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Abstract
The use of three artificial neural network (ANN)-based models for the prediction of unconfined compressive strength (UCS) 
of granite using three non-destructive test indicators, namely pulse velocity, Schmidt hammer rebound number, and effec-
tive porosity, has been investigated in this study. For this purpose, a sum of 274 datasets was compiled and used to train and 
validate three ANN models including ANN constructed using Levenberg–Marquardt algorithm (ANN-LM), a combination 
of ANN and particle swarm optimization (ANN-PSO), and a combination of ANN and imperialist competitive algorithm 
(ANN-ICA). The constructed ANN-LM model was proven to be the most accurate based on experimental findings. In the 
validation phase, the ANN-LM model has achieved the best predictive performance with R = 0.9607 and RMSE = 14.8272. 
Experimental results show that the developed ANN-LM outperforms a number of existing models available in the literature. 
Furthermore, a Graphical User Interface (GUI) has been developed which can be readily used to estimate the UCS of granite 
through the ANN-LM model. The developed GUI is made available as a supplementary material.

Highlights

• Estimation of unconfined compressive strength of granite 
using artificial neural networks.

• Representation of available proposals for correlating 
granite compressive strength.

• A comparative assessment of results using hybrid artifi-
cial neural network-based models.

• Pulse velocity, Schmidt hammer rebound number and 
effective porosity were considered.

• A closed-form prediction equation was derived and 
implemented in a Graphical User Interface for practical 
applications.
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1 Introduction

The unconfined compressive strength (UCS) of rocks is 
undoubtedly a key input parameter of numerous consti-
tutive models predicting the stress of rocks (Hoek and 
Brown 1980, 1997, 2019; Hoek 1983; Hoek et al. 2002). 
Determining the UCS of a rock sample in the laboratory 
requires specialist equipment and intact rock samples 
free of fissures and veins which are generally not easy to 
obtain. A viable alternative is to associate the rock’s UCS 
with various physical and mechanical test indexes such as 
the pulse velocity (Vp), Schmidt hammer rebound number 
(Rn), effective porosity (ne), total porosity (nt), dry den-
sity (γd), point load index  (Is50), shear wave velocity (Vs), 
Brazilian tensile strength (BTS), slake durability index 
(SDI), and using simple and multiple regression analy-
ses (Sachpazis 1990; Tuğrul and Zarif 1999; Katz et al. 
2000; Kahraman 2001; Yılmaz and Sendır 2002; Yaşar 
and Erdoğan 2004; Dinçer et al. 2004; Fener et al. 2005; 
Aydin and Basu 2005; Sousa et al. 2005; Shalabi et al. 
2007; Çobanoğlu and Çelik 2008; Vasconcelos et al. 2008; 
Sharma and Singh 2008; Kılıç and Teymen 2008; Diaman-
tis et al. 2009; Yilmaz and Yuksek 2009; Yagiz, 2009; 
Moradian and Behnia 2009; Khandelwal and Singh 2009; 
Altindag 2012; Kurtulus et al. 2012; Bruno et al. 2013; 
Mishra and Basu 2013; Khandelwal 2013; Tandon and 
Gupta 2015; Karaman and Kesimal 2015; Ng et al. 2015; 
Armaghani et al. 2016a, b; Azimian 2017; Heidari et al. 
2018; Çelik and Çobanoğlu 2019; Barham et al. 2020; 
Ebdali et al. 2020; Teymen and Mengüç 2020; Li et al. 
2020). While a significant number of empirical relation-
ships in predicting the UCS of rocks have been proposed in 
the literature, their predictive accuracy is generally signifi-
cantly lower than obtained using artificial neural networks 
(ANNs) (Yılmaz and Yuksek 2008, 2009; Dehghan et al. 
2010; Yagiz et al. 2012; Ceryan et al. 2013; Minaeian and 
Ahangari 2013; Yesiloglu-Gultekin et al. 2013; Yurdakul 
and Akdas 2013; Momeni et al. 2015; Armaghani et al. 
2016a; Armaghani, et al. 2016b; Madhubabu et al. 2016; 
Ferentinou and Fakir 2017; Barham et al. 2020; Pandey 
et al. 2020; Ceryan and Samui 2020; Ebdali et al. 2020; 
Teymen and Menguc 2020; Moussas and Diamantis 2021; 
Armaghani et al. 2021). ANNs are advanced computa-
tional models, which can simulate highly non-linear rela-
tionships between various input and output parameters, 
but their predictive ability is limited to the range of input 
parameter values to which they have been trained; that is 
neural network (NN) models are unable to provide any 
predictions beyond the data input range to which they have 
been trained and developed. Within the input parameter 

value range, the frequency distribution of the input and 
output parameter values significantly affects the predic-
tive accuracy of the NN model. A uniform input/output 
parameter value distribution, with the majority of data 
input/output a value spanned over a limited value range 
does not constitute a statistically suitable database to train 
and develop ANN models.

This research aimed at training and developing 
three ANN models for the prediction of the UCS of granite 
by compiling a high-quality data and site-independent data-
base spanning the weak to strong granite range by consoli-
dating a significant number of non-destructive tests results 
reported in the literature. As part of an ongoing research, 
this study expands the research recently reported by Arma-
ghani et al. (2021), by introducing the Rn as a third non-
destructive test index and by extending the range of the input 
parameter values; and therefore, expanding the predictive 
capability of the NN model. A data and site-independent 
database comprising 274 datasets correlating the Rn, Vp, and 
ne with the UCS of granite was compiled and used to train 
and develop various ANN models using Levenberg–Mar-
quardt (LM) algorithm and two widely used optimization 
algorithms (OAs) namely particle swarm optimization 
(PSO) and imperialist competitive algorithm (ICA).

2  Research Significance

Despite the fact that a variety of semi-empirical/empirical 
expressions for predicting the UCS of rocks using various 
non-destructive test parameters have been published in the 
literature, the majority of the offered expressions do not pro-
vide a high degree of accuracy or any generalized solutions. 
This is mostly owing to an insufficient description of rock 
characteristics, the presence of complex correlation among 
the input parameters, very less experimental results, and 
inconsequential methods of calculations. Therefore, a more 
sophisticated method that is capable of capturing the com-
plex behavior of rock UCS based on a large experimental 
result is required.

With their expertise in non-linear modelling, machine 
learning (ML) algorithms can capture the complex behav-
ior of influencing parameters and provide feasible tools 
for simulating many complex problems. In the past, sev-
eral ML algorithms, namely ANN, adaptive neuro-fuzzy 
inference system (ANFIS), fuzzy inference system (FIS); 
extreme gradient boosting machine (XGBoost), multivari-
ate adaptive regression splines (MARS), extreme learning 
machine (ELM), ensemble learning techniques, support 
vector machine (SVM), and so on, have been employed to 



489Closed‑Form Equation for Estimating Unconfined Compressive Strength of Granite from Three…

1 3

estimate the desired output including rock strength, land-
slide displacement, slope stability analysis, prediction of 
soil–water characteristic curve, inverse analysis of soil and 
wall properties in braced excavation, concrete compressive 
strength and so on (Armaghani et al. 2016a, b; Asterisand 
and Kolovos 2017; Zhang et al. 2017, 2018, 2020, 2021, 
2022a, b, c; Zhang and Phoon 2022; Zhang and Liu 2022; 
Wang et al. 2019).

A detailed review of literature demonstrates the wide-
spread applicability of ANNs in a variety of engineering 
disciplines, including the prediction of rock UCS. ANNs 
can simulate highly non-linear relationships between various 
inputs and output parameters, and provide a quick solution. 
However, their predictive ability is limited to the range of 
input parameter values to which they have been trained. In 
this study, a data and site-independent database comprising 
274 datasets correlating the Rn, Vp, and the ne with the UCS 
of granite was compiled and used to train and develop vari-
ous ANN models.

