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Abstract
This research is a two-dimensional analysis of the interaction effect in a group of piles socketed in a rock mass when study-
ing the end-bearing capacity of the group. This problem was extensively studied for deep foundations in soils, but very 
little is published about foundations in rock. The study was conducted in 2D to establish the basis and criteria to analyze 
the problem, as well as understand the main factors and failure mechanisms involved when several piles work together in 
a foundation. The factors included in the analysis are, among others: the parameters of the rock mass, the pile embedment, 
and the pile separation. The research highlights shaft resistance as one of the key factors in the interaction. It proves that 
neglecting shaft resistance changes the interaction influence and the failure mechanism which may not be on the safe side. The 
research includes an analysis of the failure modes of different pile configurations using the discontinuity layout optimization 
(DLO) method, by taking advantage of the method’s ability to show the wedge configuration at the failure. The minimum 
and maximum efficiencies are characterized in terms of the pile separation values, thereby proposing a procedure to obtain 
the absolute minimum efficiency of the group. A second procedure is also presented for the approximate prediction of the 
bearing capacity of the pile tip, for a group with a particular number of piles and properties, by considering the contribution 
of the corner piles and the intermediate piles.

Highlights
The main contributions of our article to the field of geotechnical engineering are briefly enumerated in the following list:

1.	 First-time evidence of the critical importance of considering the pile shaft resistance to address the bearing capacity of 
the tip of a pile in rock.

2.	 First-time presentation of a comprehensive analysis of the different parameters influencing the group interaction effect 
for piles in rock.

3.	 In-deep analysis of the collapse failure mechanisms of an end-bearing pile group embedded in rock using DLO.
4.	 First-time identification of some new failure modes between interacting piles.
5.	 Two simplified equations are proposed to approach the pile-group bearing capacity, including interaction effects.

Keywords  DLO method · Plasticity · Bearing capacity · Deep foundations · Hoek and Brown, failure criterion · Pile 
efficiency · Group of piles

List of symbols
�	� Efficiency of the pile group
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at failure, respectively
m , s

a
,a	� Material constants in the modified Hoek and 
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m
o
	� Rock type

GSI	� Geotechnical quality of the rock mass
γR	� Specific weight of the rock
γS	� Specific weight of the soil
D	� Depth of damage in the rock mass due to 

human actions
�
n
, �	� Parameter called strength modulus

�
n
, �	� Parameter called rock mass toughness 

coefficient
A
n
	� Parameter in the modified Hoek and Brown 

failure criterion
n	� Exponent in the modified Hoek and Brown 

failure criterion, ranging from n = 0.5 to 
n = 0.65

B	� Pile diameter
s	� Separation between pile axes
HR	� Pile length embedded in the rock stratum
HS	� Non-resistant soil layer height
qs	� Surface load
λ	� Adequacy factor in DLO formulation
fD, fL	� Dead loads and live loads in DLO 

formulation
d	� Displacements vector in DLO formulation
si, ni	� Relative shear and normal displacements at 

discontinuity i in DLO formulation
p	� Plastic multipliers vector in DLO formulation
g	� Vector of dissipation coefficients in DLO 

formulation
ci	� Cohesive shear strength at discontinuity i in 

DLO formulation
li	� Length of discontinuity i in DLO formulation
B	� Matrix of direction cosines in DLO 

formulation
N	� Matrix containing the plasticity flow param-

eters in DLO formulation
P
h
	� Bearing capacity of the foundation

Φ	� Friction angle in Mohr–Coulomb failure 
criterion

d	� Distance between foundation edges
Ph_isolated	� Bearing capacity of the isolated pile
Ph,row	� Bearing capacity of the infinite row of piles
Ph,group	� Bearing capacity of the group of piles calcu-

lated by the simplified formula
Ph_numerical	� Bearing capacity of the group of piles calcu-

lated numerically
N	� Number of piles in a group

1  Introduction

Piles are most effective when combined in groups or clus-
ters. Even though they are generally used in groups in prac-
tice, most researchers dealt studied single piles instead of 

analyzing group behavior. Consequently, designers rely on 
the calculated bearing capacity of single piles to predict the 
bearing capacity of pile groups.

That is understandable since combining piles in a group 
makes analysis much more complicated as the behavior 
changes due to the interactions within the group. The allow-
able load of a single pile will not be the same when that pile 
is combined in a cluster or in a group. The bearing capacity 
of the set is evaluated by a factor multiplying the product of 
the number of piles (n) by the individual bearing capacity 
of an isolated pile. This factor is usually known as efficiency 
(ξ) of the group and, depending on the ground properties, 
group size, and pile spacing, may be smaller or higher than 
unity, thus reducing or increasing the average pile individual 
capacity, respectively.

Some results were published regarding the behavior of 
a group of foundations by considering their interaction. 
Most research dealt with shallow foundations on sand (Stu-
art 1962). However, some approaches were made to deep 
foundations, studying the bearing capacity of pile groups in 
sand from lab tests, such as that by Kezdi (1957), Fleming 
(1958), Stuart et al. (1960). Stuart and Hanna (1961) adapted 
Meyerhoff’s analytical formulation (Meyerhoff 1951, 1953) 
to estimate the pile group efficiency in the sand.

Some empirical equations predict the group efficiency in 
soil, such as the Converse-Labarre equation (Bolin 1941) 
and that proposed by the Los Angeles Group Action Method. 
Others proposed empirical ratios to reduce the efficiency of 
each pile, taking the neighboring piles into account (Feld 
1943). Different approaches were proposed in the form of 
equations (Seiler and Keeney 1944; Sayed and Bakeer 1992; 
Das 1999), design charts (Whitaker 1957), and models con-
verting the group into an equivalent pier (Terzaghi and Peck 
1967; Poulos and Davis 1980).

There are also some load tests conducted on pile groups 
in soils, either full-scale, such as those described by Vesić 
(1969), Garg (1979), Ismael (2001), McCabe and Lehane 
(2006), and Zhang et al. (2013), or reduced-scale, such as 
Al-Mhaidib (2006), Al-Omari et al. (2019), Al-Khazaali and 
Vanapalli (2019), Marwa et al. (2021), and De Sanctis et al. 
(2021).

Using the Mohr–Coulomb failure criterion in soils, a 
different approach used numerical models to analyze the 
behavior of the group through a large number of numeri-
cal experiments, such as Chow (1986), Ching et al. (1990), 
Poulos (1994), Leng et al. (2019).

Unlike the case of pile groups in soil, the common 
assumption regarding the ultimate bearing capacity of end-
bearing pile groups on rock is that group capacity will be 

(1)Efficiency � =
Bearing capacity of the group

n ∗ Bearing capacity of a pile
,
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essentially equal to the number of piles times the capacity 
of the isolated pile, considering the group effect negligible 
(Prakash and Sharma 1991). That might be one of the rea-
sons why so few studies are available on pile groups in rock, 
while extensive research is done on pile groups in soils.

However, after analyzing data from the actual behavior of 
piled shafts in rock in a building construction site, Katzen-
bach et al. (1998) claimed that the group effect should be 
taken into account and that neglecting it may produce either 
overestimation or underestimation of the group capacity.

