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Abstract 
Context-dependent sensitivities of parameters and reliability-based design (RBD) of rock slopes are the subjects of this paper. 
The similarities and differences between the design points in RBD and those of partial factor design methods are discussed. It 
is demonstrated that partial factors provided by the design point of the first-order reliability method (FORM) can provide case-
specific insights and guidance to partial factor design methods like Eurocode 7 (EC7) and the load and resistance factor design 
(LRFD). It is suggested that conducting RBD-via-FORM in tandem with partial factor designs is more illuminating and mean-
ingful than calibration of partial factors of parameters which can be sensitive in one case but insensitive in another case. Three 
cases are analysed probabilistically with respect to plane sliding in rock slopes with one or more discontinuities. In the first two 
cases, different deterministic solution procedures are used for the single block and two-block mechanisms, for comparison with 
stereographic projection method and closed form equation, respectively, prior to extending the cases into RBD. The third case 
involves a failed slope in a limestone quarry, analysed using FORM in this paper, for comparison with Monte Carlo simulation.

Highlights

• Alternative deterministic computations obtain same solutions as Goodman’s deterministic results for single-block slide 
and two-block slide.

• Extend Goodman’s deterministic single-block and two-block slides to reliability analysis accounting for input uncertainties.
• Reliability-based design (RBD) via the first-order reliability method (FORM) provides enlightening information at the 

FORM design point on parameter sensitivities.
• RBD-via-FORM automatically reflects context-dependent sensitivities of parameters at the design point of FORM, and 

can provide insights for Eurocode 7 and LRFD.
• FORM analysis of a failed slope confirms inadequate reliability. Failure probability from reliability index compares well 

with Monte Carlo simulation.
• An efficient procedure for rapid convergence of RBD-via-FORM using the Excel Forecast function.

Keywords Slopes · Probability · Reliability · Eurocode 7 · LRFD · Monte Carlo simulations

1 Introduction

The term context-dependent parameter sensitivities (in the 
title of this paper) means that it is possible for the varia-
tion of the value of a parameter (for example, cohesion c) 

to have a pivotal influence on slope stability under some 
circumstances (for example when the cohesive resistance 
cA is large due to large area A), but a small influence on 
slope stability under other circumstances (for example when 
the area A on which cohesion acts is small). Determinis-
tic parametric studies and plots have been used to investi-
gate parametric sensitivities of rock slopes, for example by 
Hoek and Bray (1981), Goodman (1989), Hudson and Har-
rison (1997), and Wyllie (2018). These books are valuable 
because the analytical formulations and mechanics of rock 
engineering problems in them constitute the deterministic 
foundation on which one can conduct probabilistic analysis 
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and reliability-based design (RBD). Both the deterministic 
and probabilistic analyses of slopes require the deterministic 
formulation of slope stability, in terms of a factor of safety 
Fs, for example. The difference is that input uncertainties 
and correlations are not explicitly accounted for in a deter-
ministic analysis which evaluates the Fs using mean values, 
for example, but are explicitly modelled in a probabilistic 
approach which evaluates the probability of failure (Fs ≤ 1.0) 
using mean values, standard deviations, parametric correla-
tions and probability distributions. The formulation of Fs is 
also needed in the performance function of the probabilistic 
approach. (The non-intrinsic nature of computed probability 
of failure and a pragmatic standpoint is discussed in Sect. 5.)

This paper uses the first-order reliability method (FORM) 
to study context-dependent parameter sensitivities in rock 
slopes, and extends significantly (with new examples and 
elaborations) the earlier investigations by Low (2015), Low 
(2019) and Low and Bathurst (2022). It will be demonstrated 
that context-dependent parameter sensitivities are revealed 
more efficiently in reliability analysis and RBD-via-FORM 
than in deterministic parametric studies.

Research investigations on various aspects of rock slope 
stability have been conducted by Einstein et al. (1983), 
Hoek and Bray (1981), Low (1997), Duzgun et al. (2003), 
Park et al. (2005), Jimenez-Rodriguez and Sitar (2007), Li 
et al. (2011), Shen et al. (2012), Shen and Abbas (2013), 
Ahmadabadi and Poisel (2016), Zhao et  al. (2016), 
Dadashzadeh et al. (2017), and Pandit et al. (2019), for 
example. The investigations cover effect of discontinuity 
persistence, reliability analysis of 3D wedge mechanisms, 
probabilistic rock slope analysis, Monte Carlo simulations, 
system reliability involving multiple failure modes, response 
surface method, distinct element method and random set 
theory, determination of Coulomb shear strength parameters 
from the generalized Hoek–Brown criterion, probabilistic 
analysis using point estimate methods, Barton-Bandis failure 
criterion, probabilistic characterization of rock mass from 
limited data, and other worthy issues. In addition, Vagnon 
et al. (2020a) applied FORM and RBD for debris flow bar-
riers and demonstrated the applicability and limitations 
of EC7 for these rock engineering structures, and Vagnon 
et al. (2020b) investigated the complementarity of the RBD 
approach within EC7 principles by analyzing the design of 
a slope subjected to rockfall.

Insights from RBD to complement the load and resistance 
factor design (LRFD) in soil engineering was presented in 
Low (2017), using the Low and Tang (2007) spreadsheet-
based implementation of FORM which obtains the same 
solution as the mathematically intricate classical FORM 
procedure, but in a more lucid and efficient manner than the 

latter, and with an enlightening intuitive perspective in the 
original unrotated space of the random variables. The Low 
and Tang (2007) FORM will be used here.

This paper investigates RBD of 2-dimensional rock 
slopes containing one or multiple discontinuity planes 
along which rock blocks may slide. Single failure mode 
and Coulomb shear resistance are assumed in this study 
which investigates context-dependent parameter sensitivi-
ties. Two originally deterministic cases and one Monte 
Carlo simulation case from the literature are designed 
and analysed probabilistically using FORM. The dis-
cussions on context-dependent sensitivity information 
attainable from the design point of RBD-via-FORM, and 
connections with partial factor design methods, consti-
tute the gist of the paper. The three cases investigated 
are (i) a single-block mechanism with potential sliding 
along a discontinuity plane, (ii) a two-block mechanism 
with potential sliding along two discontinuity planes, 
and (iii) a failed slope in a limestone quarry. The first 
two cases were deterministic examples from Goodman 
(1989), extended probabilistically in this study; the third 
case was a failed slope analysed by Monte Carlo simu-
lation in Wyllie (2018), which will be compared with 
reliability analysis using FORM in this paper. The alter-
native deterministic solution procedures in this paper 
using practical constrained optimization in spreadsheet 
will facilitate understanding of the original deterministic 
solution procedures in the cited sources based on stereo-
graphic projection method and derived closed form equa-
tion. The extension from deterministic to probabilistic 
analysis demonstrate the merits and efficiency of FORM-
based probabilistic sensitivity analysis and its potential to 
complement, enhance and enlighten partial factor design 
methods like EC7 and LRFD.

The context-dependent parameter sensitivities (and 
insights and information for enhancing partial factor design 
methods) investigated in this paper is a phenomenon/theme 
which is pertinent in many disciplines, as elaborated in 
chapters 2–11 of Low (2021), for about 60 examples in 
civil, environmental and soil and rock engineering. The 
three RBD-via-FORM and reliability analysis examples in 
Sects. 2, 3 and 4 below are based on Chapter 9 (on 2D rock 
slopes) of the Low (2021) book.

The lucid and transparent Excel-based solution files (54 
in total) of all the chapters in Low (2021), including the 
solutions for the three examples in this paper, are free for 
download to help understanding FORM and to impart hands-
on appreciation, at https:/www. routl edge. com/ 97803 67631 
390 (scroll down to Support Material/Ancillaries, to down-
load Solutions for the book’s examples, 11.7 MB).

http://www.routledge.com/9780367631390
http://www.routledge.com/9780367631390
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2  A Rock Slope with a Single Discontinuity 
Plane

2.1  Comparing Deterministic Stability Analysis 
by Stereographic Projection and by Equation

An example problem of a rock slope containing a discontinu-
ity plane is analyzed deterministically in this section, using a 
procedure different from the cited source, before extending 
the case to reliability-based design (RBD) in Sects. 2.2–2.4

Figure 1 shows a problem from Goodman (1989, prob-
lem 8.3), in which a discontinuity plane (Plane 1) daylights 
into a cut. The orientation of the plane in strike and dip 
convention is: strike N30° W, dip 50° NE. The weight of 

a potential sliding mass on the discontinuity plane is 400 
metric tons on an area of 200  m2. The friction angle is 
estimated to be 30°. It is required to determine the rock 
bolt force T that will increase the factor of safety Fs to 1.0 
and 1.5 when there is no water pressure, and the water 
pressure u on the discontinuity plane that will cause slide 
when the rock bolt force for Fs = 1.5 based on dry slope 
condition is acting.