3  Literature Review on the Available 
Proposals

This section presents and discusses a comprehensive review 
of prior researches using semi-empirical and soft computing 
methodologies in predicting the UCS of granite. However, 
prior to the extended assessment of previous studies, a brief 
overview of experimental works is presented in the follow-
ing sub-sections.

3.1  Experimental Works

The Schmidt hammer rebound number, i.e., Rn, is a hard-
ness index of rock, which is obtained by pressing a piston 
perpendicular to the specimen surface and measuring the 
spring rebound. Depending on the applied impact energy, 
two Schmidt hammer types are available, the N-type (2.207 
Nm impact energy) and L-type hammer (0.735 impact 
energy). The N-type Schmidt hammer was originally used 
to determine the rebound number of concrete cubes and was 
then also introduced by the ASTM standards for rock hard-
ness testing, although it has been debated that the higher 
impact energy may actively fissures and cracks. Note that, 
the  Rn depends on the degree of weathering, water content, 
sample size, hammer axis orientation and on the data reduc-
tion techniques (Poole and Farmer 1980; Ballantyne et al. 
1990; Katz et al. 2000; Sumner and Nel 2002; Basu and 
Aydin 2004; Demirdag et al. 2009; Niedzielski et al. 2009; 
Çelik and Çobanoğlu 2019).

The compressional wave velocity, i.e., Vp, is a mechani-
cal index, which involves the propagation of compressional 

waves below the yield strain of rock. The Vp is determined 
by calculating the required travel time of the waves between 
the transmitter and receiver. It depends on the mineralogy, 
texture, fabric, weathering grade, water content and density 
of rock (Yasar and Erdogan 2004; Kilic and Teymen 2008; 
Dheghan et al. 2010; Mishra and Basu 2013; Tandon and 
Gupta 2015; Momeni et al. 2015; Ng et al. 2015; Heidari 
et al. 2018).

The effective porosity, i.e., ne, is a physical rock index 
which shows the amount of interconnected void space. The 
voids are quantified in the form of inter-granular space, 
micro-fractures at grain boundaries, joints and faults (Frank-
lin and Dusseault 1991). The rock’s porosity depends on 
various parameters such as the particle size, particle shape 
and weathering grade, which may change the pore size dis-
tribution, pore geometry, and even result in new pore forma-
tion (Tuǧrul 2004).

3.2  Semi‑empirical Proposals

The significant number of simple and multiple regression 
analysis relationships correlating the UCS of granite with 
the three non-destructive test indexes (i.e., Rn, Vp, and ne) 
used in earlier researches are summarized in Table 1. The 
UCS of granite is generally proposed to reduce exponentially 
with increasing effective porosity, whereas linear and expo-
nential growth patterns are suggested for the relationship 
between UCS and Rn, Vp. Most of the proposed relationships 
predict the rock UCS using only one input parameter and 
only a limited number of relationships have been proposed 
using two or three of the non-destructive test indices as input 
parameters for the prediction of the UCS of granite. The pro-
posed relationships predict the UCS of weak to very strong 
granite (ISRM 2007).

3.3  Soft Computing Proposals

During the last decades, a significant number of soft com-
puting models, namely ANN, ANFIS, back-propagation neu-
ral network (BPNN), FIS, radian basic function NN (RBFN), 
gene expression programming (GEP), extreme gradient 
boosting machine with firefly algorithm (XGBoost-FA), 
and SVM, have been reported for the prediction of UCS 
of rocks (Meulenkamp and Grima 1999; Gokceoglu and 
Zorlu 2004; Yılmaz and Yuksek 2008; Dehghan et al. 2010; 
Monjezi et al. 2012; Yagiz et al. 2012; Mishra and Basu 
2013; Yesiloglu-Gultekin et al. 2013; Momeni et al. 2015; 
Mohamad et al. 2015; Torabi-Kaveh et al. 2015; Teymen and 
Mengüç 2020; Barham et al. 2020; Ceryan and Samui 2020; 
Mahmoodzadeh et al. 2021; Yesiloglu-Gultekin and Gok-
ceoglu 2022; Asteris et al. 2021). The proposed models pre-
dict the UCS of various rock types and formation methods 
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spanning the very soft to hard rock range. Interestingly, few 
models have been proposed which specifically predict the 
UCS of granite (Yesiloglu-Gultekin et al. 2013; Armaghani 
et al. 2016a, b, 2021; Cao et al. 2021; Jing et al. 2021; Ast-
eris et al. 2021; Mahmoodzadeh et al. 2021). Table 2 shows 
the different ML algorithms, input parameters, and database 
size and prediction accuracy of the UCS of granite reported 
in the literature. While the type and number of input parame-
ters used generally varies, the Rn and Vp are included in most 
of the proposed models. In most of the reported models, the 
database includes generally limited data.

4  Experimental Database

The experimental database used in this research to train 
and develop soft computing models for the prediction 
of the UCS of granite was compiled from 274 datasets 

reported in the literature (Tuğrul and Zarif 1999; Mishra 
and Basu 2013; Ng et al. 2015; Koopialipoor et al., 2022). 
The database comprises three input parameters obtained 
from non-destructive tests, including the Rn, Vp and ne and 
a single output parameter, the UCS of soft to hard granite 
(UCS = 20.30–211.9 MPa). The study reference and the 
descriptive details of the collected datasets are presented 
in Tables 3 and 4, respectively.

The consolidated database only includes experimental 
results reported in compliance with international testing 
standards, which conform to the principles of statistical 
analysis regarding the definition of statistically significant 
sample size and statistical distribution of the reported test 
results. The robustness of the methodology used in this 
research to consolidate the test results reported by different 
researchers determines the reliability of the actual model 
prediction. A correlation matrix is presented in Fig. 1 to 
illustrate the degree of correlation (based on Pearson cor-
relation coefficient) between the parameters. In addition, the 

Table 1  Available proposals correlating Rn, Vp, and ne with the UCS of granite

RΑ regression analysis, BHM bayesian hierarchical modelling

Empirical relationships Eq Method References Range of input parameters UCS range (MPa)

ne Vp Rn

(–) (m/s) L-type N-type

UCS = 78.22ne + 201 (1) RA Tuğrul and Zarif (1999) 0.14–1.07 – – – 109.17–193.33
UCS = 35.54Vp − 55 (2) RA Tuğrul and Zarif (1999) – 4740–6690 – – 109.17–193.33
UCS = 8.36Rn(L) − 416 (3) RA Tuğrul and Zarif (1999) – – 64–72 – 109.17–193.33
UCS = 2.208e0.067Rn(N) (4) RA Katz et al. (2000) – – – 23.9–73.4 11–259
UCS = 1.4459e0.0706Rn(L) (5) RA Aydin and Basu (2005) – – 20.00–65.76 – 6.32–196.45
UCS = 0.9165e0.0669Rn(N) (6) RA Aydin and Basu (2005) – – - 23.00–75.97 6.32–196.45
UCS = 4.24e0.059Rn(N) (7) RA Fener et al. (2005) – – – 48.30–61.80 60.8–202.9
UCS = 124.28ne

−0.56 (8) RA Sousa et al. (2005) 0.64–3.72 – – – 62.4–197
UCS = 0.004Vp

1.247 (9) RA Sousa et al. (2005) – 2339–5753 – – 62.4–197
UCS = 0.0407Vp − 36.31 (10) RA Vasconcelos et al. (2008) – 1941–4751 – – 23.77–161.65
UCS = e(2.28lnRn(L) – 4.04) (11) RA Bruno et al. (2013) – – 15–60 – 10.54–244.76
UCS = 0.033Vp − 34.83 (12) RA Khandelwal (2013) – 1682–4657 – – 32.51–133.48
UCS = 2.38e0.065Rn(L) (13) RA Mishra and Basu (2013) – – 25.89–67.07 – 17.55–198.15
UCS = 0.087Vp − 355.8 (14) RA Mishra and Basu (2013) – 5384–6250 – – 91.48–198.15
UCS = 228.2e(−1.98ne) (15) RA Mishra and Basu (2013) 0.06–0.4 – – – 91.48–198.15
UCS = -17.88ln(ne) + 60.22 (16) BHM Ng et al. (2015) 0.52–7.23 – – – 20.3–112.9
UCS = 8.17e0.0004Vp + 3.93 (17) BHM Ng et al. (2015) – 1160–5935 – – 20.3–112.9
UCS = 7.03e0.0386Rn(L) + 8.39 (18) BHM Ng et al. (2015) – – 16.8–55.7 – 20.3–112.9
UCS = 4.15e0.0386Rn(L) + 6.08e0.0004Vp 