Initial solutions were presented for groups of piles that 
penetrate a weak upper soil layer to socket into a lower 
firm bearing stratum of greater stiffness. Poulos and Mattes 
(1974) presented solutions for pile groups resting on the sur-
face of the rock stratum but without considering the embed-
ment in rock or the specific failure criteria in rock masses. 
Chow et al. (1990) presented a numerical procedure to pre-
dict the settlement of socketed piles in a very firm stratum, 
defining the efficiency as a stiffness-reduction factor but not 
addressing the situation of ultimate instability.

Some authors used centrifuge models to experimentally 
analyze the efficiency of the different piles in the group. 
Zhang and Wong (2007) investigated the group effect when 
some defective piles were not founded on the rock (they did 
not reach the rock stratum) but did not use specific failure 
criteria for these media. Xing et al. (2014) studied the effect 
of different bedrock embedments of the piles in the group 
on soils with the Mohr–Coulomb failure criterion. However, 
they pointed out that some conservative measures, such as 
ignoring the shaft resistance associated with the rock-sock-
eted piles, may not be wise for project construction. This 
aspect then requires some further research.

The efficiency factor in rocks has recently been stud-
ied for shallow foundations. Shamloo and Imani (2021) 
researched the behavior of two closely spaced strip footings 
on Hoek–Brown rock masses by using the analytical upper 
bound theorem, which requires the previous assumption of 
the failure mechanism. Keawsawasvong et al. (2022) applied 
the advanced upper bound and lower bound finite element 
limit analysis, which does not require any presumption, thus 
obtaining numerically the efficiency factors for the shallow 
foundations.

As previously stated, the group effect of piles in rock was 
rarely investigated, and it was mainly done using experimen-
tal observations beyond the initial numerical solutions ori-
ented to settlement analysis. Therefore, the mutual influence 
between piles affecting the bearing capacity of the group 
in rock has not been addressed systematically. The present 
research should show that this interaction is significant in 
pile design for rock masses and depends, for a given terrain, 
not only on the usually considered parameters, such as pile 
diameter, the separation between piles, and the tip embed-
ment in the rock but also on the pile shaft resistance.

2 � Objectives

This research is a numerical investigation regarding the sig-
nificance of the interaction effects among end-bearing piles 
in a group founded on the rock. We considered the particular 
relevance that the assumed shaft resistance on the pile socket 
has in the group efficiency.

Since usual practice assumes that the group effect pro-
duces an end-bearing efficiency (ξ) higher than 1 for piles on 
rock, the present work will prove that the efficiency highly 
depends on the shaft resistance of the embedded pile and can 
reach values lower than 1 in some cases.

A novel numerical procedure, the Discontinuity Layout 
Optimization (DLO) method (Smith and Gilbert 2007), was 
used to sustain all the studies, to obtain the bearing capacity 
and the failure wedges for the different analyzed models. The 
software’s ability to show the failure mechanisms allows for 
obtaining invaluable insights regarding the failure behavior 
of nearby piles.

In the present paper, we will first present the configu-
ration of the problem and the analysis method. Second, a 
preliminary approach is made to explain the behavior of two 
nearby piles in a simple medium (soil with Mohr–Coulomb 
failure criterion) since this will enable comparison with 
previous research and well-established knowledge. This 
will lead to a third analysis on the reference case of an infi-
nite row of piles in rock, approaching later a finite number 
of piles, thus obtaining some initial findings of the model 
behavior. Finally, a comprehensive set of calculations with 
different geometric and geomechanical parameters will be 
presented and analyzed to generalize the previous results.

3 � Problem Statement and Numerical 
Methods of Analysis

3.1 � Problem Statement

The model considered in the analysis will include the 
main factors affecting the solution, such as the three 
parameters characterizing the rock mass: rock type (m0), 
uniaxial compressive strength (UCS), geological strength 
index (GSI), density of the rock (γR) and the geometric 
characterization of the pile group as the pile diameter 
(B), separation between pile axes (s), and the pile length 
embedded in the rock stratum (HR). A non-resistant soil 
layer (height HS and density γS) is considered over the 
rock, which is represented only by its weight due to its 
low resistance in relation to the underlying ground. The 
piles are rigidly coupled at their tops by an infinitely-
rigid pile cap, not in contact with the terrain. All these 
characteristics are presented in Fig. 1.
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Regarding the behavior of the rocks, they are, in gen-
eral, a heterogeneous, discontinuous, anisotropic material 
due to the family of planes of weakness crossing the rock 
mass.

In the present research, are assumed: perfect plasticity, 
plane strain conditions, associated flow rule, and, com-
mon in rock mechanics, the modified Hoek and Brown 
failure criterion. However, the modified Hoek and Brown 
failure criterion is only suitable for rock masses whose 
behavior, despite having discontinuities, can be consid-
ered homogeneous and isotropic. The different cases and 
ability to be represented by the Hoek and Brown criterion 
are included in Fig. 2. Anisotropic case II generated by a 
family of planes of weakness and non-isotropic case III 
produced by two families of discontinuities, as presented 
in Fig. 2, requires an individualized analysis checking 
both the criterion of failure along the planes of weakness 
and the criterion of failure through the rock mass, and 
therefore they are outside the scope of this research.

Although the problem is three-dimensional by nature, 
the assumption of plane strain is used to make the prob-
lem approachable, maintaining the influence of the main 
variables affecting the problem without change and, con-
sequently, enabling a simple analysis of this complex 
problem.

3.2 � Failure Criterion of the Rock Mass

Following the latest modification (Hoek et al. 2002), the 
formulation of the Hoek and Brown failure criterion is now 
expressed as:

where�′

1
 and �′

3
 are, respectively, the major and minor effec-

tive principal stresses at failure,�
c
 is the uniaxial compres-

sive strength (UCS) of the intact rock,m , s
a
 and a are mate-

rial constants, which depend on the rock mass properties and 
represented by the following expressions:

where m0 is a material constant obtained through triaxial 
tests data or using the approximate tables given by Hoek 
et al. (2002),GSI is the Geological Strength Index, with simi-
lar values to RMR index (Bieniawski 1976),D is a factor that 
depends on the degree of disturbance to which the rock mass 
has been subjected by blast damage and stress relaxation 
(removal of the overburden). The D factor varies from 0 for 
undisturbed in situ rock masses to 1 for highly disturbed rock 
masses. In the present study, D is assumed to be 0, which 
corresponds to conventional execution conditions.

Besides, the following important parameters are also 
defined (Serrano et al. 2000):
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Fig. 1   Sketch of the problem 
and simplified model
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where A
n
= m(1 − n)∕2

1∕n . The exponent n is a character-
istic from the modified criterion and ranges from n = 0.5 to 
n = 0.65, depending on the degree of rock fracturing. The 
parameter βn is called “strength modulus” and will be used 
to non-dimensionalize the stresses, and the parameter ζn is 
the so-called “rock mass toughness coefficient”. Both param-
eters will be used extensively in the present research but 
without a subscript.

3.3 � Numerical Solution: Discontinuity Layout 
Optimization Method

3.3.1 � DLO Mathematical Formulation

The discontinuity layout optimization method (DLO) was 
developed by Smith and Gilbert (2007) and is a powerful 
solution to address the limit analysis of two-dimensional 

(7)�
n
=

s
a

mA
n

,
plastic problems. A detailed explanation of the procedure is 
beyond the scope of this paper, and we draw the attention of 
readers to the given references. Only a brief review of the 
theoretical bases will be included as follows.

