitations.

Appendix A

See Tables 4 and 5. 

Table 4   Spatial increments for 
all daughter profiles, decoupled 
from the seed traces

Trace Spatial increment (SI) for the relative scales of roughness (mm) large/intermediate/small

X1 X2 X3 X4 AvX

SIL/SII/SIS 80/20/1 200/25/1 250/50/1 200/40/1 200/40/1
Trace Y1 Y2 Y3 Y4 Y5 Y6
SIL/SII/SIS 250/50/1 500/80/1 125/25/1 100/25/1 125/10/1 125/20/1
Trace Y7 Y8 Y9 AvY WSE
SIL/SII/SIS 250/50/1 100/25/1 250/50/1 250/25/1 125/40/1
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