− 8.22
(19) BHM Ng et al. (2015) – 1160–5935 16.8–55.7 - 20.3–112.9

UCS = 6.32e0.0004Vp − 9.6ln(ne) + 20.5 (20) BHM Ng et al. (2015) 0.52–7.23 1160–5935 – – 20.3–112.9
UCS = 3.26e0.0386Rn(L) + 5.84e0.0004Vp-

3.56ln(ne) + 0.53
(21) BHM Ng et al. (2015) 0.52–7.23 1160–5935 16.8–55.7 – 20.3–112.9

UCS = 1.910Rn(N)-10.3 (22) RA Tandon and Gupta (2015) – – – 10–72 8–149
UCS = 25.952e0.030Rn(L) (23) RA Armaghani et al. (2016b) – – 18–61 – 39–211.9
UCS = 0.005Vp

1.141 (24) RA Armaghani et al. (2016b) – 2823–7943 – – 39–211.9
UCS = 0.004Rn(L)2.5972 (25) RA Celik and Çobanoğlu (2019) – – 18.8–60 – 6.12–148
UCS = 181.58ln(Vp) − 1443.9 (26) RA Li et al. (2020) – 4108–7943 – – 50.2–211.9
UCS = 6.311Rn(L) − 194.92 (27) RA Li et al. (2020) – – 40–61 – 50.2–211.9
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comparative histograms of the input and output parameters 
are shown in Fig. 2. Note that the normalized values of input 
and output parameters were considered in illustrating com-
parative histograms.

5  Methodology

This section presented theoretical background of ANN fol-
lowed by a brief overview of PSO and ICA algorithms. After 
that, methodological development of ANN-LM model and 

hybrid ANN-PSO and ANN-ICA models are presented and 
discussed.

5.1  Artificial Neural Network (ANN)

ANNs are developed with the goal of learning from experi-
mental or analytical data. These models may categorize 
data, forecast values, and aid in decision-making. ANN 
maps input parameters to a given output. In comparison 
to traditional numerical analysis processes (e.g., regres-
sion analysis), a trained ANN can deliver more trustworthy 
results with far less processing effort. ANN functions in the 
same way as the biological neural network in the human 
brain does. The basic building block in ANN is the artificial 
neuron, which is a mathematical model that seeks to repli-
cate the activity of a biological neuron (Hornik et al. 1989; 
Hassoun 1995; Samui 2008; Das et al. 2011; Samui and 
Kothari 2011; Asteris and Plevris 2013, 2016; Nikoo et al. 
2016, 2017, 2018; Asteris and Kolovos 2017; Asteris et al. 
2017; Cavaleri et al. 2017; Psyllaki et al. 2018; Mohamad 
et al. 2019; Koopialipoor et al. 2020; Pandey et al. 2020; 
Apostolopoulou et al. 2018, 2019, 2020).

Table 2  Soft computing models reported in the literature for the prediction of UCS of rocks

BTS = Brazilian tensile strength, ne = effective porosity, Vp = P-wave velocity, Qtz = coarse-grained crystals of quartz, Plg = Plagioclase, Chl 
= Chlorite, Kpr = Alkali feldspar, ρdry = dry density, Rn, SH = Schmidt hammer rebound number, Is(50) = Point load strength, SFS = stochastic 
fractal search, GA genetic algorithm, LSTM = long short-term memory, DNN = deep neural network, KNN = k-nearest neighbor, GPR = Gauss-
ian process regression, SVR = support vector regression, and DT = decision tree

References Model used Input parameters Sample size Predicted UCS 
range (MPa)

R2 ((best)

Yesiloglu-Gultekin et al. (2013) ANFIS BTS, Vp 75 64.05–156.47 0.790
Armaghani et al. (2016a) ANN and ANFIS Rn, Vp,  Is(50) 124 39.4–211.9 0.951
Armaghani et al. (2016b) ICA-ANN and ANN ne, Vp, Rn,  Is(50) 71 28–211.9 0.916
Armaghani et al. (2021) BPNN ne, Vp 182 20.3–198.15 0.945
Cao et al. (2021) XGBoost-FA, SVM, and RBFN ρdry, Vp, Qtz, Kpr, 

Plg, Chl and 
Mica

45 15–204.9 0.989

Jing et al. (2021) SFS-ANFIS, GA-ANFIS, DE-ANFIS, 
PSO-ANFIS, and ANFIS

Rn, Vp,  Is(50) 96 40–210 0.981

Asteris et al. (2021) GEP and BPNN Rn(L) 183 12.40–75.97 0.937
Mahmoodzadeh et al. (2021) LSTM, DNN, KNN, GPR, SVR, and DT ne, SH, Rn,  Is(50) 170 12.01–215.21 0.995

Table 3  Data used from experiments reported in the literature

S. no References Number of 
samples

UCS range (MPa)

1 Tuğrul and Zarif (1999) 19 109.17–199.33
2 Mishra and Basu (2013) 18 91.48–198.15
3 Ng et al. (2015) 145 20.30–112.90
4 Koopialipoor et al. (2022) 92 28.00–211.90
Total 274 20.30–211.90

Table 4  Descriptive details of 
the acquired datasets

Variable Symbol Units Category Data used in NN models

Min Average Max STD

Rebound number Rn(L) – Input 16.80 48.70 72.00 9.60
Pulse velocity Vp m/s Input 1160.00 4910.87 7943.00 1109.28
Effective porosity ne % Input 0.06 1.22 7.23 1.36
Unconfined com-

pressive strength
UCS MPa Output 20.30 90.15 211.90 49.50
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In ANN, the input data are sent into the neurons, which 
then processed using a mathematical function to produce 
an output. To imitate the random nature of the biological 
neuron, weights are assigned to the input parameters before 
the data reaches the neuron. The architecture of a back-
propagation neural network (BPNN) can be expressed as: 
N − H1 − H2 −⋯ − HNHL −M , where N is the number of 
input neurons (i.e., the number of input parameters), Hi is the 
number of neurons in the ith hidden layer for i = 1, …, NHL, 
NHL is the number of hidden layers, and M is the number of 
output neurons (output parameters). A typical structure of a 
single node (with the corresponding R-element input vector) 
of a hidden layer is presented in Fig. 3.

For each one neuron i, the individual input dataset 
p1,… , pR are multiplied with the corresponding values of 
weights wi,1,… ,wi,R and the weighted values are fed to the 
junction of the summation function, where the dot prod-
uct ( W ⋅ p ) of the weight vector W =

[
wi,1,… ,wi,R

]
 and the 

input vector p =
[
p1,… , pR

]T  is generated. The value of 
bias b (threshold) is added to the dot-product forming the 
net input n , which is the argument of the activation func-
tion ƒ:

The suitable selection of the activation/transfer function 
ƒ plays a key role during the training and development of 
ANN-based models affecting the structure and prediction 
accuracy of ANN. Although the hyperbolic Tangent Sigmoid 
function and the log-sigmoid function are the most com-
monly used activation function, many other types of func-
tions have been proposed the last decade. In the research 
presented herein, an in-depth investigation on the effect of 
transfer functions on the performance of the trained and 
developed models has been conducted studying ten different 
activation functions. The main goal during the development 

(28)n = W ⋅ p = wi,1p1 + wi,2p2 +⋯ + wi,RpR + b.

process of an ANN model and especially during their train-
ing is to correlate the various input and the output param-
eters and minimize the error (Psyllaki et al 2018; Kechagias 
et al. 2018; Roy et al. 2019; Armaghani et al. 2019; Arma-
ghani et al. 2019;  Cavaleri et al. 2019, Chen et al. 2019, Xu 
et al. 2019; Yang et al. 2019; Pandey et al. 2020).