Some formulas of single-block plane slides were given in 
Goodman, based on equating the shear force directed down 
the sliding surface with the shearing resistance along the 
sliding surface, when the condition for limit equilibrium 
is reached. For the problem in Fig. 1, Goodman’s solution 
(1989, pp 530–531) was obtained using the graphical lower 

A determinis�c example from Goodman (1989)

(a) Determine the direc�on and magnitude of the minimum rock bolt force to achieve
a factor of safety of (i) 1.0, and (ii) a factor of safety of 1.5.

(b) Determine the water pressure on plane 1 which would cause failure a�er rock bolts
are installed for a safety factor of 1.5.

δ

 θ
T

W
Qs

(a) (i) 137 tons (1343 kN), in a direc�on rising 20° above horizontal to the S 60° W.

(ii) 194 tons ((1901 kN), in a direc�on rising 29° above horizontal to S 60° W.

(b) The water pressure to ini�ate slip is 112 tons/200 m2 = 0.56 tons/m2 = 5.5 kPa.

Answers in Goodman (1989, p530-531), using lower hemispherical projec�on 
technique and the fric�on circle concept: 

Orienta�on of plane 1: Dip direc�on/Dip = 060/50

Weight of triangular block on plane 1 : W = 400 metric tons

Base area of poten�al sliding block: A = 200 m2

Fric�on angle along plane 1: φ = 30°.
External load: Qs = 0

Fig. 1  A deterministic plane slide analysis involving rock bolt force T and water pressure on discontinuity plane 1. (After Goodman 1989, prob-
lem 8.3)
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hemispherical projection technique and the friction circle 
concept.

This section solves, deterministically then probabilisti-
cally, the same problem using an analytical formulation and 
the constrained optimization Solver tool of Microsoft Excel 
spreadsheet.

Force equilibrium along the discontinuity plane leads to 
the following equation:

where

Rearranging, one gets:

Equation (3) means that the traditional global (lumped) 
factor of safety, Fs, is the ratio of the maximum available 
upslope resisting force (the numerator) to the downslope 
sliding force (the denominator).

Another perspective is possible by rearranging Eq. (1) 
as follows:

which means mobilized resistance = net sliding force along 
discontinuity plane. This perspective is useful for EC7 and 
LRFD, where there are several partial factors instead of a 
lumped Fs.

Note that Eq. (3) is valid when T is a mobilized force at 
working condition, of the same nature as the first term in 
the denominator of Eq. (3) which is the actual downslope 
sliding force at working condition.

When there is no rock bolt force (i.e. T = 0), and water 
pressure u is also zero, the above expression reduces to:

which means that the maximum available frictional resist-
ance on the discontinuity plane is only 48% of that needed 
to maintain equilibrium; the block will slide if not reinforced 
by rock bolt. The effect of rock bolt force T and water pres-
sure u on the factor of safety is investigated next.

Equations (2) and (3) have been entered in a spread-
sheet as shown in Fig. 2, in cells with headings N′ and Fs, 

(1)N� tan�

Fs

+ T cos (� − �) −
(

W + Qs

)

sin � = 0,

(2)N� =
(

W + Qs

)

cos � + T sin (� − �) − uA.

(3)Fs =

[(

W + Qs

)

cos � + T sin (� − �) − uA
]

tan�
(

W + Qs

)

sin � − T cos (� − �)
.

(4)N� tan�

Fs

=
(

W + Qs

)

sin � − T cos (� − �),

(5)

Fs =

[(

W + Qs

)

cos �
]

tan�
(

W + Qs

)

sin �
=

tan�

tan �
=

tan 30◦

tan 50◦
= 0.48,

respectively. The solution for part (a) of the question in 
Fig. 1 is obtained easily as follows in Fig. 2a(i), (ii):

Fig. 2a(i): Initially T = 0, and θ = 0. The Solver tool 
was invoked, to minimize the "T × 1” cell, by changing 
(automatically) cells T and θ, subject to the constraint Fs 
= 1.0. The solution obtained by the Solver tool is T = 
1340.7 kN = 136.8 tons, and θ = 20.0°, practically the 
same as those (137 tons and 20°, Fig. 1) obtained by the 
stereographic projection and friction circle analysis (which 
involve approximate graphical measurements).

Fig. 2a(ii): Invoke the Solver tool, to minimize the "T × 
1” cell, by changing (automatically) cells T and θ, subject 
to the constraint Fs = 1.5. Get T = 1897.4 kN = 193.6 tons, 
and θ = 28.9°, again in agreement with those (194 tons, 
and 29°, Fig. 1) obtained by the graphical stereographic 
projection and friction circle analysis.

The solution for part (b) of the question in Fig. 1 is 
obtained easily as follows:

Fig.  2b: With T and θ as found in a(ii) above, 
invoke Solver to set cell Fs to 1.0, by changing u. Get 
u = 5.34 kPa = 0.54 ton/m2, compared with 0.56 ton/m2 
obtained approximately in Fig. 1 from scaling the water 
force U in a force polygon

Note that the weight of 400 tons on an area of 200  m2 
(mentioned in the question in Fig. 1) means that the potential 
sliding mass has an average thickness of only about 0.75 m. 
The average normal stress exerted by the potential sliding 
mass on the discontinuity plane is about 12.6 kPa. Hence 
even a seemingly small water pressure of 5.34 kPa can 
reduce the Fs from 1.5 (dry case, Fig. 2a(ii)) to 1.0, Fig. 2b, 
where the water force U is 5.34 kPa × 200  m2 = 1066 kN. 
One can already anticipate the context-dependent sensitivity 
of slope instability to water pressure. The safety of a heavier 
potential sliding block (or same weight W but smaller area 
A) will be less sensitive to the same water pressure than a 
lighter potential sliding block (or same weight W but bigger 
area A) to the same water pressure. Such context-dependent 
sensitivities of water pressure and other parameters will be 
automatically reflected in the outcome of RBD-via-FORM, 
as demonstrated later.

Goodman (1989) aptly noted that the minimum force 
direction is not the direction for shortest bolts. The latter is 
perpendicular to the sliding plane. The optimum direction 
depends also on the relative costs of steel and drill holes and 
lies somewhere between these two extremes.

We next consider a case similar to Figs. 1 and 2, but with 
the aim to determine the mean rock bolt force T which will 
achieve a reliability index β of 2.5 against sliding of the rock 
block. The uncertainties of five of the inputs, namely W, A, 
u, T and ϕ, are accounted for.
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Fig. 2  An alternative deterministic analysis of the plane slide example, using force equilibrium equation and the Excel Solver optimization tool, 
instead of the graphical stereographic projection solution of Fig. 1
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2.2  Probabilistic‑Based Design: RBD‑via‑FORM 
Against Sliding Along a Discontinuity Plane

The random variables are assumed to be the weight of rock 
W above the discontinuity plane (Fig. 1), the discontinuity 
surface area A under the potential sliding block, mobilised 
rock bolt force T at working condition, water pressure u on 
the discontinuity plane, and friction angle ϕ of the discon-
tinuity plane. Weight W and area A are assumed to be posi-
tively correlated with ρWA = 0.5, on the ground that larger 
area A tends to occur with bigger weight. (Weight W is equal 
to area × thickness × rock unit weight; all else equal, larger 
weight tends to occur with bigger area, hence it is logical to 
model positive correlation between W and A).

In Fig. 3, the mean values of W, A and ϕ are 3920 kN, 
200  m2, and 30°, respectively, the same as the deterministic 
inputs in Figs. 1 and 2. The mean value of T is the design 
value to be determined, for a target reliability index β of 
2.5, which corresponds to a failure probability of 0.62%. 
The standard deviations of W, A, T and ϕ are assumed to 
be 10% of their respective mean values. These four random 
variables are assumed to obey the normal distribution, which 
is generally used for probabilistic studies in geotechnical 
engineering unless there are good reasons for selecting a 
different distribution (Hoek, 2007). The pore water pressure 
u is assumed to follow the gamma distribution, Gamma (5, 
0.5), for illustrative purpose in this case. The two parametric 
values (5, 0.5) correspond to a mean μ = 2.5 kPa and a stand-
ard deviation σ ≈ 1.12 kPa for the water pressure u. (The 
probability density function (pdf) curve of Gamma (5, 0.5) 
can be plotted for visualization, at https:// statd ist. com/ distr 
ibuti ons/ gamma, for example. It has a mode at around u = 2.0 
and is non-symmetric. The pdf curve extends mostly over 
the domain u = 0 to about u = 7.0, with negligible area under 
the curve for u > 7. Other pdf of water pressure u can be used 
in an actual project if data are available, including using the 
bounded four-parameter beta-general distribution with pdf 
of diverse shapes, and the three-parameter PERT distribu-
tion which is a special case of the beta-general distribution. 
The use of normal distributions for W, A, T and ϕ in Fig. 3 
are also illustrative, and reasonable when the coefficient of 
variation is smaller than 0.25 and the distribution is judged 
to be symmetrical.)