The procedure defines a set of nodes over a dominium 
of study and connects every two nodes with a possible dis-
continuity. The DLO is used to obtain the minimum-energy 
compatible configuration of discontinuities among all the 
possibilities. A linear programming scheme is employed by 
defining and minimizing an objective function with several 
conditions.

Considering that the normal and tangential displacements 
at each discontinuity are the main variables of the problem, 
a work balance equation (objective function) is written com-
paring the live and dead load works and the plastic work:

The non-dimensional number λ multiplying the live load is 
known as the adequacy factor. This number is increased to 

(8)min� fT
L
d = −f T

D
d + gTp.

Fig. 2   Applicability of the Hoek 
and Brown yield criterion for 
group effect in piles which was 
adapted from Hoek (1983). Red 
color for cases that are not pos-
sible to analyze and green color 
for possible cases (Color figure 
online)
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the limit when the work balance equation reaches its mini-
mum, thus corresponding to a collapse state. The linear pro-
graming unknown variables are the displacement and plastic 
multipliers vectors d and p.

Two vectors of loads are considered: fD called dead 
loads and fL called live loads; those loads are affected by 
the adequacy factor. The vector of displacements at the dis-
continuities dT = {s1, n1, s2, n2,…,sm} contains, respectively, 
the relative shear si and normal displacements ni at each 
discontinuity i.

The dissipation coefficients at each discontinuity i are 
contained in vector gT = {c1 l1, c1 l1, c2 l2, c2 l2,…,cm lm} each 
one being the product of the cohesive shear strength ci by 
length li. The vector p contains plastic multipliers.

The objective function is subject to several conditions:

Matrix  B  includes the direction cosines, and 
matrix N contains the plasticity flow parameters.

The described DLO formulation only applies to trans-
lational failure mechanisms, but extended to consider rota-
tional failure mechanisms by Smith and Gilbert (2013). 
This research uses the last enhanced formulation for all the 
calculations.

The representation of the failure mechanism improves with 
the number of nodes considered, which is a key factor of accu-
racy. The procedure is an upper-bound solution (Smith et al. 
2017), and increasing the number of nodes will approach the 
numerical solution to the theoretical solution downwards.

As referred to earlier, this method presents clear advan-
tages. First, it identifies the collapse mechanism as the clas-
sical limit analysis but without the need for any previous 
assumption of the mode of failure: this particular advantage 
will prove critical in this research. Second, it does not usu-
ally present numerical problems (Smith et al. 2017) as far as 
excessive confinement is avoided. Furthermore, the compu-
tational cost is relatively small compared to other methods 
being used. All things considered, this method is highly rec-
ommendable to deal with the actual problem considered in 
this study.

3.3.2 � Representation of the Failure Criterion

As shown in the previous section, the DLO procedure uses 
linear programming and requires a linear failure criterion. 

(9)Bd = 0,

(10)Np − d = 0,

(11)fT
L
d = 1,

(12)p ≥ 0,

The fully non-linear Hoek and Brown failure criterion of 
the rock should first be linearized to be included in the DLO 
scheme. An intermediate-secant approach is applied in the 
linearization to obtain better results (Millan et al. 2021) 
instead of the most common external tangent approach or 
internal secant one since it is associated with better accu-
racy. A representation of the procedure to obtain the linear 
approximation is shown in Fig. 3.

The accuracy obviously depends on the number of inter-
vals used to linearize the curve. In this research, a 20-inter-
val approximation is used since the increase in computer 
load was not significant.

3.3.3 � DLO Models

For this research we used the GEO software from LimitState 
(2020), that was used to implement the previous lineariza-
tion of the Hoek and Brown criterion.

Regarding the modeling, three general cases were con-
sidered for the group of piles: (a) an even number of piles, 
(b) an odd number of piles, and (c) an infinite number of 
piles. For all of these piles, horizontal symmetry was used to 
reduce the model size. For the two first cases, the symmetry 
axis was located at the center of the model, while a double 
symmetry scheme was used for the third case, to study the 
model between the axes of two adjacent piles. This approach 
eliminates the boundary condition of the pile at the edge, 
thus corresponding to an unlimited number of piles. Figure 4 
shows the different cases. The isolated pile was idealized 
following the type-b model.

The rock medium was modeled as a rectangular domain, 
as shown in Fig. 5a and b for a group of 2 piles and 3 piles, 
respectively. It includes a free boundary condition at the top, 
fixed boundary conditions at the bottom and right edges, and 
symmetry boundary conditions at the left edge; a semi-pile 
was included at this edge for the 3-pile case. This made 

Fig. 3   Different solutions to linearize the Hoek & Brown failure cri-
terion
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Fig. 4   Different cases of pile groups considered in the study and their symmetry: a an even number of piles, b an odd number of piles, and c an 
infinite number of piles

it possible to represent only half of the problem. Similar 
conditions were considered for an infinite row of piles as 
presented in Fig. 5c, where symmetry boundary conditions 
were also considered at the left edge (one semi-pile was 
modeled at each edge).

The piles were connected by an infinitely rigid rod which 
produces an identical movement in all piles and an identical 
individual load, assuming only a uniform vertical load on 
the group of piles. An identical external load was applied 
on the top of each pile that were increased automatically to 
reach the collapse state using the adequacy factor explained 
in the previous section.

Each pile had a fixed diameter B = 0.8m in this research 
with an embedment in the rock medium represented by H

R
 . 

The overlying soil has a depth H
S
 and was only represented 

by its corresponding pressure.
The extension of the failure mechanism determines the 

rock domain size for each model. To avoid interferences, the 
right and bottom edges were placed far from the foundation 
by trial-and-error for all models.

The accuracy of the results depends on the number of 
nodes defined in the domain. A convergence study was per-
formed to delimit the minimum number of nodes that should 
be used in the model. As shown in Fig. 6, a node distribu-
tion equivalent to approximately 4 nodes/m was considered 

enough to obtain good accuracy; variation relative to the 
higher density lower than 5%. Most models in this research 
are considerably finer than this limit.

4 � Key Factors Influencing the Group Effect

4.1 � Case of Two Close Piles

Before analyzing the pile group effect on a rock medium, it 
was considered necessary to start from a simple case that 
was better studied in the literature, and with some results 
that can be used as a reference. The key factors can then be 
analyzed step by step, changing one at a time. The refer-
ence case used is the interaction between foundations on 
granular soil.

This simplified model is directly related to the problem 
under study, by considering a pile group with null embed-
ment, as presented in Fig. 7a. In this case, the pile tip acts as 
a shallow foundation without external overload. Then, it is 
converted progressively into a deep foundation, increasing 
the plane support depth (Fig. 7b).

The factors studied in this initial problem were the sep-
aration between centers s, the surface load -related to the 
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height of the soil stratum HS-, and the embedment ratio HR. 
Three different steps were considered:

(a)	 Shallow foundations with different separations and sur-
face loads,

(b)	 Foundations with certain embedment, with different 
separations and surface loads. No shaft resistance.

(c)	 Foundations with certain embedment, without surface 
loads but with shaft resistance.

A general case considering simultaneously an external 
load and certain embedment was not specifically studied in 
this section. The objective was to delimit the influence of 
each factor and, consequently, they were introduced one at 
a time to identify those that induce variation in the results.