5.2  Optimization Algorithms

Kennedy and Eberhart (1995) invented PSO in 1995, 
inspired by the behavior of social species in groups, such 
as bird and fish schools or ant colonies. PSO simulates the 
sharing of information between members. In the last two 
decades, PSO has been used in a variety of areas in con-
junction with other techniques (Koopialipooret al. 2019a, 
b; Moayedi et al. 2020). This approach searches for the best 
solution using particles whose trajectories are changed by 
a stochastic and a deterministic component. Each particle 
is impacted by its ‘best’ obtained position and the ‘best’ 
achieved position of the group, but it moves at random. In 
PSO, a particle i is defined by its position vector, x, and its 
velocity vector,v . During the course of each iteration, each 
particle changes its position as follows:

where w , c1 , c2 , r1 , and r2 are, respectively, inertia weight, 
two positive constants and two random parameters. Figure 4 
illustrates a 2-D representation of a particle, ‘i’, movement 
between two positions. It can be observed how the particle 
best position, Pbest, and the group best position, gbest, influ-
ence the velocity of the particle at the k + 1 iteration.

Atashpaz-Gargari and Lucas (2007) proposed ICA as a 
global search population-based on optimization algorithm. 
ICA begins with the creation of a randomly generated start-
ing population known as countries. The process continues 
to create N countries, after which the number of imperialists 
is chosen as a specified number of the lowest-cost coun-
tries. The remaining countries are used as special functions 
among otherempires.in ICA, imperialists are more powerful 
when they have more colonies. ICA is made up of three 
major operators: assimilation, revolution, and competition. 
The body of the ICA is made up of colonies that are all 
equally absorbed by imperialists. However, the revolution 
is bringing about a lot of unexpected developments. The 
imperialists are competing to get more colonies in the com-
petition portion, and any empire that can meet the needed 
requirements finally wins. This technique is continued until 
the target benchmark is reached. Several studies provide 

(29)vk+1
i

= w × vk
i
+ c1.r1

(
xbest

k
i
− xk

i

)
+ c2.r2

(
gbest

k
i
− xk

i

)
,

(30)xk+1
i

= xk
i
+ vk
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further information concerning ICA (Atashpaz-Gargari and 
Lucas 2007).

5.3  ANN‑LM and Hybrid ANN Modelling

The basic steps of a holistic methodology were followed 
in order to obtain the optimum ANN model that estimates 
the UCS of granite. Typically, in the context of ANN train-
ing and development, the majority of researchers selects in 
advance: (a) the method to be used to normalize the data, 
(b) the transfer function to be used, (c) the training algo-
rithm to be used for the training of neural networks, (d) 
the number of hidden layers and (e) the number of neurons 
for each hidden layer. Specifically, in order to estimate the 
layout of the neural network (i.e., hidden layers, and neu-
rons), several semi-empirical methodologies are available 
in the literature, taking into account the number of input 
parameters, output parameters, the number datasets used for 

training or even combinations of the above. Table 5 presents 
a representative list of these semi-empirical relationships 
which are widely accepted and commonly used in prac-
tice. In this work, however, rather than relying on empiri-
cal patterns, a different approach has been adopted, as a 
means to determine the most suitable layout of the neural 
network. Specifically, a thorough and in-depth investigation 
algorithm is employed, the steps of which are outlined as 
follows.

Step 1. Develop and train a plethora of ANN models: 
The development and training of multiple alternative ANNs 
takes place with varying number of hidden layers (1 or 2) 
and number of neurons (1–30). Furthermore, each alterna-
tive ANN is trained for ten different activation functions, 
as well as using Levenberg–Marquardt (LM) algorithm as 
training algorithm. Finally, the alternative variations are 
further expanded by examining ten different random initial 
values of weights and bias for each developed ANN model.

Step 2. Select the optimal architectures: From the previ-
ously developed ANNs which have been trained with the LM 
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algorithm, the optimal architecture (ANN-LM) was selected 
that achieved best statistical performance indices using the 
training datasets.

Step 3. Upon the two optimum architectures, selected in 
the previous step, several different optimization algorithms 
were implemented such as PSO and ICA, so that optimized 
values of weights and bias are obtained.

Step 4. Depending on the performance indices, achieved 
by the examined ANNs, the optimum one is selected and 
proposed.

The proposed algorithm is time consuming, since it 
requires the development and evaluation of numerous 
alternative ANN models, but provides higher credibility in 
reaching an optimum architecture upon which the optimi-
zation algorithms will be applied. An additional benefit of 
the proposed algorithm that is missing from the available 
semi-empirical methodologies in the literature is that the 
optimum combination of transfer functions is also obtained 
(besides the number of hidden layers, and the number of 
neurons).

5.4  Hybridization Procedure of ANN and OAs

In the last decade, many studies have been conducted in 
engineering applications to improve the ability of ANN 
models using OAs (Koopialipoor et al. 2019a, b; Moayedi 
et al. 2020; Golafshani et al. 2020). Specifically. The learn-
ing parameters (weights and biases) of ANNs are optimized 
using OAs. PSO and ICA, two extensively utilized OAs, 

were used to optimize the weights and biases of ANNs in 
this study. The ANN and PSO, and ICA approaches work 
together to provide a prediction model for rock UCS. 
The methodological development of hybrid ANN can 
be described as: (a) initialization of ANN; (b) set hyper-
parameters such as number of hidden layers, number of hid-
den neurons, and activation function; (c) initialization of 
OA; (d) select swarm/particle size and other deterministic 
parameters of OA; (e) set terminating criteria; (f) training of 
ANN using training dataset; (g) calculate fitness; (h) select 
optimum values of weights and biases based on the perfor-
mance criteria; and (i) testing of ANN. Figure 5a represents 
the entire process of hybrid ANN construction followed in 
this work.

5.5  Performance Indices

The complete dataset of 274 observations was divided into 
training, validation, and testing datasets prior to computa-
tional modelling. Specifically, a total of 183 observations 
were used for the training of ANN models, whereas 45 
observations were used for validation and 46 data for test-
ing. The steps of computational modelling are illustrated in 
Fig. 5b. Right after the model construction, their predictive 
accuracy was assessed using four widely used indices (Chan-
dra et al. 2018; Raja and Shukla 2020, 2021a, b; Raja et al. 
2021; Khan et al. 2021, 2022; Aamir et al. 2020; Bhadana 
et al. 2020), namely root mean square error (RMSE), mean 

Table 5  Available in the 
literature semi-empirical 
formulas for the selection of 
suitable number of neurons per 
hidden layer

Nn the number of neurons per hidden layer, Nip number of input parameters; Nop the number of output 
parameters, Ntd the number of training dataset

SN Expression Eq. no. References

1 N
n
≤ 2 × Nip + 1 (31) Hecht-Nielsen (1987)

2
N
n
≤

2×N ip

3

(32) Wang (1994)

3 N
n
≤

√
Nip × N

op
(33) Masters (1993)

4 N
n
≤

Ntd

Nip+1
(34) Rogers and Dowla (1994)

5
N
n
≤

2+Nip×+0.5Nop×

(
Nip+N

2
op

)
−3

Nip+Nop

(35) Paola and Schowengerdt (1995)

6
N
n
≤

√
1+8N ip−1

22

(36) Li et al. (1995)

7 Nn ≤ 2 × Nip (37) Kaastra and Boyd (1996), 
Kanellopoulos and Wilkinson 
(1997)

8 N
n
= Nip − 1 , for ANN architectures 

with 4 layers
(38) Tamura and Tateishi (1997)

9
N
n
≤

Nip+Nop

2

(39) Ripley (2008)

10 N
n
=
√
NipNop

(40) Shibata and Ikeda (2009)
11 N

n
= log(N ip − 1) − Nop (41) Hunter et al. (2012)