The two columns labelled “Para1” and “Para2” and the 
5-by-5 correlation matrix in Fig. 3 show the statistical inputs 
described above. The transition from the deterministic set-
up of Fig. 2 to the RBD set-up in Fig. 3 is straightforward: 
replace the numerical values of W, A, u, T and ϕ in the first 
row by cell addresses so that they read their values from the 
column labelled “x*”. The five cells under the x* column 
invoke simple Visual Basic for Applications (VBA) pro-
gram codes in Microsoft Excel to calculate x* values from 

the corresponding values under the column labelled “n”, as 
explained in Low and Tang (2007). The performance func-
tion g(x) in Fig. 3a is Eq. (1) with Fs = 1.0:

The equation for the FORM reliability index β in Fig. 3a 
is:

where n is the five-cell column and R the 5-by-5 matrix in 
Fig. 3a.

As explained in Low and Tang (2007) and in Chapter 2 
of Low (2021), Eq. (7) literally means finding the smallest 
equivalent 5D dispersion ellipsoid that just touches the limit 
state surface (LSS) at the most probable failure point (also 
called the design point). A 2D illustration is given in the 
Appendix.

In reliability analysis via FORM, the outcome is the com-
puted reliability index β (as defined by Eq. 7), for a given 
design, which in this case is a given value of mean rock bolt 
force T that appears in the performance function g(x) of 
Eq. (6). In RBD-via-FORM, the objective is to determine 
the unknown value of a parameter (the mean rock bolt force 
T) which will achieve a target (or desired) reliability index 
β, for example a target β of 2.5 or 3.0. The next section 
provides an efficient procedure for RBD-via-FORM using 
the Excel Forecast function to estimate the design value of 
a parameter.

2.3  Rapid RBD‑via‑FORM Using the Excel Forecast 
Function

Initially the n column values in Fig. 3a were zeros. Then:

(a) A trial value (e.g. 1800 kN) was input for the mean 
value of T (under the “Para1” column), such that the 
cell labelled g(x) displays a positive value.

(b) Microsoft Excel built-in routine Solver was invoked, 
to minimize the cell β, by automatically changing the 
five values under the column labelled n, subject to the 
constraint that the performance function cell “g(x)” be 
equal to 0.0.

(c) Repeat steps (a) and (b) with another trial mean value 
of T (e.g. 2300 kN). The two trial values of T and their 
corresponding computed β values are then used by the 
Excel forecast.linear function to predict (or estimate) 
a design value that will achieve the target β value. In 
most cases only two sequential estimates by the Excel 
forecast.linear function are needed to obtain the correct 

(6)g(�) = N� tan� + T cos (� − �) −
(

W + Qs

)

sin �.

(7)� = min
�∈F

√

�T�−1�, (entered as an array formula),

https://statdist.com/distributions/gamma
https://statdist.com/distributions/gamma
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Fig. 3  a RBD of mean T for β 
of 2.5, b reliability index β var-
ies with μT and dip angle δ of 
discontinuity plane, c sensitivi-
ties, partial factors, and LF and 
RF are context-dependent
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design solution, as illustrated in Fig. 12 in the Appen-
dix.

A mean value of T of 2493 kN (under the column labelled 
“Para1”) achieves the target reliability index β of 2.5. The 
five values under the x* column represent the design point 
where the expanding equivalent dispersion ellipsoid first 
touches the LSS.

The following in Fig. 3a are noteworthy:

(1) The negative n values of uncorrelated T and ϕ from 
RBD-via-FORM, − 1.678 and − 1.116, respectively, 
indicate that these two are resistance parameters, which 
decrease from their safe mean values (2493 kN, 30°) 
to smaller design values (2075 kN, 26.65°) under the 
column labelled x*.

(2) In contrast, the positive n values of W, A and u, at 
1.155, 0.734, and 0.904, respectively, reveal their unfa-
vourable effects on stability (they are “loads”), in hav-
ing their design values under the x* column (4373 kN, 
214.7  m2, 3.447 kPa) at higher values than their safe 
mean values of 3920 kN, 200  m2, and 2.50 kPa.

(3) The unfavourable character of area A arises due to the 
product uA being a destabilising water force, and also 
due to A being positively correlated with weight W. 
However, if shear resistance along discontinuity plane 
derives from cohesion c apart from friction angle ϕ, the 
random variable A would have stabilizing-destabilizing 
duality, in contributing resistance cA and unfavourable 
load uA. RBD-via-FORM will automatically reveal 
whether decreasing or increasing the value of area A is 
more critical in reaching the most probable failure point 
(i.e., the design point), defined by the values under the 
x* column.

(4) In summary, the mean values of W, A, T, u and ϕ consti-
tute the mean-value point in the safe domain if the per-
formance function g(x) is positive when the n column 
values are initially zeros prior to invoking the Solver 
tool. The five design values under the x* column repre-
sent the design point (the most probable failure point) 
where the 5-dimensional expanding equivalent disper-
sion ellipsoid first touches the LSS in the 5D space of 
W, A, T, u and ϕ, analogous to the 2D illustration in the 
Appendix.

(5) It is an important merit of RBD-via-FORM (Fig. 3a) 
that the context-dependent sensitivities of the random 
variables are reflected in the probabilistic design out-
come, under the column labelled n. Figure 3a reveals 
that the stability of the rock block, for the adopted 
statistical inputs and parametric correlations, is most 
sensitive to the rock bolt force T (a resistance param-
eter, with the highest absolute value of 1.678 under the 
n column), followed by weight W (a load parameter), 

discontinuity friction angle ϕ (a resistance parameter), 
water pressure u and area A (uA is a load parameter), in 
decreasing order of sensitivity based on their respective 
absolute values under the n column.

(6) The negative sensitivity indicator value of − 1.678 
(under the n column, for the rock bolt force T) means 
that its most probable failure value (2074.7 kN, under 
the x* column) is at 1.678 times its standard deviation 
below its mean value of 2493. The positive sensitivity 
indicator value of 1.1551 (under the n column, for the 
weight W) means that its most probable failure value 
(4372.8 kN, under the x* column) is at 1.1551 times its 
standard deviation above its mean value of 3920. For 
the nonnormally distributed water pressure u, its posi-
tive sensitivity indicator value of 0.9043 means that 
its most probable failure value of 3.447 kPa (under the 
x* column) is at 0.9043 times its equivalent normal 
standard deviation above its equivalent normal mean 
value.

(7) The most probable failure values under the x* column 
are akin to the design values in Eurocode 7, but are 
obtained as insightful corollary of RBD-via-FORM, 
not based on code-specified partial factors as in Euroc-
ode 7. This will be further illustrated in the sections 
below.

(8) The sensitivities of random variable (in their influence 
on reliability and the design point) can vary from case 
to case, depending on the magnitude of their mean 
values, the level of uncertainty represented by their 
standard deviations, the correlations among random 
variables as justified by physical considerations, the 
probability distributions of the random variables, and 
the roles played by the random variables in the perfor-
mance function. RBD-via-FORM will automatically 
reveal context-dependent and case-specific sensitivities 
of random variables.

From the perspective of the load and resistance factor 
design (LRFD), it is possible to back-calculate load factors 
(LF) and resistance factor (RF) from the outcome of RBD-
via-FORM. To do this, one needs to first define loads Qi and 
resistance R, and nominal values of loads and resistance.

Based on Eq. (3), one possible way of defining load Q and 
resistance R is as follows:

Partial factors LF and RF can then be back-calculated 
from:

(8)Q =
(

W + Qs

)

sin � − T cos (� − �),

(9)
R = N� tan� =

[(

W + Qs

)

cos � + T sin (� − �) − uA
]

tan�.
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and

where Q* and R* are calculated from the design values of 
the underlying random variables, Qn is nominal load (typi-
cally greater than mean load), and Rn is nominal resistance 
(typically smaller than mean resistance). Such back-calcu-
lated LF and RF will vary from case to case. For example, 
those for δ = 40° will be different from those for δ = 50°, and 
those for target β equal to 3.0 will be different from those for 
target β equal to 2.5.