The results of the efficiency with the ratio s/B from step 
a) are shown in Fig. 8 for the case of a Mohr–Coulomb 
sand, with friction angle ϕ = 35º. A very good agreement 
was observed for the shallow foundation results with Kumar 
and Kouzer (2008) for the case of two close foundations on 
the surface of the soil with no surface load qs. The initial 
line with a positive slope corresponded to the values (2+d∕B)

2

2
 , 

with d the distance between foundation edges, and defined 
by the same authors as the efficiency of the system com-
posed of two foundations working as a unique foundation. 
When a surface load was applied, the peak value diminished 
and moved to higher values of s/B (Fig. 8). Two different 
zones were considered: the increasing slope pre-peak and 
the posterior downward slope. Each zone corresponds to a 

Fig. 5   Example models of dif-
ferent pile group configurations 
with separation s/B = 3: a 2-pile 
group, b 3-pile group, and c 
infinite row of piles

Fig. 6   Convergence analysis relative to the nodal density in 
the model. Infinite row of piles, separation s/B = 3, embedment 
HR = 2.5B, overlying soil HS = 10  m. Rock with GSI = 5, m0 = 12, 
UCS = 50 MPa
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different failure mechanism, as shown in Fig. 9 for the case 
with an external overload of 180 kPa.

The increasing slope before the peak in Fig. 8 corre-
sponds to failures where the two foundations perform as a 
unique foundation, with a common active triangular wedge, 
as shown in Fig. 9a. After the peak, each foundation has 
its separate active wedge, and a progressively increasing 
interaction zone is developed between them (Fig. 9b). For 
longer separations s/B, each foundation has a separate failure 
wedge, and the efficiency will be the unity.

For step b), an embedment of HR = 2.5B was considered, 
as well as different surface loads, from qs equal to 0 up to 
360 kPa, and null shaft resistance for all cases. The results 
are presented in Fig. 10.

Fig. 7   a Modeling of pile tips as 
close shallow foundations and 
b Modeling of pile tips as deep 
close foundations with surface 
load

Fig. 8   Efficiency of two shallow foundations on sand considering dif-
ferent surface loads qs

Fig. 9   Failure wedges for the case of shallow foundation on granular soil (φ = 35º) with qS = 180 kPa. Two different s/B values:1.25 and 3
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Fig. 10   Efficiency of two embedded foundations on granular soil 
(φ = 35º) with the support plane at 2.5B depth and different surface 
loads qs. No shaft resistance is considered

Figure 10 also shows two different zones around a peak, 
with a lower efficiency value than shallow foundations. As 
in the case without embedment as studied previously, the 
greater the overload, the maximum efficiency of the curves 
decreases. Most important is to realize that, for high s/B 
ratios, the efficiency values go below the unity when an 
embedment in the foundation is considered, either with 
or without surface load. The corresponding failure modes 
are presented in Fig. 11 for the case of an embedment of 
HR = 2.5B, surface load qs = 180 kN/m2, and separations s/B 
equal to 3 and 8 above and below the value of one of the 
efficiency.

This latter behavior was not reported by Stuart and Hanna 
(1961) in their work on groups of deep foundations, but 
always showed efficiency over unity for the different depths 
considered (D/2B = 8, 16, and 20). The reason for this unex-
pected behavior was the appearance of alternative modes 
of failure involving lower energy that takes preference over 
the theoretical modes considered by Stuart & Hanna. These 
failure modes are analyzed in depth later in this paper.

Finally, for step c) different shaft resistances were intro-
duced to investigate their influence on the system behavior. 
Since granular soil was considered, the shaft resistance var-
ies from the complete Mohr–Coulomb shear resistance of 
the soil to a zero value, considering some fractions of the 
friction angle (50% and 25%) as intermediate values. Results 
are presented in Fig. 12.

The curves in Fig. 12 have a maximum that, for this case, 
without overloading and embedment, is located at a certain 
distance from the theoretical reference curve; in the previous 
cases, the maximum aligned quite well with that curve. In 
addition, there is a strong influence of the shaft resistance 
on the bearing capacity efficiency, always showing values 
higher than one, but for the null shaft resistance case.

As in b) cases, the difference corresponds to new modes 
of failure that appear due to the presence of the embedment 
soil and, simultaneously, to the null shaft resistance. They 
are shown as an example in Fig. 13.

Figure 13 is presented to interpret the evolution of the 
curves in Fig. 12 based on the failure wedges. As can be 
seen, there is a significant difference in the failure mode 
between piles when the shaft resistance is null (Fig. 13a) or 

Fig. 11   Failure wedges for the case of two embedded foundations on granular soil (φ = 35º) with qS = 180 kPa. Two different s/B values: 3 and 8

Fig. 12   Efficiency of two embedded foundations on granular soil 
(φ = 35º) with a 2.5B depth of the support plane, null surface load qs, 
and different shaft resistance values
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not (Fig. 13b). For the first case, the embedment soil does 
not fail and only moves upward as a rigid block, adapting to 
the movement of the underneath failure, due to the friction-
less contact with the piles. However, since the embedment 
soil cannot slip along the soil-pile contact for the second 
case, the embedment soil should fail too, and more energy 
is needed altogether.

After this first review of the main factors affecting the 
behavior of two close foundations on soil (separation s/B, 
external overload, embedment, and shaft resistance), we 
consider the problem of a group of piles on the rock. We 
present the problem in two steps before addressing the com-
plete set of cases and calculations, to help better understand 
the physics of the problem.

4.2 � Infinite Row of Piles as a Reference Case

4.2.1 � Influence of the Pile Separation

When thinking about the problem of a set of interacting 
piles, two main zones can immediately be recognized, the 
inner zone and the edge zone. The inner zone corresponds 
to piles situated between other piles (called from now on 
“intermediate piles”), whose behavior is closer to that of 
the infinite row of piles presented in Fig. 4c. The edge zone 
corresponds to the piles at the end of the group (called “bor-
der piles”), whose behavior is, in part, related to an isolated 
pile and, also, to the intermediate pile. The behavior of the 
piles in these two zones is different and may be related to 
two simple cases used as a reference for their behavior: an 
isolated pile and an infinite row of interacting piles.

The actual bearing capacity of a group with a finite num-
ber of piles can be composed of the contribution of both 
simple cases, the border piles plus the intermediate piles, 
and will be studied in the next section.

Since the solution for the isolated pile case is well-
established, the following discussion will deal with the 

infinite-row-of-piles case. This case will be the base case 
in this research because it reduces the variability of the real 
case with a finite number of piles only to the separation 
variable s/B. Although an extensive set of calculations is 
presented in Sect. 4.1, some previous results relative to this 
case are introduced next since they were useful to clarify 
other problems.

The geometry of the problem considered in this section 
is defined with the pile diameter B = 0.8 m, the soil layer 
depth H

S
 = 10 m, and the embedment of the pile in the rock 

medium H
R
 = 2.5B = 2 m. An overload of qS = 180 kPa was 

applied to all cases. Two different values of each material 
parameter were chosen for this set of calculations, combin-
ing them in four different cases.

The efficiency of the infinite row of piles on the rock for 
different separations and considering null shaft resistance 
is shown in Fig. 14. All of them present a similar behavior 
to that of the embedded pile on soil shown in the previous 
section.