12
N
n
=

4N
2

ip
+3

N
2

ip
−8

(42) Sheela and Deepa (2013)
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absolute percentage error (MAPE), correlation coefficient 
(R), and variance account for (VAF). The mathematical 
expressions of these indices are given as follows:

where n denotes the total number of datasets, and yi and 
ŷi represent the predicted and target values, respectively. 
Recent research has highlighted the limitations of the 
RMSE, the MAPE, and the R in assessing the predictive 
accuracy of neural networks (Asteris et al. 2021; Armaghani 

(43)RMSE =

√
1

n

∑n

i=1
(yi − ŷi)

2
,

(44)MAPE =
1

n

∑n

i=1

|||||
yi − ŷi

yi

|||||
,

(45)R =

����
∑n

i=1
(yi − ymean)

2 −
∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − ymean)

2
,

(46)VAF(%) = (1 −
var(yi − ŷi)

var(yi)
) × 100,

et al. 2021). To this end, the a20-index was used to esti-
mate the model accuracy. Note that, a20-index is a recently 
proposed index which has a physical engineering meaning 
and can be used to ensure the reliability of a data-driven 
model (Apostolopoulou et al. 2019, 2020). The mathemati-
cal expression of this index can be given by:

where M is the number of dataset sample and m20 is the 
number of samples with a value of (experimental value)/
(predicted value) ratio, between 0.80 and 1.20. In a 100% 
accurate predictive model, the a20-index would be equal 
to 1 or 100%. The a20-index shows the number of samples 
that satisfy the predicted values with a deviation of ± 20%, 
compared to experimental values.

(47)a20 − index =
m20

M
,
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6  Results and Discussion

6.1  Development of ANN‑LM Models

As stated above, a sum of 274 datasets was compiled and 
used to train and develop 3 ANN-based models. From the 
274 data in the database, a sum of 183 observations was 
used for the training of ANN models, while 45 observa-
tions were used for validation and 46 data for testing. The 
parameters presented in Table 6 were used for the training 
and development of the ANN models. The combinations of 
these parameters yield 240,000 different ANN architecture 
models with one hidden layer.

The above ANN models were assessed based the RMSE 
index using the testing datasets. Table 7 presents the 20 best 
models for the case of ΑΝΝ. From the information shown in 
Table 7, it appears that the optimum ANN with one hidden 
layer is the ANN-LM 3-11-1 model which corresponds to 
minmax normalization technique in the range [− 1.00, 1.00], 
11 neurons for the hidden layer and transfer functions the 
normalized radial basis transfer function and the symmetric 
saturating linear transfer function (SSL). Table 8 presents 
the performance indices for the optimum ANN model both 
for training and testing datasets, while their architecture is 
presented in Fig. 6. Herein, the performance of the devel-
oped ANN-LM 3-11-1 model is presented for both training 
and testing datasets. A model with the lowest RMSE and 

highest R values in the testing phase (RMSE = 14.8272 and 
R = 0.9607) was selected for the construction of ANN-LM 
3-11-1 model. The value of a20-index for optimum ANN-LM 
3-11-1 model was determined to be 0.8470 and 0.7174 in the 
training and testing phases, respectively. However, to better 
illustrate the predictive outcomes, Fig. 7 represents a compar-
ison of actual vs. predicted values of granite UCS prediction. 
Two different diagrams, viz., scatter plot and line diagram are 
presented for the optimum ANN-LM 3-11-1 model.

6.2  Development of ANN‑PSO Model

The PSO was used to optimize the weights of biases of the 
optimum ANN-LM 3-11-1 model and ANN-PSO 3-11-1 
model was constructed. The basic settings for constructing 
ANN-PSO 3-11-1 model are presented in Table 9. Specifi-
cally, the population size was set between 10 and 100 by 
step 5, 50 different cases of random numbers, and the maxi-
mum number of iterations was set to 100. Therefore, the 
total number of combinations was determined to be 95,000. 
Note that the RMSE was selected as the cost function. The 
convergence behavior of all the developed ANN-PSO 3-11-1 
models is presented in Fig. 8. It can be seen from this fig-
ure that the ANN-PSO 3-11-1 model converged into a good 
solution within 30–40 iterations. A flat curve was discovered 
beyond this range, indicting no better solution was found. 
The influence of random numbers generation in ANN-PSO 

Table 6  Parameters used for the training of ANN models

Parameter Value Matlab function

Training algorithm Levenberg–Marquardt algorithm trainlm
Normalization Minmax in the range [0.10–0.90] and [− 1.00–1.00] Mapminmax

Zscore zscore
Number of hidden layers 1
Number of neurons per hidden layer 1 to 30 by step 1
Control random number generation 10 different random generation Rand (seed, generator), where 

generator Range from 1 to 10 
by step 1

Epochs 200
Cost function Mean square error (MSE) mse

Sum square error (SSE) sse
Transfer functions Hyperbolic tangent sigmoid transfer function (HTS) tansig

Log-sigmoid transfer function (LS) logsig
Linear transfer function (Li) purelin
Positive linear transfer function (PLi) poslin
Symmetric saturating linear transfer function (SSL) satlins
Soft max transfer function (SM) softmax
Competitive transfer function (Co) compet
Triangular basis transfer function (TB) tribas
Radial basis transfer function (RB) radbas
Normalized radial basis transfer function (NRB) radbasn
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modelling is also illustrated in Fig. 9. The performance of 
all the developed ANN-PSO 3-11-1 models is presented in 
Table 10. In the training phase, the values of R and RMSE 
ranged from 0.9170 to 0.9335 and 0.2019 to 0.1815, respec-
tively, while in the testing phase, these values ranged from 
0.9293 to 0.9335 and 0.2020 to 0.1968, respectively. The 
performance of the most appropriate ANN-PSO 3-11-1 
model is presented in Table 11. As can be observed from this 
table, the ANN-PSO 3-11-1 model has achieved the desired 
predictive accuracy with a20-index = 0.5519, R = 0.9330, 
RMSE = 23.4893, MAPE = 20.95%, and VAF = 86.9750 
in the training phase and a20-index = 0.5435, R = 0.9330, 
RMSE = 23.9205, MAPE = 24.50%, and VAF = 79.3740 in 
the testing phase. Figure 10 depicts a comparison of actual 
and expected granite UCS values in order to further show 
the predicting conclusions. Two distinct diagrams, a scatter 
plot and a line diagram, are provided for the optimal ANN-
PSO 3-11-1 model.

6.3  Development of ANN‑ICA Model

Analogous to PSO, the ICA was utilized to optimize the 
weights and biases of the optimal ANN-LM 3-11-1 model, 
and the ANN-ICA 3-11-1 model was created. Table 12 
presents the settings of hyper-parameters for building the 
ANN-ICA 3-11-1 model. In particular, the population size 
was set between 10 and 100 by step 5, 10 different sets (1 
to 10 by step 1) for random number generation, and the 
maximum number of epochs was set to 200. Therefore, 
the total numbers of possible combinations were 380,000. 
The RMSE was selected as the cost function in each case. 
Figure 11 depicts the convergence behavior of all produced 
ANN-ICA 3-11-1 models. This graph demonstrates that 
the ANN-ICA 3-11-1 model converged to a satisfactory 
solution within 160–180 iterations. Beyond this range, a 
flat curve was identified, indicating there is no better solu-
tion. The influence of random number (i.e., initial values 
of weights and biases) on the performance of ANN-ICA 
3-11-1 model is presented in Fig. 12. Table 13 presents 
the performance of all produced ANN-ICA 3-11-1 mod-
els. During the training phase, R and RMSE values var-
ied between 0.9241 and 0.9317 and 0.1929 and 0.1832, 
respectively. During the testing phase, these values ranged 
between 0.9272 and 0.9286 and 0.2048 and 0.2030, 
respectively. Table 14 displays the performance of the best 
suitable ANN-ICA 3-11-1 model. The ANN-ICA 3-11-1 
model has achieved the desired predictive accuracy, as 