Figure 3b shows that the required mean value of rock 
bolt force T depends on the target reliability level and the 
dip angle δ of the discontinuity plane. Figure 3c shows the 
context-dependent sensitivity indicators (whether n, or n/β) 
on the left panel, the back-calculated partial factors of the 
underlying five parameters in the middle panel, and the LF 
and RF on the right (based on Eqs. (8) and (9)). The par-
tial factors of the five random variables and the LF and RF 
are based on mean values (including Eqs. (10b) and (11b)). 
Other values of partial factors and LF and RF are possi-
ble, depending on the level of conservatism in the adopted 
characteristic values (in Eurocode 7) and nominal values 
(in LRFD).

Other definitions of Q and R are possible apart from Eqs. 
(8) and (9). For example, a designer may decide simply to 
let Q = W, and R = T, and obtain the back-calculated LF and 
RF as LF = W*/Wn, and RF = T*/Tn, and so on.

It is obvious from Fig. 3 and the above discussions that 
the values of partial factors and LF and RF back-calculated 
from the results of RBD-via-FORM are affected by the 
following:

(i) The target level of reliability in RBD-via-FORM, 
whether β = 2.5, 3.0, or 3.5.

(ii) The level of conservatism in selecting the characteristic 
or nominal values.

(iii) The definition of loads and resistance in LRFD.
(iv) The relative magnitudes of the mean values and COV 

of the random variables in RBD-via-FORM.
(v) Other details which may cause the sensitivity of a ran-

dom variable to vary from case to case. For example, 
for the case in hand, different dip angle of the discon-
tinuity plane may change the sensitivities (and hence 
back-calculated partial factors and LF and RF) of W, T, 
u and ϕ.

(10a)LF = Q∗∕Qn

(10b)(or mLF = Q∗∕�Q),

(11a)RF = R∗∕Rn

(11b)(or mRF = R∗∕�R),

2.4  Context‑Dependent Sensitivities Manifested 
by Cohesion c and Water Pressure u

Sensitivity indicators n (or n/β), and back-calculated partial 
factors and LF and RF from RBD-via-FORM, are meaning-
ful for enhancing EC7 and LRFD, in a case-specific (i.e. 
context-dependent) manner. It is not meaningful to calibrate 
back-calculated partial factors and LF and RF because the 
calibrated partial factors do not have general applicability.

To illustrate, Fig. 4a shows a case identical to Fig. 3a 
except there is an additional cohesive resistance with mean 
cohesion μc = 10 kPa and standard of deviation σc = 2 kPa, 
which means a mean cohesive resistance of 10 kPa × 200 
 m2 = 2 MN. This makes the cohesion by far the most piv-
otal random variable, with a nc value of − 1.918, or nc/β 
of − 0.77, as shown in the last row of Fig. 4a. The n/β 
values from Fig. 3a (with no cohesion) is shown in the 
rightmost column in Fig. 4a, for comparison. In contrast, 
Fig. 4b shows a case with smaller mean discontinuity area 
A (μA = 60  m2) than Fig. 4a, where mean area μA was 200 
 m2. This reduces both the mean cohesive force cA (a resist-
ance) and mean normal water force uA (an unfavourable 
load) to only 30% of their mean values in Fig. 4a, and 
greatly diminishes the values of the sensitivity indicators 
n/β of cohesion c and water pressure u: − 0.07 and 0.12 in 
Fig. 4b versus − 0.77 and 0.41 in Fig. 4a when the area A 
was 200  m2. The random variables W, T and ϕ in Fig. 4a, 
with small n/β values of 0.26, − 0.20, and 0.10, respec-
tively, became the three most important players in Fig. 4b, 
with n/β values of 0.51, − 0.58, and − 0.49, respectively. 
One may also note that the less-sensitive random variable 
ϕ in Fig. 4a has its design value (30.76°) slightly above its 
mean value of 30°, due to its negative correlation with the 
most-sensitive cohesion c there where discontinuity area 
was 200  m2. This is an example of correlated sensitivi-
ties which was explained in Low (2020) in the context of 
rotational ULS of a spread foundation.

In RBD-via-FORM, it is important to distinguish posi-
tive from negative reliability index. For example, for the 
case in Fig. 4b, a mean value of T = 446 kN will also 
achieve a computed β of 2.50, which must be regarded as 
the negative root of the equation for β (Eq. 7), because the 
performance function cell g(x) displayed a negative value 
when the n values were initially zeros, which means the 
mean-value point is in the unsafe domain. In contrast, for 
mean T > 902.1 kN, the g(x) displays a positive value when 
the n values are initially zeros. For the case in Fig. 4b, a 
mean value of T = 1540 kN achieves the target β of 2.5 (the 
positive root of Eq. (7)), or failure probability Pf of 0.62%. 
For mean T = 902.1 kN, the mean-value point is right on 
the limit state surface g(x) = 0 (Fs = 1.0), which means a 
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failure probability of about 50%. For mean T = 446 kN, 
the mean-value point is already inside the unsafe domain, 
with a β value of − 2.50, or failure probability of 99.38%.

To sum up, the sensitivity indicators (n, or n/β), back-
calculated partial factors, and other information in FORM 
offer valuable perspective and guidance for EC7 and LRFD 
design in a case-specific and context-dependent way. There 

(a)

(b)

N
o cohesion

W
ith cohesion

n/β
0.46

0.29

-0.67

0.36

-0.45

(°) (°) (°)
W Qs T u A φ δ θ N'

4419.7 0 1316.8 2.679 61.9 26.36 50 28.9 3149

kN kN kN kPa (m2) 0.46 0.87 0.5

Para1 Para2 n x* Correla�on Matrix R n/β
Normal W 3920 392 1.275 4419.7 1 0.5 0 0 0 0 0.51

Normal A 60 6 0.320 61.92 0.5 1 0 0 0 0 0.13

Normal T 1540 154 -1.449 1316.8 0 0 1 0 0 0 -0.58

Gamma u 5.0 0.5 0.306 2.679 0 0 0 1 0 0 0.12

Normal φ 30 3 -1.215 26.36 0 0 0 0 1 -0.5 -0.49

Normal c 10 2 -0.179 9.641 0 0 0 0 -0.5 1 -0.07

g(x) β Pf

0.00 2.50 0.62%

radiansThe above W, T, u, A and φ cells read
their values from the x* column

Area A = 60 m
2

n/β
0.46

0.29

-0.67

0.36

-0.45

N
o cohesion

A
rea A

 = 200 m
2

W
ith cohesion

A
rea A

 = 60 m
2

(°) (°) (°)
W Qs T u A φ δ θ N'

4178.8 0 698.8 3.605 199.4 30.76 50 28.9 2219

kN kN kN kPa (m2) 0.5368 0.87 0.5

Para1 Para2 n x* Correla�on Matrix R n/β
Normal W 3920 392 0.660 4178.8 1 0.5 0 0 0 0 0.26

Normal A 200 20 -0.031 199.4 0.5 1 0 0 0 0 -0.01

Normal T 736 73.6 -0.506 698.8 0 0 1 0 0 0 -0.20

Gamma u 5.0 0.5 1.016 3.605 0 0 0 1 0 0 0.41

Normal φ 30 3 0.252 30.76 0 0 0 0 1 -0.5 0.10

Normal c 10 2 -1.918 6.163 0 0 0 0 -0.5 1 -0.77

g(x) β Pf

0.00 2.50 0.62%

radiansThe above W, T, u, A and φ cells read
their values from the x* column

Fig. 4  a With mean cohesion μc = 10 kPa, which results in a mean cohesive resistance of 10 × 200 = 2 MN; cohesion becomes by far the most 
pivotal random variable. b With cohesion, but smaller mean area A of 60  m2 instead of 200  m2 in a; cohesion no longer a pivotal parameter
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is not much point trying to calibrate back-calculated par-
tial factors from FORM for LRFD and EC7, because dif-
ferent cases and changing context can change important 
random variables in one case to become insignificant ran-
dom variables in another case, as demonstrated in Fig. 4.

The above examples and figures involve the stability 
of a single rock block above a discontinuity plane P, as 
shown in the top sketches of Figs. 1 and 2. We next con-
sider stability analysis involving two-block mechanisms 
and potential sliding along two discontinuity planes.