Figure 14 shows an asymptote at s/B = 1, progressing to 
an infinite efficiency value since, for that separation, the 
piles would have lateral contact. Then the infinite row of 
piles corresponds to a unique pile of infinite width and to 
extreme confinement of the rock, making the general shear 
failure not possible (infinite bearing capacity).

In addition, Fig. 14 shows that the efficiency coefficient 
of the infinite row of piles is, for these cases and most of the 
separations, lower than unity (efficiency related to the iso-
lated pile reference case) and reaches its minimum between 
s/B = 3 and s/B = 8. The efficiency stays below one, even for 
high values of s/B when the usual separation for the appear-
ance of two isolated failure wedges is exceeded (approxi-
mately s/B = 6, Kumar and Bhattacharya 2013).

Different failure wedges corresponding to some of the 
cases studied are represented in Fig. 15. As can be seen, 
no isolated pile wedges are developed before s/B = 15. 

Fig. 13   Modes of failure for two close embedded foundations on granular soil (φ = 35º) with depth 2.5 B and s/B = 5. a Null shaft resistance; b 
Shaft resistance 25% of Mohr–Coulomb resistance (φ’ = 35º)
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Consequently, the efficiency will be affected for the studied 
cases far beyond the usual assumption.

An example is shown in Fig. 16 where the resulting fail-
ure wedge of the row of piles (s/B = 15) is superposed with 
that of the individual isolated piles. As can be seen, the 
isolated pile wedges do not interfere, but the final failure 
is influenced by the interaction. That contradicts the usual 

assumption in the area for which no interaction is expected 
beyond a separation higher than s/B = 6.

4.2.2 � Influence of the Rock Embedment

An in-depth analysis is needed to understand this unexpected 
behavior that is present in both cases of piles in soil and 
rock.

From the first analysis performed in Sect. 3, it was clear 
that the efficiency lower than one is related to a reduced or 
null shaft strength. It is not that clear why that happens and 
why a minimum appears beyond the fact that it is due to the 
apparition of different failure modes than expected.

This behavior seems to be related to the embedment 
volume of rock placed between piles and how it connects 
to the piles. Several configurations were studied to clarify 
this point, changing the embedment rock strength and, 
as an extreme case, completely removing the rock of the 
embedment.

The analysis was performed for a particular case of rock 
(case 1 from Table 1) with characteristics GSI = 5, m0 = 12, 
UCS = 50  MPa. The embedment rock resistance varies 
from the full Hoek and Brown resistance. We reduced the 
embedment rock resistance down to a fraction of 50% and 
25%, which is equivalent to rock obtained by applying that 
fraction to each friction angle and cohesive strength of the 

Fig. 14   Efficiency of the infinite row of piles for four different cases 
of study and null shaft resistance

Fig. 15   Failure mechanisms for different values of s/B, case of 
the infinite row of piles. Double symmetry conditions are used at 
the edges to model the infinite row of piles. Case 1 from Table  1, 

with GSI = 5, m0 = 12, UCS = 50  MPa, HR = 2B, HS = 10  m, and 
qS = 180 kPa. Null shaft resistance
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linearization of the Hoek and Brown criterion as explained 
in Sect. 3.3.2. Finally we reached a null value by suppressing 
the embedment, but including its weight as an external load.

Each of the obtained bearing capacities were normalized 
by the corresponding isolated pile capacity (Ph_isolated) for the 
same case to obtain efficiency. Both the bearing capacity and 
the efficiency results are presented in Fig. 17.

As observed in Fig. 17a, all cases have the same bear-
ing capacity Ph from s/B = 1 to approximately 8. This means 
that the rock embedment has a null influence on the Ph over 
this range of s/B and that all the modes of failure should be 
similar, not breaking through the embedment. This behavior 
is demonstrated in Fig. 18, where the failure wedges for the 
full case and the suppressed embedment case are compared 
for three different separations s/B equal to 3, 5, and 7.5. It is 
clear that these wedges are the same (as well as for the other 
two cases not shown in the figure), and consist of a failure 
wedge under the embedment base and a vertical displacement 
of the embedment as a rigid block along the frictionless con-
tact with the piles. From s/B = 8 the failure starts to affect the 
embedment rock, which causes the Ph results to diverge from 
one another. The different wedges depending on the embed-
ment resistance are shown in Fig. 19 for s/B = 15 and cases 
of fractions 50% and 25% of Hoek and Brown, obtaining a 
combined wedge that goes into the embedment for the first 
case, and separated, individual wedges for the second one.

In summary, though the bearing capacity is the same for 
a wide range of s/B, whatever the embedment properties, 

Fig. 17b shows that the efficiency is different for all cases. 
This is due to the fact that the bearing capacity of the iso-
lated pile is affected by the strength of the embedment 
rock because its failure wedge needs to develop through it, 
while the failure wedge of the group of piles does not, at 
least until s/B = 8. The Ph_isolated is higher the stronger the 
strength of the embedment rock, thus the efficiency will 
be the lowest for the strongest case (GSI = 5, m0 = 12, and 
UCS = 50 MPa in Fig. 15b).

4.2.3 � Efficiency Minimum

Regarding the minimum value obtained around s/B = 5 in 
Fig. 17b, it can be explained by comparing the different fail-
ure wedges developed by the suppressed-embedment case 
and the full rock strength (or any of the reduced-strength 
cases). The comparison is shown in Fig. 18, presenting 
3 cases that consider the interaction before the minimum 
(s/B = 3), around the minimum (s/B = 5), and after the mini-
mum (s/B = 7.5).

Fig. 16   Superposition of the failure wedge for the row of piles (grey 
lines) with s/B = 15 and the individual failure wedges of the isolated 
piles (white lines). Symmetry conditions are used at the edges to 
model the infinite row of piles. Same case as in Fig. 14 (Color figure 
online)

Table 1   Infinite row of piles 
case of study

GSI m
0

UCS

Case 1 5 12 50
Case 2 30 12 50
Case 3 30 32 50
Case 4 30 12 85

Fig. 17   Analysis of the influence of the embedment strength on 
efficiency. Cases with Hoek and Brown criterion (full case), with a 
fraction of 50% and 25% of the Hoek and Brown criterion, and with 
suppressed embedment. a Bearing capacity without normalization; b 
Efficiency normalized by the corresponding isolated pile results
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As can be observed, the failure wedges for s/B = 3 interact 
in both cases, superposing themselves, with some complex 
configurations. However, the failure wedges for s/B = 5 have 
a configuration coinciding with the simple superposition of 
two symmetrical wedges of an isolated pile, with the upper 
passive triangle shared by both wedges. This is the sim-
plest interaction configuration then the minimum efficiency 
is reached for this separation. For the embedded case, the 

rock embedment block moves upward as a rigid solid for 
all three s/B ratios. In short, if the failure wedges intersect 
in the transition zones, correspond to case a), and if they do 
so in the passive zones, as in case c). Finally, the minimum 
occurs when they intersect just at the point of change from 
the transition to the passive zone, coinciding with case b).