Table 7  Top 20 optimum structures/architectures of ANN-LM models

Ranking Normalization technique Cost function Transfer functions Architecture Testing datasets

Input layer Output layer R RMSE

1 Minmax [− 1.00, 1.00] SSE radbasn satlins 3-11-1 0.9607 14.8272
2 Minmax [0.10, 0.90] SSE radbas radbas 3-6-1 0.9599 14.8507
3 Minmax [0.10, 0.90] MSE tansig radbas 3-9-1 0.9544 15.7049
4 Minmax [− 1.00, 1.00] SSE poslin satlins 3-15-1 0.9530 15.9626
5 Minmax [0.10, 0.90] MSE tansig radbas 3-29-1 0.9533 16.1543
6 Minmax [0.10, 0.90] SSE satlins tribas 3-4-1 0.9559 16.2473
7 Minmax [− 1.00, 1.00] SSE softmax tansig 3-7-1 0.9520 16.2583
8 Minmax [0.10, 0.90] MSE satlins tansig 3-8-1 0.9524 16.2653
9 Minmax [− 1.00, 1.00] MSE softmax tansig 3-4-1 0.9530 16.3519
10 Minmax [0.10, 0.90] SSE radbasn logsig 3-16-1 0.9511 16.3710
11 Minmax [0.10, 0.90] MSE poslin tansig 3-18-1 0.9524 16.3732
12 Minmax [− 1.00, 1.00] MSE softmax tansig 3-7-1 0.9531 16.4089
13 Minmax [− 1.00, 1.00] MSE tribas tansig 3-3-1 0.9520 16.4175
14 Minmax [0.10, 0.90] SSE tansig poslin 3-10-1 0.9513 16.4295
15 Minmax [− 1.00, 1.00] SSE softmax tansig 3-4-1 0.9511 16.4447
16 Minmax [0.10, 0.90] SSE radbasn tansig 3-3-1 0.9507 16.4601
17 Minmax [0.10, 0.90] MSE satlins radbas 3-3-1 0.9508 16.5141
18 Minmax [− 1.00, 1.00] MSE softmax tansig 3-17-1 0.9525 16.5276
19 Minmax [0.10, 0.90] SSE poslin tansig 3-14-1 0.9509 16.5659
20 Minmax [− 1.00, 1.00] MSE softmax tansig 3-18-1 0.9504 16.5695

Table 8  Performance of the optimum ANN-LM model

Datasets Performance indices

a20-index R RMSE MAPE VAF

Training 0.8470 0.9711 11.5298 0.1109 94.3046
Testing 0.7174 0.9607 14.8272 0.1497 92.2622
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shown in the table, with a20-index = 0.6339, R = 0.9286, 
RMSE = 18.6663, MAPE = 21.21%, and VAF = 85.0725 
in the training phase and a20-index = 0.6739, R = 0.9285, 
RMSE = 22.5228, MAPE = 16.48%, and VAF = 82.3275 
in the testing phase. Figure 13 displays a comparison of 
actual and predicted granite UCS values to further illus-
trate the conclusive predictions. The ideal ANN-ICA 
3-11-1 model is shown by two separate diagrams: a scat-
ter plot and a line diagram.

A performance summary of the developed models is fur-
nished in Table 15. In terms of the a20-index criterion, the 
produced ANN-LM 3-11-1 model achieved the highest pre-
cision with 84.70% and 71.74% accuracies, respectively, in 
the training and testing phases. The values of other indices 
also demonstrate that the proposed ANN-LM 3-11-1 is effi-
cient and robust. Based on the RMSE index, the ANN-LM 
3-11-1 model outperforms the ANN-PSO 3-11-1 and ANN-
ICA 3-11-1 models by 103.73% and 61.90%, respectively, in 
the training phase, and by 61.33% and 51.90%, respectively, 
in the testing phase. These results corroborate the aforemen-
tioned premise in every aspects.

To further demonstrate the overall performance of the 
optimum ANNs in a succinct manner, Taylor diagram and 

error histogram for both training and testing stages are pre-
sented in this sub-section. Note that, Taylor diagram is a 
two-dimensional mathematical diagram that is used to pro-
vide a brief assessment of a model’s accuracy (Taylor 2001). 
It denotes the associations between the real and estimated 
observations in terms of R, RMSE, and ratio of standard 
deviations indices. In Taylor diagram, a model is represented 
by a point. It should be emphasized that for an ideal model, 
the point’s position should correspond with the reference 
point (as shown in black color circle). On the contrary, 
error histogram displays the distribution of error between 
the actual and estimated values for a data-driven model. 
Figure 14 illustrates the optimum ANNs generated in this 
study, whereas Fig. 15 presents the error histogram between 
the estimated and actual UCS of granite. From these figures, 
the robustness of the proposed ANN-LM 3-11-1 model can 
be visualized.

6.4  Closed‑Form Equations for Estimating Granite 
UCS Using Optimum ANN‑LM 3‑11‑1 Model

It is quite common for the majority of published studies 
pertaining to the studied problem, to present primarily the 
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architecture of the resulting optimal ANN model, together 
with the values of the statistical indicators based on which 
the model performance was evaluated. Yet, this information 
alone makes it impossible to assess the reliability of the pro-
posed mathematical model, and more importantly prohibit any 
substantial comparison with other models available in the lit-
erature. In order to characterize the reliability of the proposed 

computational model, it is necessary for the researchers to 
provide all the pertinent data that clearly describe the model 
so that it can be reproduced and checked by other researchers. 
Especially for the case of ANNs, apart from the architecture, 
it is deemed necessary to provide the transfer functions cor-
responding to the proposed ANN model, and more importantly 
the finalized values of weights and biases of their developed 
and proposed models. In addition, since a publication targets 
not only researchers but also practicing engineers, it would be 
particularly useful to include a Graphical User Interface (GUI) 
in the study, implementing the proposed ANN-LM 3-11-1 
model so that it can be checked by experts and be utilized by 
anyone interested in this problem.

To overcome this deficiency, the explicit mathemati-
cal equation that represents the optimum developed ANN-
LM 3-11-1 model, along with the accompanying weights 
and biases, are provided in this study. Therefore, the pro-
posed model can be readily reproduced (e.g., in a spread-
sheet environment), by any interested third party. Even if an 
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Fig. 7  Actual vs. predicted UCS using the optimum developed ANN-LM 3-11-1 model

Table 9  Hypermeters configuration of ANN-PSO 3-11-1 model

Parameters Values Number of 
different 
cases

Population size 10 to 100 by step 5 19
Random numbers (initial values 

of weights and biases)
1 to 50 by step 1 50

Maximum number of iterations 100 100
Cost function RMSE 1
Total combinations 95.000
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understanding of neural networks is lacking, an implementa-
tion of the model is still possible, since the required calcu-
lation steps are defined through the provided explicit math-
ematical formula. In light of the above, the derived equations 
for the prediction of both normalized  (UCSnorm) and real 
 (UCSreal) values of granite UCS, using Rn, Vp, and ne values 
are expressed by the following equations for the optimum 
developed ANN-LM 3-11-1 model:

(48)

UCSnorm =satlins([LW{2, 1}]

×[radbasn([IW{1, 1}] × [IP] + [B{1, 1}])] + [B{2, 1}]),

where a = − 1.00 and b = 1.00 are the lower and upper limits 
of the minmax normalization technique applied on the data, 
 UCSmax = 211.90 and  UCSmin = 20.30 are the maximum and 
minimum values of granite UCS present in the database that 
was used for training and the development of ANN models. 
The satlins and radbasn are the symmetric saturating linear 
transfer function and the normalized radial basis transfer 
function, respectively, as discussed in Table 6. In addition, 
their details (equations and graphs) are presented in detail 
in Table 18 of the Appendix.