3  A Case of Potential Sliding Along Two 
Frictional Slip Surfaces Which Have 
Different Dip Angles

A deterministic example of two blocks sliding on two dis-
continuity planes (Fig. 5) is analysed using simple force 
equilibrium considerations, to facilitate readers’ understand-
ing of the closed form limit equilibrium equation in the cited 
source. This is followed by reliability-based design for dif-
ferent scenarios to demonstrate context-dependent sensitivi-
ties of the parameters affecting the stability of the rock slope.

3.1  Closed Form Equation for Limiting Equilibrium 
of a Two‑Block Mechanism

The following equation was derived in Goodman (1989, pp 
465–468), to calculate the required support force Rb (in the 
lower passive block of Fig. 5, in a direction θ below horizon-
tal) to achieve limiting equilibrium (i.e. Fs = 1.0):

where as shown in the top sketch of Fig. 5a, ϕ1, ϕ2, ϕ3 are 
the friction angles applicable to sliding along the upper, 
lower, and vertical slide surfaces, respectively; δ1 and δ2 are 
the inclinations of the upper and lower slide surface, respec-
tively; W1 and W2 are the weights of the (upper) active and 
the (lower) passive blocks per unit of slide width.

Part (a) of the question in Fig. 5 is about back-calculat-
ing the available friction angle for a slope with-a two-block 
mechanism that failed. Since failure occurred without any 
support force, Rb is set equal to zero on the left of the closed 
form Eq. (12). Assuming ϕ1 = ϕ2 = ϕ3, the solution of ϕ is 
obtained by trial and error to be 36.4°.

Part (b) of the question concerns evaluating the factor 
of safety if the volume V1 of the upper block is reduced 
from 10,000 to 6000  m3. Assuming ϕ1 = ϕ2 = ϕ3, the solu-
tion is first obtained for the ϕ value that will just maintain 

(12)Rb =
W1 sin

(

�1 − �1

)

cos
(

�2 − �2 − �3

)

+W2 sin
(

�2 − �2

)

cos
(

�1 − �1 − �3

)

cos
(

�2 − �2 + �
)

cos
(

�1 − �1 − �3

) ,

equilibrium at the reduced destabilizing weight of the upper 
block, based on Eq. (12) with Rb = 0. The required ϕ for 
limiting equilibrium is 33.3°. Knowing from part (a) that 
the available friction angle is 36.4°, the factor of safety is 
therefore calculated to be Fs = tan(36.4°)/tan(33.3°) = 1.12.

Part (c) of the question concerns calculating the support 
force Rb required to achieve the same Fs as the excavation in 
part (b). Equation (12) for Rb is for limiting equilibrium, i.e. 
Fs = 1.0. Nevertheless, the required Rb can be calculated by 
input of ϕ1 = ϕ2 = ϕ3 = 33.3° in Eq. (12), because 33.3° cor-
responds to an Fs of 1.12 from part (b). Therefore, a support 
force of 37.1 MN is required to achieve the same Fs as the 
excavation in Part (b).

Using the same principle as that in the solution of Fig. 5c, 
the support force Rb to achieve any Fs can be calculated 
using the above Eq. (12) from Goodman (1989). For exam-
ple, for the case in hand, based on the original volumes 
V1 = 10,000  m3 and V2 = 14,000  m3, if the desired Fs is 1.20, 
one can input ϕ1 = ϕ2 = ϕ3 = atan(tan(36.4°)/1.2)) = 31.57° in 
Eq. (12), and obtain the required support force of Rb = 58.4 
MN.

In engineering analysis, if the same solution/s can be 
obtained by different procedures, it will often enhance under-
standing to explore and compare the different procedures. 
The comparison is desirable in this case because the deriva-
tion of Eq. (12) involves sixteen intermediate equations and 
two different coordinate systems. In this spirit, an alternative 
deterministic solution procedure to the three-part problem of 
Fig. 5 is presented next, before extending it to reliability-based 
design.

3.2  An Alternative Deterministic Procedure 
for Two‑Block Stability Analysis

Figure 6 shows the forces acting on the two blocks of the slope, 
namely weights of the blocks W1 and W2, mobilized shear 
forces Q1 and Q2 along the upper and lower sliding planes, 
total normal forces N1 and N2 perpendicular to the sliding 
planes, external rock anchor force Rb, and internal resultant 
force Z inclined at an angle α with the normal to the vertical 
interface. Water forces U1 and U2 and cohesion c1 and c2 on 
the discontinuity planes can be readily incorporated if appro-
priate. In this case, there is no water force, and shear resist-
ances along discontinuity planes are frictional. Hence, U1, U2, 
c1 and c2 are zeros. The horizontal and vertical equilibriums 
of the two blocks are satisfied when the four simple equations 
of ΣH and ΣV shown in Fig. 6 are equal to zeros.
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Fig. 5  Deterministic two-block stability analysis based on Goodman (1989) closed form equation
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There are more unknowns than can be solved by the four 
equilibrium equations. One assumption commonly made to 
reduce the number of unknowns is that the inclination angle 
α of the side force Z at the vertical interface is equal to the 
mobilized friction angle ϕm on the discontinuity planes:

as assumed in the Goodman solutions of Fig. 5, where 
α = ϕ3, and ϕ3 = ϕ1 = ϕ2, with Fs = 1.0.

For the case in hand, the input parameters for the four equi-
librium equations in Fig. 6 are δ1, δ2, α, Rb, θ, W1 and W2. The 

(13)� = �m = tan−1
(

tan�∕Fs

)

Fig. 6  An alternative determin-
istic procedure for two-block 
stability analysis that obtains 
the same solution as the 
Goodman (1989) closed form 
equation
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Make assumption on α, then use the spreadsheet Solver tool to find the 
values of four unknowns which satisfy the above four equilibrium equations.
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mobilized shear force Q1 and Q2 can be calculated once the 
values of N1, N2 and Fs are determined, as follows:

There is no need to derive the factor of safety Fs as a 
function of the underlying parameters (δ1, δ2, Rb, θ, W1, W2, 
ϕ1, ϕ2, …). The solution can be obtained easily by solving 
for four unknowns in the four equilibrium equations using 
the Excel Solver tool.

For part (a) of the problem in Fig. 5, the solution is 
obtained in Fig. 7a as follows:

 (i) The value of Fs is 1.0. The unknowns are N1, N2, 
Z, and ϕ (the same for ϕ1, ϕ2 and α). Initially 
ϕ1 = 30°, F = 1, N1 = W1, N2 = W2, Z = W2. These 
lead to nonzero values in the cells labelled “Eq. (1)”, 
“Eq. (2)”, “Eq. (3)” and “Eq. (4)” in Fig. 7a, which 
means the four force equilibrium conditions as speci-
fied by the four equations in Fig. 6 are not satisfied.

 (ii) The Solver tool was invoked, to set the “Eq. (1)” cell 
to 0, by changing the values of cells N1, N2, Z and 
ϕ1, subject to the constraints that the cell values of 
Eq. (2), Eq. (3) and Eq. (4) in Fig. 7a be zeros.

 (iii) A solution of ϕ = 36.38° is obtained in the ϕ1 cell of 
Fig. 7a, the same as that in Fig. 5a, together with the 
solution values of N1, N2 and Z. All the four “Eq.” 
cells in Fig. 7a are zeros, indicating satisfaction of 
force equilibrium conditions.

For part (b) of the problem in Fig. 5, the volume V1 in 
Fig. 7b is changed to 6000  m3. the solution is obtained in 
Fig. 7b as follows:

 (i) The unknowns are Fs, N1, N2 and Z. Initially F = 1, 
N1 = W1, N2 = W2, and Z = W2.

 (ii) The Solver tool was invoked, to set the “Eq. (1)” cell 
to 0, by changing the values of cells Fs, N1, N2, and 
Z, subject to the constraints that the values of cells 
Eq. (2), Eq. (3) and Eq. (4) in Fig. 7b be zeros. (It 
is good to use the “Automatic Scaling” option in the 
Solver tool.)

 (iii) A solution of Fs = 1.121was obtained (same as that 
in Fig. 5b), together with the solution values of N1, 
N2 and Z.

For part (c) of the problem in Fig. 5, the volume V1 is 
reset to 10,000  m3. The solution is obtained in Fig. 7c as 
follows:

(14a)Q1 = N1

tan�1

Fs

,

(14b)Q2 = N2

tan�2

Fs

.

 (i) The unknowns are Rb, N1, N2 and Z. Initially 
F = 1.121, Rb = 0, N1 = W1, N2 = W2, and Z = W2.