Increasing the separation up to s/B = 7.5, the wedge super-
position in the suppressed-embedment case is reduced to a 

Fig. 19   Failure mode comparison for reduced resistance of the embedment rock. Cases of fractions a 50% of Hoek and Brown, and b 25% of 
Hoek and Brown. Separation s/B = 15. Case 1 from Table 1, with GSI = 5, m0 = 12, UCS = 50 MPa, HR = 2B, HS = 10 m, and qS = 180 kPa

Fig. 18   Failure mode com-
parison between the suppressed-
embedment case (upper 
figure) and the embedded 
case (lower figure) for differ-
ent separations. Case 1 from 
Table 1, with GSI = 5, m0 = 12, 
UCS = 50 MPa, HR = 2B, 
HS = 10 m, and qS = 180 kPa
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smaller triangle, creating a non-uniform displacement along 
the rock surface (shown in Fig. 18) without significantly 
changing the bearing capacity load. The embedded case 
cannot develop the same pattern of failure since it would 
need to break the embedment rock, involving more energy. 
On the contrary, the wedge develops downward with lower 
energy requirements, maintaining a unique passive triangle 
that pushes the embedment rock upwards as a block.

This behavior continues while the energy involved is 
lower than that of the isolated pile failure and, after s/B = 15, 
changes to independent wedges (for that particular case), as 
shown in Fig. 15.

Interestingly, the minimum bearing capacity among all 
cases (Fig. 17a) corresponds to the suppressed-embedment 
case, having a constant value from s/B = 5 onwards. This 
value also corresponds to the bearing capacity of the isolated 
pile without embedment (s/B > 15).

This behavior gives a relevant procedure for estimating 
the absolute minimum value of the bearing capacity of a 
group of piles. It can be easily calculated from the isolated 
shallow foundation corresponding to the group of piles with 
suppressed-embedment with a high separation between them 
(high s/B ratio).

4.2.4 � Influence of Shaft Resistance

The previous analysis of the infinite row of piles considered 
a null shaft resistance, as usual in rocks when analyzing the 
tip-of-the-pile bearing capacity in a group of piles, since the 
tip resistance is usually much higher than the shaft resist-
ance. In this section, different shaft resistances are intro-
duced to evaluate their influence on the bearing capacity at 
the tip of the group piles.

The analysis in this section was performed for a particular 
case of rock (β = 10 MPa; ζ = 0.01) to present the problem. 
Later, the analysis was extended to a wide range of cases.

Neglecting the shaft resistance, as usually done in prac-
tice, will lead to the results represented by the “friction-
less” case in Fig. 20, where the efficiency is lower than 1 
(as explained in the previous section). Increasing the shaft 
resistance will obtain progressively higher efficiencies, up 
to the maximum represented by the full Hoek and Brown 
failure criterion. The intermediate results considering a shaft 
resistance of 5%, 15%, and 25% of the Hoek and Brown 
criterion are also considered to show the trend. Therefore, 
efficiencies less than one can be obtained by variations of 
the embedment and the shaft resistance.

Figure 19 clearly shows the importance of considering 
the shaft resistance even when calculating the bearing 
capacity of the pile tip in a group. In some situations, 
this shaft resistance may drop to small values and could 
cause a significant reduction in the pile group efficiency. 
Some cases correspond to circumstances that can generate 

instabilities during the excavation of piles, such as the 
appearance of natural cavities, areas of high surface 
decompression, or water tables in highly fractured rocks. 
Some other reasons may be related to the execution sys-
tem reducing the shaft resistance, for example, when a 
casing tube is necessary.

Figure 21 shows the failure wedges of three s/B = 5 rep-
resentative cases from Fig. 20, corresponding to friction-
less shaft resistance, for 5% H&B and 15% H&B cases. The 
growing complexity in the failures associated with a higher 
shaft resistance requires more energy and produces higher 
efficiency.

5 � General Results and Discussion

5.1 � General Case Calculations with a Finite 
and Infinite Number of Piles

A complete set of calculations was addressed to explore the 
influence of the main parameters studied in the previous sec-
tion on the bearing capacity of the group of piles.

The inputs of the problem will be the main geometric 
and geotechnical parameters introduced in Sect. 3.1 that are 
considered variables and are enumerated in Table 2, includ-
ing their range of variation.

To better characterize the problem and simplify the analy-
sis, the rock mass toughness coefficient (ζ) and the strength 
modulus of the rock (β) were used (described in Sect. 3.2) 
instead of using the rock type (m0), uniaxial compressive 
strength (UCS), and geological strength index (GSI).

Fig. 20   Shaft resistance influence for different separations, infinite 
row of piles. Rock with β = 10  MPa; ζ = 0.01. HR = 2B, HS = 10  m, 
and qS = 180 kPa
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The results are presented in the following sections, 
grouped by different criteria to help the analysis.

5.2 � Influence of Rock Parameters

Figure 22 shows the results for the different combinations of 
rock mass toughness coefficient, ζ, and strength modulus of 
the rock, β, grouped in independent figures for clarity. Sub-
figures (a), (b), and (c) correspond to a shaft resistance using 
a 5% of the Hoek and Brown criterion (5% H&B) and (d), 
(e), and (f) of the 15% H&B. Other variables are HR = 2B, 
HS = 10 m, and qS = 180 kPa.

For the 5%H&B particular case (Fig. 22a, b, and c), the 
most significant issue is the efficiency reduction obtained 
for separations larger than s/B = 3. The reason was already 
explained in Sect. 4.2.3 and is related to a lower energy 
configuration of the failure wedge that rather elevates the 
embedment block than fractures it (failure wedges shown in 
Fig. 18). Increasing β factor, mainly related to the uniaxial 
compressive stress of the rock, produces an extension of this 
zone of lower efficiency since the rock strength is higher and 
fracturing the embedment block gets easier the longer the 
separation between piles. That is especially evident between 
β = 1 MPa (Fig. 22a) and the other two cases, β = 10 MPa 
and β = 25, in Fig. 22b and c, respectively.

The rock mass toughness coefficient (ζ), related to the rel-
ative quality and strength of the rock mass, highly influences 
the efficiency. It is considerably reduced for higher values 
such as ζ = 0.1 (corresponding to less disturbed rock, dif-
ficult to break), and improving showing very similar results 
for ζ = 0.01 and ζ = 0.001 (disturbed rock, easier to crack by 
the failure wedge).

The efficiency reduction below one is clearly reduced 
when the shaft resistance increases, as can be seen in 
Fig. 22d, e and f, corresponding to a 15% H&B value. This 
point will be shown in detail in the next section.

5.3 � Influence of Shaft Resistance

Figure 23 shows the efficiency for different pile separations 
and shaft resistance values for four particular cases of rock 
parameters (cases β = 1 MPa and β = 10 MPa combined 
with ζ = 0.001 and ζ = 0.1), identifying the different influ-
ences and trends. Other variables in this cases are HR = 2B, 
HS = 10 m, and qS = 180 kPa.

The first conclusion that can be derived from Fig. 23 is 
the strong influence of the shaft resistance on the overall 
bearing capacity of the pile group and the need to be prop-
erly addressed to obtain a reliable prediction of the pile 
group efficiency.