(49)
UCSreal =

(
UCSnorm − a

)
×
(
UCSmax − UCSmin

)
b − a

+ UCSmin,

Fig. 8  Convergence of the developed ANN-PSO 3-11-1 model
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Fig. 9  a, b Training and testing performance curves of ANN-PSO 
3-11-1 models for different random numbers (1:1:100) while the pop-
ulation size is constant to optimum size 60, c, d training and testing 

performance curves of ANN-PSO 3-11-1 models for different popula-
tion sizes (10:2:60) while the random number is constant to optimum 
60

Table 10  Performance analysis 
of ANN-PSO 3-11-1 models

Ranking Random 
number

Population 
number

Max itera-
tion set

Datasets

Testing Training

R RMSE R RMSE

1 60 60 100 0.9330 0.1968 0.9330 0.1815
2 75 16 100 0.9329 0.1974 0.9193 0.1988
3 96 48 100 0.9320 0.1980 0.9285 0.1873
4 35 58 100 0.9316 0.1987 0.9258 0.1906
5 60 20 100 0.9310 0.1997 0.9306 0.1852
6 66 20 100 0.9304 0.2002 0.9276 0.1884
7 60 52 100 0.9299 0.2013 0.9299 0.1855
8 9 26 100 0.9305 0.2017 0.9170 0.2019
9 85 32 100 0.9300 0.2017 0.9190 0.1995
10 49 54 100 0.9293 0.2020 0.9273 0.1888
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Equation (48) describes the developed ANN-LM 3-11-1 
model in a purely mathematical form, so that its reproduc-
tion becomes straightforward. In Eq. (48), [IW{1, 1}] is a 
11 × 3 matrix that contains the weights of the hidden layer; 
[LW{2, 1}] is a 1 × 11 vector with the weights of the out-
put layer; [IP] is a 3 × 1 vector with the three input variables; 
[B{1, 1}] is a 11 × 1 vector that contains the bias values of the 
hidden layer; and [B{2, 1}] is a 1 × 1 vector with the bias of 
the output layer. The [IP] vector contains the three normalized 

values of the input variables Rn, Vp, and ne. It can be expressed 
as

Table 11  Prediction accuracy of the optimum ANN-PSO 3-11-1 
model

Datasets Performance indices

a20-index R RMSE MAPE VAF

Training 0.5519 0.9330 23.4893 0.2095 86.9750
Testing 0.5435 0.9330 23.9205 0.2450 79.3740

(a) (b)

(c) (d)
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Fig. 10  Experimental vs. predicted UCS using the optimum ANN-PSO 3-11-1 model

Table 12  Hypermeters configuration of ANN-ICA model

Parameters Values Number of 
different 
cases

Population size 10 to 100 by step 5 19
Random numbers (initial values 

of weights and biases)
1 to 10 by step 1 10

Number of empires 2 to 20 by step 2 10
Maximum number of iterations 200 200
Cost function RMSE 1
Total combinations 380.000
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where the min
(
ne
)
=0.06, max

(
ne
)
=7.23; min

(
Vp

)
=1160, 

max
(
Vp

)
=7943; min

(
Rn

)
=16.80, and max

(
Rn

)
=72 are the 

input parameters’ minimum and maximum values (shown in 
Table 4). The values of final weights and biases that deter-
mine the matrices [IW{1, 1}] , [LW{2, 1}] , [B{1, 1}] and 
[B{2, 1}] are presented in Table 16.

In this form of matrix multiplication, Eq. (49) can be 
easily programmed in an Excel spreadsheet and, therefore, 
it can be more easily evaluated and used in practice. It is 
worth to note that such an implementation can be used by 

(50)[IP] =

⎡⎢⎢⎢⎢⎣

a + (b − a)

�
ne−min(ne)

max(ne)−min(ne)

�

a + (b − a)

�
Vp−min(Vp)

max(Vp)−min(Vp)

�

a + (b − a)

�
Rn−min(Rn)

max(Rn)−min(Rn)

�

⎤⎥⎥⎥⎥⎦
,

various interested parties (i.e., researchers, students, and 
engineers), without placing heavy requirements in effort 
and time. Figure 16 presents the developed Graphical User 
Interface (GUI), implementing Eqs. (48) and (49). The 
developed GUI is also provided as a supplementary mate-
rial. The developed GUI can be used as an alternate tool 
to estimate the UCS of rocks. Researchers and practition-
ers can utilize the developed GUI for estimating the rock 
UCS in the preliminary stages of any major/minor projects 
such as tunneling works, railway projects, and highway 
projects.

Fig. 11  Convergence of the developed ANN-ICA 3-11-1 model
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6.5  Comparison of the Optimum ANN‑LM 3‑11‑1 
Model with Semi‑empirical Relationships 
Available in the Literature

The accuracy of the optimum ANN-LM-3-11-1 model 
developed in this study to predict the UCS of granite is com-
pared with the prediction accuracy of the top nine models 
available in the literature. The prediction accuracy of the 
various models is assessed using a range of statistical indi-
ces including the a20-index, R, RMSE, MAPE and VAF. 
Herein, the comparison is presented for the testing dataset 
because a model that made more accurate prediction in the 
testing phase is considered to be more accurate and should 
be accepted with more conviction. Table 17 shows that the 
optimum developed ANN-LM-3-11-1 model significantly 
outperforms the prediction accuracy of the top nine models 
reported in the literature. The ANN-LM-3-11-1 model pre-
dicts the UCS of granite with less than ± 20% deviation from 

the experimental data for 71.74% of the specimen, while the 
second in rank model proposed by Mishra and Basu (2013) 
predicts the UCS of granite with less than ± 20% deviation 
from the experimental data for 54.35% of the specimen. The 
variation of the various statistical analysis indexes suggests 
that the a20-index is the most prediction accuracy sensitive 
index. For example, while the Pearson correlation coefficient 
of the first and second rank models only differ by 16%, the 
a20-indexes differ by 32%.

It is of interest to reiterate that the developed optimum 
ANN-LM-3-11-1 model can predict the UCS of gran-
ite strictly within the range of values to which it has been 
trained and which is presented in detail in Table 4. The pre-
diction accuracy of the proposed model is particularly high 
for the range where the various parameter value distribu-
tion is dense and which typically comprises 5% of the total 
parameter values.

7  Summary and Conclusion

The aim of this research is to estimate the UCS of rocks 
using three non-destructive test indicators, namely Rn (L), 
Vp, and  ne. For this purpose, a sum of 274 datasets was com-
piled and used to train and validate three ANN-based models 
including ANN-LM 3-11-1, ANN-PSO 3-11-1, and ANN-
ICA 3-11-1. Specifically, the performance of constructed 
ANNs was evaluated initially, followed by a comparison 
of the predicted accuracy of models currently available in 

Fig. 12  a, b Training and testing performance curves of ANN-ICA 
3-11-1 models for different random numbers (1:1:10) while the popu-
lation is constant to optimum size 75 and the number of empires is 
constant to optimum size 12; c, d training and testing performance 
curves of ANN-ICA 3-11-1 models for different population num-
bers (15:5:100) while the random number is constant to optimum 6 
and the number of empires is constant to optimum size 12; and (e, f) 
training and testing performance curves of ANN-ICA 3-11-1 models 
for different empires numbers (2:2:20) while the random number is 
constant to optimum 6 and the number of population is constant to 
optimum size 75

◂

Table 13  Performance analysis 
of ANN-ICA models

Ranking Random 
number

Population 
number

Empires 
number

Best iteration Datasets

Testing Training

R RMSE R RMSE

1 6 75 12 200 0.9285 0.2030 0.9286 0.1871
2 1 85 16 200 0.9282 0.2033 0.9266 0.1896
3 1 90 12 200 0.9286 0.2034 0.9310 0.1841
4 1 100 10 200 0.9280 0.2039 0.9303 0.1849
5 9 80 8 200 0.9276 0.2042 0.9317 0.1832
6 10 30 12 200 0.9284 0.2042 0.9304 0.1852
7 9 85 12 200 0.9279 0.2042 0.9285 0.1876
8 1 30 4 200 0.9275 0.2043 0.9262 0.1902
9 1 65 12 200 0.9276 0.2043 0.9241 0.1929
10 8 95 10 200 0.9272 0.2048 0.9281 0.1877