 (ii) The Solver tool was invoked, to set the “Eq. (1)” cell 
to 0, by changing the values of cells Rb, N1, N2, and 
Z, subject to the constraints that the cell values of 
Eq. (2), Eq. (3) and Eq. (4) in Fig. 7c be zeros.

 (iii) A solution of Rb = 36.99 MN was obtained (very 
slight difference with the value 37.1 in Fig. 5c, due 
to round-off in the latter), together with the solution 
values of N1, N2 and Z.

The deterministic procedure based on simple force equi-
librium considerations in Fig. 7 can be extended readily into 
reliability-based design, as shown next.

3.3  Reliability‑Based Design of Rock Bolt Force Rb 
for a Two‑Block Mechanism in Rock Slope

The friction angles ϕ1 and ϕ2 on the two discontinuity planes 
are treated as independent normal random variables, with the 
same mean value of 36.4°, obtained from the deterministic 
back-calculations in Figs. 5a and 7a. The standard deviation 
is 3.5°, as shown in Fig. 8b. In general, the normal or Gauss-
ian distribution can be used for probabilistic studies in geo-
technical engineering when the coefficient of variation does 
not exceed 0.25 and a symmetric distribution is deemed to be 
acceptable. Different distributions can of course be used if 
there are good reasons. This is further discussed in Sect. 5. It 
may be mentioned that Hoek (2007, Chapter 8) also adopted 
normal distribution for friction angle ϕ and cohesive strength 
c when estimating the probability of failure of the Sau Mau 
Ping slope in Hong Kong.

Other random variables are the volumes V1 and V2 of the 
two blocks, of mean values 10,000 and 14,000  m3, respec-
tively, and a c.o.v. of 0.1, and the external support force Rb 
with a c.o.v. 0.1. It is assumed that the variables are independ-
ent. Suppose that the engineer wants to determine the required 
mean value of Rb for a target β of 2.5.

The deterministic template of Fig. 8a (similar to the deter-
ministic template of Fig. 7a) can be extended easily into RBD 
by adding the part shown in Fig. 8b, and replace the five 
numerical inputs in the V1, V2, Rb, ϕ1 and ϕ2 cells of Fig. 8a 
with cell addresses which refer to the five x* cells of Fig. 8b. 
The performance function in the g(x) is the formula “= Fs − 1”. 
Initially the values in the n column cells were zeros. For dif-
ferent trial values of the mean support force Rb, the Solver 
tool was used to set the β cell to minimum, by changing the 
five cells of the n column and the four numerical values of Fs, 
N1, N2 and Z cells in Fig. 8a, subject to the constraints that the 
four “Eq. (1)” …, “Eq. (4)” cells in Fig. 8a (containing the four 
equations of Fig. 6) and the g(x) cells in Fig. 8b be equal to 
zero. This literally instructs the Solver tool to find the smallest 
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W1

W2 α
α

Rb

N1

Q2 N2

θ

Z

Z

2 2 tan= mQ N φ

1 1 tan= mQ N φ

(b)

(a)

(c)

V1 V2 γ Bolt Rb θ
6000 14000 0.027 0.000 0
(m3) (m3)  (MN/m3) MN (°)

W1 W2 φ1 φ2 α = φm δ1 δ2

162 378 36.38 36.38 33.32 60 25
(radians) 0.635 0.635 0.582 1.047 0.436

Fs N1 N2 Z Q1 Q2

1.121 113.9 353.2 73.2 74.9 232.2

Eq. 1 Eq. 2 Eq. 3 Eq. 4
ΣH=0 ΣV=0 ΣH=0 ΣV=0
0.000 0.000 0.000 0.000

Initially Fs = 1, N1 = W1, N2 = W2, Z = W2

V1 V2 γ Bolt Rb θ
10000 14000 0.027 36.99 0
(m3) (m3)  (MN/m3) MN (°)

W1 W2 φ1 φ2 α = φm δ1 δ2
270 378 36.38 36.38 33.31 60 25

(radians) 0.635 0.635 0.581 1.047 0.436

Fs N1 N2 Z Q1 Q2
1.121 189.8 375.9 122.1 124.8 247.0

0 0 0

Eq. 1 Eq. 2 Eq. 3 Eq. 4
ΣH=0 ΣV=0 ΣH=0 ΣV=0
0.000 0.000 0.000 0.000

Initially Bolt Rb = 0, Fs = 1.121, N1 = W1, N2 = W2, Z = W2

Fig. 7  Deterministic analysis based on horizontal and vertical equilibrium of the two rock blocks, for comparison with the three solution of 
Goodman (1989) in Fig. 5
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Z

(a)

(b)

@RISK Sensitivity coefficients of g(x)
Regression Correlation
coefficients coefficients

0.35 0.34
0.84 0.83
0.25 0.24
-0.22 -0.21
0.22 0.21

Reliability-based design via FORM

Monte Carlo simulation using @RISK, 
with 500,000 realizations, get 

Pf = 0.63% 

x* µµ σσ n -n/β
Normal φ1 33.25 36.4 3.5 -0.901 0.360
Normal φ2 28.96 36.4 3.5 -2.126 0.850
Normal Bolt Rb 83.91 89.45 8.945 -0.619 0.248
Normal V1 10708 10000 1000 0.708 -0.283

Normal V2 13746 14000 1400 -0.181 0.072
g(x) β Pf

0.00 2.500 0.62%

(c)

1φγ

2φγ

1 1 tan= mQ N φ

2 2 tan= mQ N φ

V1 V2 γ Bolt Rb θ
10708 13746 0.027 83.91 0
(m3) (m3)  (MN/m3) MN (°)

W1 W2 φ1 φ2 α = φm δ1 δ2

289.1 371.2 33.25 28.96 28.96 60 25
(radians) 0.580 0.505 0.505 1.047 0.436

Fs N1 N2 Z Q1 Q2

1.000 211.7 380.8 130.2 138.8 210.7
Eq. 1 Eq. 2 Eq. 3 Eq. 4

ΣH=0 ΣV=0 ΣH=0 ΣV=0
0.000 0.000 0.000 0.000

= min(φ1, φ2)

Fig. 8  a Deterministic template as in Fig. 7c; b RBD-via-FORM indicate that a mean support force Rb of 89.45 MN is required to achieve a tar-
get β of 2.5; c RBD-via-FORM indicates that the partial factor of ϕ2 is greater than that of ϕ1
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expanding 5D dispersion ellipsoid that just touches the limit 
state surface defined by g(x) = 0, analogous to the 2D illustra-
tion in the Appendix.

A mean value of support force Rb = 89.45 MN (Fig. 8b) is 
found to achieve the target β of 2.5. The five values in the x* 
column of Fig. 8b constitute the most probable point of failure 
(i.e. the design point). This design point lies on the limit state 
surface defined by g(x) = Fs − 1 = 0, i.e., Fs = 1.0.

3.4  Comparison with Monte Carlo Simulation

Monte Carlo simulation can be done on the Goodman (1989) 
closed form equation (Eq. (12) above). That equation is for 
limiting equilibrium condition, which means that it defines the 
limit state surface where Fs = 1.0. In Monte Carlo simulation, 
the performance function for the Goodman equation is:

where Rb,MCarlo is the random number generated during 
Monte Carlo simulation, based on a normally distributed 
Rb of mean value 89.45 MN and standard deviation 8.945 
MN, and Rb,limiting is the value of Rb required for equilibrium 
as computed by Eq. (12) which depends on the values of 
random variables ϕ1, ϕ2, V1 and V2 generated during Monte 
Carlo simulation. (V1 and V2 determines W1 and W2, which 
appear in Eq. (12) for Rb).

Monte Carlo simulation using the @RISK software with 
500,000 realizations of Eq. (15) results in a failure probabil-
ity of 0.63%, practically the same as the failure probability 
of Pf = Φ(−�) = 0.62% in the RBD of Fig. 8b where the per-
formance function g(x) is based on satisfying the four force 
equilibrium equations shown in Fig. 6 with Fs = 1.0. This 
verifies that the deterministic procedure of Figs. 6 and 7 is 
equivalent to the closed form equation (Eq. (12)).

Shown in Fig. 8b under the column labelled “− n/β” are 
the normalized sensitivity indicators from RBD-via-FORM, 
which are in good agreement with the regression and cor-
relation sensitivity coefficients of the g(x) based on Monte 
Carlo simulation on Eq. (15), for this case when the random 
variables are independent and normally distributed.