Fig. 21   Failure mode com-
parison between different 
cases of shaft resistance. a 
Frictionless shaft, b 5% H&B, 
and c 15%H&B. Rock with 
β = 10 MPa; ζ = 0.01. s/B = 5, 
HR = 2B, HS = 10 m, and 
qS = 180 kPa

Table 2   List of parameters 
considered for the set of 
calculations

Parameters Adopted values

Rock mass toughness coefficient, ζ 0.1/0.01/0.001
Strength modulus of the rock, β (MPa) 1/10/25
Pile length embedded in the rock stratum, HR B/2.5B/5B (B pile diameter)
Non-resistant soil layer height, HS (m) 6/10/20
Pile axis separation, s (m) 1.25/1.5/2/3/4/5/7/10/15/20
Number of piles in the group 2/3/5/infinite
Specific weight of rock and soil, γR/γS (kN/m3) Rock 15/soil 18
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Fig. 22   Efficiency of an infinite row of piles with respect to pile separation s/B for different normalized parameters β and ζ. a, b, and c Shaft 
resistance 5% H&B; d, e and f Shaft resistance 15% H&B. HR = 2B, HS = 10 m, and qS = 180 kPa

When the shaft resistance is small (frictionless and 
5% H&B cases), it produces efficiencies lower than unity 
because they allow simpler and less energy-expensive 

failure wedges, as explained in Sect. 4.2.4 and shown in 
Fig. 21. For pile separation higher than a minimum s/B 
(variable for each case), the efficiency tends to 1 when 
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s/B increases, as the group acts more as a set of indi-
vidual piles: see the evolution of failure wedges with s/B 
in Fig. 15.

For higher shaft resistances, the efficiency increases, 
tending to values nearer and over one. Comparing 
Fig. 23a and b, where only the parameter β changes from 
1 to 10 MPa, its effect smoothes the curves, increasing 
the s/B separation at the minimum value and elevating 
it. That is coherent with the fact that a higher β implies 
higher embedment block strength. This effect is more pro-
nounced for the ζ = 0.001 case (very disturbed rock) than 
for that with ζ = 0.1 (little disturbed rock).

5.4 � Influence of the Rock Embedment

The influence of the rock embedment is presented in Fig. 24 
for the reference case, the infinite row of piles, and different 

cases of pile embedment HR and normalized parameters β 
and ζ. The adopted shaft resistance is 5%H&B, soil height 
HS = 10 m, and surface load qS = 180 kPa.

The figure mainly shows that the intermediate embedment 
HR = 2.5B produces a higher efficiency reduction than the 
other two cases, by not having the HR = 5B case any reduc-
tion below unity.

The different failure wedges are compared in Fig. 25, 
where the main difference observed in the failure mecha-
nism, beyond the evident embedment height, is related to 
the complexity and discontinuity density of the failure shape 
that increases with HR. The different efficiencies are related 
to the fact that, in a row of piles, the energy to break the 
embedment increases with HR at a faster rate than the bear-
ing capacity of the isolated pile (Fig. 25d).

For the three cases presented in Fig. 25, the efficiency 
ratio will be minimum for the intermediate case (HR = 2.5B).

Fig. 23   Efficiency of an infinite row of piles with respect to pile separation s/B for different cases of shaft resistance. Normalized parameters 
β = 10 MPa and ζ = 0.01. HR = 2B, HS = 10 m, and qS = 180 kPa
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5.5 � Influence of the Soil Height

The influence of the overlaying soil height  HS is pre-
sented in Fig. 26 for the reference case (infinite row of 
piles), shaft resistance equal to 5%H&B, and embedment 
height HR = 2.5B m.

As could be expected, the soil height influence is rela-
tively small. A higher soil height implies an increased over-
burden load on the rock surface, producing higher confine-
ment. The pile row and the isolated pile bearing capacity 
increase in parallel, obtaining a lower efficiency with lower 
soil height.

5.6 � Influence of the Number of Piles

Real-life foundations always have a limited number of piles. 
The analysis of the infinite row of piles will be affected by 
the actual number of piles depending on how significant is 
the effect of the border piles on the intermediate pile behav-
ior. Nevertheless, the general trends and relations previously 
identified for the infinite row of piles will remain valid.

Three cases were studied, including 2, 3, and 5 piles. 
The same variables in the infinite row of piles were 
analyzed to address how their behavior changes. A 
limited number of results are presented here.
Figure 27 shows results comparing the efficiency fac-
tor for the pile row case and the 2, 3, and 5-pile cases. 
Different s/B separation ratios were considered for 

Fig. 24   Efficiency of an infinite row of piles with respect to pile separation s/B for different cases of pile embedment HR and normalized param-
eters β and ζ. Shaft resistance 5%H&B, HS = 10 m, and qS = 180 kPa
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some selected cases with normalized parameters β 
and ζ, and assuming a shaft resistance of 5%H&B, HR 
= 2.5B, and HS = 10 m (surface load qS = 180 kPa).
When the number of piles in the group increases, the 
efficiency tends towards the infinite row case. As can 
be observed, the minimum efficiency occurs around 
values s/B = 5 for this particular case, coinciding with 
separations that are usually considered to avoid pile 
interference.
For small values of s/B, a different behavior appears, 
showing a positive inclination in the curve that is dif-
ferent from that of the infinite row of piles. For this 
latter case, a combination of the symmetry condition 
and little separations lead to over confinement on the 
model. But without the possibility of developing a 
failure wedge able to move, this produces an asymp-

totic response when s/B tends to one. However, when 
a small number of piles is considered and are situated 
close together (small s/B ratio), the finite group can 
develop a global failure aggregating the individual 
wedges as a unique and broader pile tip, as presented 
in Fig. 28 a: case s/B=1.5 and 3-pile group, β = 10 
MPa and ζ = 0.01, shaft resistance 5%H&B, HS=10 
m. For those later cases, an efficiency higher than one 
should be expected.

There is a transition zone where the failure mechanism 
shows characteristics that belong to both previous simple 
cases: the case with a unique shared wedge between extreme 
pairs of piles and the case with separate pile wedges between 
each pair, as seen in Fig. 28b (case s/B = 2). Figure 28c 

Fig. 25   a, b, and c Failure mode comparison between different 
cases of pile embedment HR. Normalized parameters β = 1 MPa and 
ζ = 0.001. Shaft resistance 5%H&B, s/B = 5, HS = 10, d Comparison 

between the bearing capacity of the pile row and the isolated pile for 
the previous cases
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shows the individual failure development at each pile (not 
combined with others) with interactions.

5.7 � Simplified Equation for Group Bearing Capacity 
Considering Pile Interaction

As explained in Sect. 4.2.1, the behavior of a finite group 
of piles can be idealized by adding the intermediate piles 
(approximated by an infinite row of piles) and the border 
piles (partially evaluated from an isolated pile). This simpli-
fied model helps both to understand the complex behavior 
of the group and to have a simple tool to predict its bearing 
capacity.

Figure 29 shows some failure wedges for a particular 
case with 2, 3, and 5 piles. Although the particular failure 
depends on the number of piles, similar behavior can be 

observed among intermediate piles on the one hand, and bor-
der piles on the other. The model can reproduce the behav-
ior of a pile group only when it behaves as separate piles 
interacting (as in Fig. 29), not when it acts as a unique and 
broader pile due to little separations (as in Fig. 28a and b).

Following this point, the proposed simplified model is 
represented in Fig. 30 for a 3-pile case. Corner piles are 
assumed to have half of the isolated-pile bearing capacity 
(Ph,isolated) and half of the pile row. Intermediate piles have 
approximately the pile-bearing capacity of an infinite row 
of piles (Ph,row).