Table 14  Prediction accuracy of 
the ANN-ICA 3-11-1 model

Model Datasets Performance indices

a20-index R RMSE MAPE VAF

ANN-ICA 3-11-1 Training 0.6339 0.9286 18.6663 0.2121 85.0725
Testing 0.6739 0.9285 22.5228 0.1648 82.3275
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the literature. Existing models in the literature employ only 
Vp and/or ne as input parameters for predicting the UCS of 
granites; however, to this purpose, the created ANN-based 
models were compared utilizing three test indicators, viz., 
Rn (L), Vp, and ne. Using a20-index, R, RMSE, MAPE, and 

VAF criteria, the ANN-LM 3-11-1 was found to be the high-
est performing model in both the training and testing phases 
of UCS prediction. Furthermore, when compared to the pre-
dicted UCS of granite using existing models in the litera-
ture, the ANN-LM 3-11-1 proposed in this study delivers 
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0

50

100

150

200

250

0.00 50.00 100.00 150.00 200.00 250.00

aP
M

ni
htgnertS

evisserp
mo

C
detciderP

Experimental Compressive Strength in MPa

Model: ANN-ICA 3-11-1
Data : Training Datasets
R=0.9286, RMSE=18.6663
a20-index=0.6339 (63.39 %)

0

50

100

150

200

250

0 50 100 150 200

aP
M

ni
htgnertS

evisserp
mo

C

Sample

Experimental Predicted

Model: ANN-ICA 3-11-1
Data : Training Datasets

0

50

100

150

200

250

0.00 50.00 100.00 150.00 200.00 250.00

aP
M

ni
S

C
U

detciderP

Experimental UCS in MPa

Model: ANN-ICA 3-11-1
Data : Testing Datasets
R=0.9285
RMSE=22.5288
a20-index=0.6739 (67.39 %)

0

50

100

150

200

250

0 10 20 30 40 50

aP
M

ni
S

C
U

Sample

Experimental Predicted

Model: ANN-ICA 3-11-1
Data : Testing Datasets

Fig. 13  Experimental vs. predicted UCS using the optimum ANN-ICA 3-11-1 model

Table 15  Prediction accuracy of 
the optimum ANN models

Models Datasets Performance indices

a20-index R RMSE MAPE VAF

ANN-LM 3-11-1 Training 0.8470 0.9711 11.5298 0.1109 94.3046
Testing 0.7174 0.9607 14.8272 0.1497 92.2622

ANN-PSO 3-11-1 Training 0.5519 0.9330 23.4893 0.2095 86.9750
Testing 0.5435 0.9330 23.9205 0.2450 79.3740

ANN-ICA 3-11-1 Training 0.6339 0.9286 18.6663 0.2121 85.0725
Testing 0.6739 0.9285 22.5228 0.1648 82.3275
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a more accurate prediction. Considering the experimental 
results, the developed GUI based on the constructed ANN-
LM 3-11-1 model can be used as a tool to estimate the UCS 
of granites.

The goal of this study was to not only build a high-per-
formance ML model, but also to provide adequate details of 
numerous proposals that had been proposed in the literature. 
Details of previous studies employing soft computing models 

Fig. 14  Taylor diagram for the optimum ANNs a training phase and b testing phase
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Table 16  Finalized weights and bias of the optimum ANN-LM 3-11-1 model

[IW{1, 1}] is the matrix of weight values between input layer and the first hidden layer; [LW{2, 1}] is the matrix of weight values between the 1st 
hidden layer and the output layer; [B{1, 1}] is the matrix of bias values for hidden layer, and [B{2, 1}] is the matrix of bias values for the output 
layer

IW{1,1} [LW{2, 1}]
T [B{1, 1}] [B{2, 1}]

(11 × 3) (1 × 11) (11 × 1) (1 × 1)

− 0.0958 0.6154 − 5.9270 2.4402 4.8436 − 1.9035
− 43.0330 − 6.9098 72.5904 − 20.7325 22.9569
2.6764 1.7157 1.3423 1.5262 1.5194
− 2.8704 − 2.6288 0.8131 − 0.5319 8.2658
1.8307 − 0.9414 − 1.3866 0.9373 0.6997
19.8638 − 16.0002 − 9.0744 0.8928 38.8263
15.7322 0.7513 0.3048 3.0019 15.0653
4.6459 − 34.3418 9.0949 1.7719 6.7325
− 0.2443 − 0.4763 − 0.1186 3.9896 1.4170
20.8652 4.7571 − 1.2167 1.2345 14.6919
0.1138 − 1.0279 − 0.5220 0.6443 − 0.8676

Fig. 16  GUI for the prediction of UCS (also appended as a supplementary material)

Table 17  Prediction accuracy ranking of the optimum developed ANN-LM model and the top 9 models

Bold values indicate best-obtained values

Ranking Model Input parameters Performance indices

a20-index R RMSE MAPE VAF

1 ANN-LM 3-11-1 Rn(L), Vp, ne 0.7174 0.9607 14.8272 0.1497 92.2622
2 Mishra and Basu (2013) Rn(L) 0.5435 0.8246 32.0916 1.3707 64.0413
3 Ng et al. (2015) Rn(L), Vp 0.4783 0.8475 36.0958 0.3139 66.6935
4 Ng et al. (2015) Rn(L), Vp, ne 0.4348 0.8634 34.5181 0.2951 68.6421
5 Ng et al. (2015) Vp 0.4130 0.7527 40.5287 0.3732 54.5059
6 Ng et al. (2015) Vp, ne 0.4130 0.8346 34.5760 0.2986 65.3065
7 Li et al. (2020) Vp 0.4130 0.8085 31.4108 0.4000 65.3231
8 Celik and Cobanoglu (2019) – 0.3913 0.8066 36.9836 0.2640 57.4929
9 Ng et al. (2015) ne 0.3696 0.8198 44.8586 0.4420 48.3248
10 Tugrul and Zarif (1999) Vp 0.3478 0.8145 43.6003 0.3448 66.1788
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to predict granite UCS are also provided and discussed. The 
main advantages of the study include (a) closed-from equation; 
(b) available GUI platform as a readymade tool for estimating 
rock UCS; and (c) the most efficient model. However, the opti-
mum developed ANN-LM 3-11-1 model can predict the UCS 
of soft to hard granite ranging between 20.30 and 211.9 MPa. 
This is one of the limitations of this study. In addition, the pre-
diction accuracy of the ANN-LM 3-11-1 model could be influ-
enced by any potential variations of the input data distribution 
to which it has been trained and developed. The descriptive 
statistics of the input parameters demonstrates that the num-
ber of samples with Vp ranging between 1000 and 3000 m/s 
is relatively limited. Therefore, extending the database in this 
range would require a recalibration of the optimum developed 
ANN-LM 3-11-1 model. The future direction of the study 

could include (a) a comprehensive evaluation of the ANN-
LM model’s accuracy relative to other soft computing models 
using real-world data from a variety of fields; (b) an evaluation 
of the ANN-LM 3-11-1 model’s superiority over other hybrid 
ANNs constructed with different optimization algorithms; and 
(c) implementation of dimension reduction techniques such as 
principal component analysis (PCA), independent component 
analysis, and kernel-PCA for a comprehensive evaluation of 
results. Nonetheless, to the best of the authors’ knowledge, this 
is the first research to employ three non-destructive test indica-
tors (Rn, Vp, and ne) to predict the UCS of granites.

Appendix

See Table 18.

Table 18  Transfer functions

S. no. Transfer function/equation/Matlab function Graph

1 Hyperbolic tangent sigmoid transfer function

 
a = f (n) =

2

1+exp(−2∗n)
− 1

a = f (n) = tansig(n)

2 Symmetric saturating linear transfer function

 

a = f (n) =

⎧⎪⎨⎪⎩

−1,

n,

−1,

n ≤ −1

−1 < n < 1

n ≥ 1

a = f (n) = satlins(n)
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