The design point (i.e. the most probable failure point) is 
where an expanding dispersion ellipsoid (or equivalent ellip-
soid when nonnormal variates are modelled) first touches the 
limit state surface. Reliability index is the distance, in units 
of directional standard deviations, from the safe mean-value 
point to this most probable point of failure, as explained 
in the Appendix for a 2D case. Monte Carlo simulation is 
valuable for estimating failure probabilities, but may not 
explicitly locate the most probable failure point (i.e., the 
design point).

(15)g(�) = Rb,MCarlo − Rb,limiting,

It is often enlightening to examine the design point (the 
x* values) and the sensitivity indicators n, as discussed 
below in the context of Fig. 8.

3.5  Information and Insights at the FORM Design 
Point, and Implications for Eurocode 7 and LRFD

The partial factors γi and load and resistance factors LF and 
RF, in the discussions below, are with respect to mean val-
ues. This is to avoid ambiguity that arises from back-calcu-
lated partial factors and LF and RF when different character-
istic values (for Eurocode 7) and nominal values (for LRFD) 
are adopted. RBD-via-FORM needs statistical inputs, but 
not partial factors. Nevertheless, the partial factors implied 
at the design point of RBD-via-FORM are back-calculated 
for discussions with Eurocode 7 and LRFD in the following 
paragraphs.

(1) The values of the sensitivity indicators under the col-
umn labelled n, with nϕ2 = − 2.126 and nϕ1 = − 0.901, 
means that the most probable failure value of ϕ2 
(28.96°, under the x* column) is 2.126 × σϕ2 smaller 
than its mean value of 36.4°, while the most probable 
failure value of ϕ1 (33.25°) is 0.901 × σϕ1 smaller than 
its mean value of 36.4°. From the Eurocode 7 perspec-
tive, the implied partial factors are γϕ2 = 36.4/28.96 ≈ 
1.26, and γϕ2 = 36.4/33.25 ≈ 1.10. This suggests that 
the design is more sensitive to the friction angle ϕ2 of 
the lower discontinuity plane than to the friction angle 
ϕ1 of the steeper upper discontinuity plane. This con-
clusion is valid even when partial factors are calculated 
from γϕ = tanϕk/tanϕ*, where ϕk is the characteristic 
value of friction angle.

(2) That two parameters (ϕ1 and ϕ2 in this case) of the same 
physical nature can have different sensitivity indicators 
(n1 = − 0.901, n2 = − 2.126, Fig. 8b) is a manifestation 
of context-dependent sensitivity, which is accounted 
for automatically in RBD-via-FORM, but difficult to 
deal with in partial factor design approach. Hence, con-
ducting RBD-via-FORM in tandem with partial factor 
design can throw much light on the latter (e.g. EC7) 
and provide guidance in its continuing evolvement.

(3) The plots in Fig. 8c, based on information at the design 
points of RBD-via-FORM, indicate that the partial fac-
tor of ϕ2 is greater than that of ϕ1, and that the values 
of partial factors γϕ1 and γϕ2 increase with the value of 
the target reliability index β, which is logical, and is 
another manifestation of context-dependent informa-
tion.

(4) From the LRFD and EC7-DA2 perspective, the mobi-
lized resistance for the case in Fig. 8a consists of three 
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components in different directions, namely (i) mobi-
lized frictional resistance Q1 along the steeper upper 
discontinuity plane, (ii) mobilized frictional resistance 
Q2 along the lower discontinuity plane, and (iii) mobi-
lized support force Rb, which is horizontal when θ = 0 
in this case. The prevailing LRFD method allows for 
multiple loads but only one resistance. Engineers may 
think differently on how to define a single resistance 
from the multi-directional three components of resist-
ance. Even the definition of loads for use in LRFD may 
vary from one designer to another: should it be W1 and 
W2, or their sliding effects along discontinuity planes 1 
and 2? If W1 and W2 are regarded as loads, the nV1 value 
of 0.708 and nV2 value of − 0.181 in Fig. 8b suggest 
that W1 should be factored up, but not W2. In contrast, 
if sliding forces along discontinuity planes 1 and 2 are 
regarded as loads, both should of course be factored up.

It is a significant merit of RBD-via-FORM such as 
Fig. 8b that it conveys context-dependent information on 
parameter sensitivities at its most probable failure point. 
It is likely that conducting RBD-via-FORM in tandem 
with EC7 and LRFD designs can reveal issues that require 
attention, and improve design rationale and guide EC7 
and LRFD in their continuing evolution.

4  Reliability Analysis of a Failed Slope 
in a Limestone Quarry

A failed slope of height 30.5 m (Fig. 9) in a limestone 
quarry was back-analysed in Wyllie (2018, p 137), to 
obtain the values of shear strength parameters of the dis-
continuity plane that dips at an angle Ψp = 20°, followed 
by probabilistic analysis using Monte Carlo simulation. 
The desirability of using probability distributions with 
bounded lower and upper limits was aptly suggested. The 
random variables were the shear strength parameters ϕ 
and c of the discontinuity plane, and the ratio zw/z where 
z is the height of the vertical tension crack and zw is the 
height of water in the tension crack. Each of the three vari-
ables was estimated to have a minimum and a maximum 
value, and either a mean value or a most likely value, as 
described below (Wyllie 2018, p 211):

(a) Friction angle ϕ: maximum and minimum values of 
15° and 25°, respectively; the mean value was 19° and 
the standard deviation was 2.3°. This parameter was 
modelled in Wyllie (2018) by a skewed beta distribu-
tion with the most likely value of 18°.

(b) Cohesion c: most likely value of 90 kPa, and minimum 
and maximum values of 80 and 125 kPa, respectively; 
the mean value was 98 kPa. This parameter was mod-

elled in Wyllie (2018) by a skewed triangular distribu-
tion.

(c) Water pressure: expressed as per cent filling of the 19 
m deep tension crack, zw/z, ranging from 5 m (zw/z = 
26%) to full (zw/z = 100%), with the most likely value 
being 15 m (80%); the mean depth was 13 m (68%). 
This parameter was modelled in Wyllie (2018) by a 
skewed triangular distribution.

Probabilistic analysis will be done here using the Low 
and Tang (2007) FORM procedure for comparison with 
the Monte Carlo simulation result from Wyllie (2018). The 
probability distributions follow those in Wyllie (2018). 
The three parameters defining the triangular distribution 
are minimum, mode, and maximum. For cohesion c, as 
described in item (2) above, the inputs are “80, 90, 125”. 
For the water pressure coefficient zw/z, as described in item 
(3) above, the inputs are “0.26, 0.79, 1.0”, where 0.79 is 
based on 15 m/19 m.

The 4-parameter inputs for the beta distribution was not 
given in Wyllie (2018). They are estimated here as follows.

In the 4-parameter (λ1, λ2, minimum, maximum) beta 
distribution, the first two parameters (λ1, λ2) are shape 
parameters. The probability density function is symmetri-
cal if λ1 = λ2, and non-symmetrical if λ1 ≠ λ2. The mean μ 
and standard deviation σ of a beta distribution with param-
eters λ1, λ2, min and max are (e.g., Evans et al. 2000):

Hence, if λ1 = λ2 = 4 (not the case here), the mean is 
at the mid-point between min and max, and the stand-
ard deviation is equal to 1/6 of the range (max–min). The 
mode of the beta distribution is:

Item (a) above, on friction angle ϕ, reports a mean value 
of 19°, a mode of 18°, a standard deviation of 2.3°, mini-
mum of 15°, and maximum of 25°. The two unknowns λ1 
and λ2 can be determined from two of the three equations 
(Eqs. (16)–(18)). To satisfy mode = 18 and σ = 2.3°, the 
solutions are λ1 = 1.47 and λ2 = 2.11, for which the mean 
value is 19.1° by Eq. (16). Hence, the inputs for the beta 
distribution in Fig. 9b are “1.47, 2.11, 15°, 25°”.

Figure 9b shows the results of FORM analysis, obtain-
ing a reliability index β of 1.85, and a failure probability of 

(16)� = min+(max−min) ×
�1

�1 + �2
,

(17)� =
(max−min)
(

�1 + �2
)

√

�1�2

�1 + �2 + 1
.

(18)

mode = min+(max−min) ×

(

𝜆1 − 1
)

(

𝜆1 + 𝜆2 − 2
) 𝜆1 > 1, 𝜆2 > 1.
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Pf = Φ(−�) = 3.25%, compared with a failure probability 
of 3.4% reported in Wyllie (2018) based on Monte Carlo 
simulation. The sensitivity indicators (n, or − n/β) in the 
last two columns of Fig. 9b indicate that stability is most 
sensitive to zw/z, followed by friction angle ϕ and cohesion 
c of the discontinuity plane.