Considering the above, the following formulation can be 
proposed to calculate the joint bearing pressure (Ph,group) for 
a group of N piles:

(13)Ph_group = Ph,isolated + (N − 1)Ph,row,

Fig. 26   Efficiency of an infinite row of piles with respect to pile separation s/B for different cases of overlying soil height HS and normalized 
parameters β and ζ. Shaft resistance 5%H&B, HR = 2.5B 
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where Ph_numerical represents the numerical method result for 
the particular group of piles.

The resulting checking test for a particular case, that is 
normalized parameters β = 10 MPa and ζ = 0.01. Shaft resist-
ance 5%H&B, HS = 10 m, is presented in Table 3.

6 � Preliminary Analysis of a 3D Case

As explained in Sect. 3.1, the pile interference problem 
in this research is studied using a 2D model because the 
complexity of the problem needs a previously simplified 
approach. This 2D model is an approximation to an actual 
pile case even though it can properly represent the influence 
of the different parameters and the overall system behavior. 

(14)Error =
(

Ph_group−Ph_numerical

)

∕Ph_umerical,
To prove this claim, a 3D model of a set of interacting piles 
is defined using Limit Analysis Finite Element software 
(Optum CE 2018).

Due to the software limitations, the Hoek and Brown 
failure criterion is approximated only by two lines, but this 
limitation is considered acceptable for this preliminary test.

An infinite rectangular array of piles is defined (similar 
to the infinite row of piles studied in 2D), and it is modeled 
using double symmetry, as schematically defined in Fig. 31. 
Normal displacements are constrained along the vertical 
planes of the model, and null displacements are considered 
at the base. The equivalent soil load is applied to the upper 
surface of the rock.

The finite element mesh used, and shear dissipation 
results are also presented in Fig. 32, for a case with normal-
ized parameters β = 1 MPa and ζ = 0.001, s/B = 4, HR = B, 
HS = 10 m, and qS = 180 kPa. The efficiency values are 
obtained for different s/B ratios and shaft resistances and are 

Fig. 27   Efficiency of cases of 2, 3, 5 piles, and an infinite row of piles with respect to pile separation s/B and different normalized parameters β 
and ζ. Shaft resistance of 5%H&B, HR = 2.5B, and HS = 10 m
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shown in Fig. 33. As expected, a similar behavior to that of 
the 2D case is obtained. The figure shows a sensible reduc-
tion of efficiency when the shaft resistance tends to zero, and 

a contraction towards the origin of the s/B axis if compared 
to the 2D case, corresponding to lower s/B values for the 
minimum efficiency. The critical influence of shaft resist-
ance on the efficiency is patent, shifting from values bigger 
than one to others on the order of 0.6 for this particular case.

The previous results show that the main findings in this 
research are valid for the 3D case except for the particu-
lar efficiency values that, as expected, change due to the 
three-dimensional effect. Further research is needed to accu-
rately define the actual values of the efficiency for the 3D 
cases, once the interaction mechanisms are highlighted and 
explained by present research.

7 � Conclusions

The present research gives some insight into the phenom-
enon of the interaction within a pile group socketed in rock 
that affects the end-bearing capacity of the group. The 
research details the failure mechanisms developed in the 
rock mass that depend on the rock properties, the separation 
between piles, the embedment in the rock, and the height 
of overlaying soil above the rock. Besides, the pile shaft 
resistance, contrary to the usual assumption of neglecting 
it, proves to be critical to the final bearing capacity of the 
tip of the pile.

A 2D model using the novel discontinuity layout opti-
mization method (DLO), based on limit state analysis and 
optimization, allowed us to study in detail the genera-
tion of the pile failure wedges depending on the different 
parameters, which is an invaluable aid to understanding 

Fig. 28   Failure mechanisms for a 3-pile group (not at the same scale), 
separations a s/B = 1,5, b s/B = 2, and c s/B = 3. Normalized param-
eters β = 10 MPa and ζ = 0.01. Shaft resistance 5%H&B, HS = 10 m. 
Symmetry condition is used at the left edge

Fig. 29   Failure mechanisms for a different number of piles on the group. s/B = 3 case. Normalized parameters β = 10 MPa and ζ = 0.01. Shaft 
resistance 5%H&B, HS = 10 m. Symmetry condition is used at the left edge
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and explaining the behavior of the foundation at the 
failure, first exposed in this paper and one of its main 
achievements.

The main conclusions and achievements of this research 
are listed below:

1.In our opinion, this research addresses a problem that 
was not studied previously and needed to be considered, 
since it appears in most pile foundations in rock, such as 
the problem of the interaction between close piles.
2.The main factors influencing the bearing capacity 
of the group of piles were analyzed. As explained and 

Fig. 30   Assumed simplified 
failure mechanisms for a pile 
group

Table 3   Test results of the simplified model for the bearing capacity of pile groups (normalized parameters β = 10  MPa and ζ = 0.01. Shaft 
resistance 5%H&B, HS = 10 m

Numerical model results

β–ζ 10–0.01
s/B

Basic case 2 4 10
Isolated 78.76 78.76 78.76
Infinite row 126.15 79.29 71.10

s/B
N. of piles 2 4 10
2 189.29 160.79 151.68
3 319.90 246.42 222.80
5 591.32 409.26 364.31

Simplified model results

s/B
N. of piles 2 4 10
2 204.9 158.1 149.9
3 331.1 237.3 221.0
5 583.4 395.9 363.2

Error

s/B
N. of piles 2 4 10
2 8% -2% -1%
3 3% -4% -1%
5 -1% -3% 0%
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proved in the present paper, an essential contributing 
factor was the shaft resistance. This factor has been sys-
tematically neglected in rock mechanics, assuming to be 
on the safe side and considered to be very small. How-
ever, our research proves that the non-consideration of 
the shaft resistance changes the interaction influence 

and the failure mechanism and may not be on the safe 
side. This is pointed out for the first time here.
3.The different failure mechanisms are presented and 
explained regarding the pile separation and the pile 
embedment in the rock. The identification of the differ-
ent mechanisms was related to the mobilized part of the 

Fig. 31   Infinite array of piles. a 
3D full representation; b Dou-
ble symmetry representation

Fig. 32   3D model of an infinite array of piles. a 3D finite element mesh (detail); b Shear dissipation results (detail). Normalized parameters 
β = 1 MPa and ζ = 0.001. s/B = 4, HR = B, HS = 10 m, and qS = 180 kPa
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terrain, considering both sides of the corner piles and 
the intermediate part between interior piles.
4.The minimum and maximum efficiencies are char-
acterized by their respective pile separation values. In 
particular, efficiencies lower than unity are identified as 
well as the procedure to obtain the value of s/B leading 
to the minimum efficiency of the group effect which is 
important to analyze the safety of the foundation.
5.An easy-to-use formulation to calculate the bear-
ing capacity of the group of piles is presented here: 
Sect. 5.7 Simplified equation for group bearing capacity 
considering pile interaction. This formulation does not 
require a numerical model and the associated conver-
gence and stability analysis.
6. A preliminary 3D case is studied using a Limit Anal-
ysis Finite Element 3D model, showing a coincidence 
in the overall behavior with that of the 2D model stud-
ied in this research, backing their validity as a concep-
tual explanation of the pile group interaction. Further 
research is needed to establish specific group efficiency 
values.
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