Instead of triangular distributions, PERT distributions can 
be used for cohesion c and zw/z, as shown in Fig. 10, with 
the same inputs of “minimum, most likely, maximum” as 
the triangular distributions in Fig. 9b. A negative correlation 
between friction angle ϕ and cohesion c of the discontinuity 
plane is modelled. The reliability index is 1.69, and failure 
probability is 4.56%.

The computed reliability index of β = 1.85 (or 1.69 in 
Fig. 10) is lower than the usual target value of β = 2.5 (for 
Pf = 0.62%), or β = 3.0 (for Pf = 0.13%), for ultimate limit 

states. The inadequate level of reliability means that failure 
could happen, and did happen for the case in hand.

5  Computed Probability of Failure Depends 
on Inputs

It needs to be emphasized that the results of reliability analy-
sis are only as good as the statistical inputs and reliability 
method used (e.g., FORM or SORM), in the same way that 
the results of deterministic analysis are only as good as the 
deterministic inputs and method used (e.g. inputs for pre-
dicting displacement by the finite element method). That 
different values of probability of failure can be computed for 
the cases in this study is no ground for doubting the proba-
bilistic approach, in the same way that one should not doubt 

Fig. 9  a A slope that failed in a 
limestone quarry (after Wyllie 
2018); b reliability analysis 
indicates failure probability on 
the high side

(a)

(b)

φ c z zw/z ψf ψp H A γ γw
16.69 90.25 19.00 0.889 58 20.0 30.5 33.6 25.1 9.8

53.010.192.0

W U V Denom N' c*A g(x) β Pf

12333 2783 1398 5531.7 8328 3035 0.0 1.85 3.25%

Para1 Para2 Para3 Para4 x* orrelation matrix R n -n/β

Betadist φ 1.47 2.11 15 25 16.69 1 0 0 -0.942 0.511

Triangular c 80 90 125 90.25 0 1 0 -0.728 0.395

Triangular zw/z 0.26 0.79 1 0.8889 0 0 1 1.409 -0.764

Units: meter, kN, kN/m2, kN/m3

radians

ψf
ψp

W

U

V

Tension crack

Failure surface

Water 
pressure 

Zw

Z = 19 m

H = 30.5 m
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the method of analysis (e.g. finite element method) when 
different displacement predictions are obtained depending 
on the modeled constitutive relationship and input values 
of parameters.

The same limitations to probabilistic approaches with 
respect to approximate inputs, idealized formulations, non-
exhaustive factors and unknown unknowns also apply to 
the outputs of deterministic analysis (for both serviceabil-
ity limit state and ultimate limit state). One is reminded of 
Terzaghi’s pragmatic approach of aiming at designs such 
that unsatisfactory performance is not likely, instead of aim-
ing at designs which would behave precisely (e.g. footing 
settlement of exactly 25 mm). It is in the same spirit that 
RBD aims to achieve sufficiently safe design, not at a precise 

probability of failure. For example, in a RBD for a target 
reliability index of β = 2.5, the resulting design is not to be 
regarded as having exactly a probability of failure equal to 
Φ(− β) = 0.6%, but as a design aiming at a sufficiently small 
probability of failure (e.g. < 1%). One may note that a EC7 
design (or LRFD design) via conservative characteristic/
nominal values and code-specified partial factors also aims 
at a sufficiently safe design by implicit considerations of 
parametric uncertainties. In contrast, the uncertainties, cor-
relations and probability distributions of random variables 
are open to view in RBD-via-FORM. Instead of shunning 
probabilistic approaches, case-specific scrutiny and counter-
suggestions for more reasonable statistical inputs and related 
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φ c z zw/z ψf ψp H A γ γw
17.15 90.48 19.00 0.908 58 20.0 30.5 33.6 25.1 9.8
0.30 1.01 0.35

W U V Denom N' c*A g(x) β Pf

12333 2842 1458 5588 8249 3042 0.0 1.69 4.56%

Para1 Para2 Para3 Para4 x* Correlation matrix R n -n/β

Betadist φ 1.47 2.11 15 25 17.15 1 -0.5 0 -0.713 0.422

PERTDist c 80 90 125 90.48 -0.5 1 0 -0.328 0.194

PERTDist zw/z 0.26 0.79 1 0.9078 0 0 1 1.312 -0.777

radians

Fig. 10  a PERT distribution can be considered for a variable with a most likely value (mode) and lower and upper limits; b reliability analysis 
with PERT distributions for cohesion c and zw/z, and negatively correlated ϕ and c 
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issues in RBD are more likely to result in advancements and 
improvements of the design approach.

A reliability analysis requires additional statistical input 
information which is not required in a deterministic analy-
sis, but results in richer information pertaining to the per-
formance function and the design point that is missed in a 
deterministic analysis.

In short, when faced with a computed probability of failure 
(Pf) for an engineering case, whether computed by FORM or 
Monte Carlo simulations, one must not regard it as an invari-
able intrinsic or endogenous property of the case, but as an 
outcome that will change if the statistical inputs and prob-
ability distributions are changed. The values of reliability 
analysis via FORM for a particular design (e.g. Fig. 9), and 
RBD-via-FORM for a target reliability index β (e.g. Figs. 3, 
4, 8), are not diminished because even imprecise risk estimate 
by RBD-via-FORM can help achieve a sufficient level of reli-
ability against failure (similar to the objectives of EC7 and 
LRFD via implicit probabilistic considerations), or indicate a 
risky case (e.g. Fig. 9) with insufficient reliability level.

6  Summary and Conclusions

Context-dependent parameter sensitivities were inves-
tigated probabilistically in this study via the first-order 
reliability method (FORM) applied to plane sliding of 
rock slopes containing discontinuities. Prior to FORM, 
the alternative deterministic procedures using the Solver 
constrained optimization tool obtains the same solution 
(Fig. 2) as the stereographic projection solution (Fig. 1) in 
the first case of single block on a discontinuity plane, and 
the same solution (Figs. 6, 7) as the closed form equation 
(Fig. 5) in the second case of two blocks on two disconti-
nuity planes. Both the single-block sliding on a discontinu-
ity plane and the two-block sliding on two surfaces were 
extended into RBD-via-FORM to obtain insights on con-
text-dependent parameter sensitivities. A third case involv-
ing bounded nonnormal distributions for a failed slope in a 
limestone quarry showed failure probability estimated by 
reliability index in good agreement with failure probability 
based on Monte Carlo simulation.

The following enlightening information provided by the 
design point of FORM can complement and enhance the 
evolving partial factor design methods like EC7 and LRFD:

(1) In the case of RBD of a single block on a plane (Figs. 3, 
4), the positive values of the sensitivity indicator (n) 
of weight W for different scenarios are testament to 
its being an unfavorable load. However, its sensitiv-
ity measure (n value) changes with changing value of 
its base area A, and with whether the shear resistance 

along the discontinuity plane is entirely frictional or 
includes a cohesive component acting on base area A.

(2) The relative sensitivities of resistance parameters c and 
ϕ and of load parameter u in case 1 can change sig-
nificantly depending on the relative mean values and 
standard deviations of these parameters, and on the area 
A which affects water force uA and cohesive resistance 
cA, as shown in Fig. 4. The smaller mean value of A 
in Fig. 4b reverses the sensitivities of cohesion c and 
friction angle ϕ, and greatly reduces the sensitivity of 
water pressure u.

(3) In contrast to the unambiguous load nature of W men-
tioned in item 1 above, the RBD of case 2 in Fig. 8 
shows the sensitivity indicator (n) of V1 (from which 
W1 = V1γrock) is positive but that of V2 (the lower pas-
sive block) is negative, indicating the destabilizing 
effect of W1 and the stabilizing effect of W2. Also, the 
design value of ϕ2 (of the lower passive block) is much 
smaller than the design value of ϕ1 (of the upper active 
block), indicating different sensitivities even though ϕ1 
and ϕ2 are the same nature and have the same mean 
value and same standard deviation.

(4) Mean values and standard deviations are required in 
RBD, but not partial factors and characteristic (nomi-
nal) values. Nevertheless, partial factors can be back-
calculated from the design point of RBD-via-FORM. 
Such back-calculated partial factors (e.g. Fig. 8c) and 
LF and RF (e.g., Fig. 3c) are illuminating for each case 
and valuable for comparison with code-specified partial 
factors and LF and RF, but should not be generalized to 
other cases.

(5) It is a significant merit of RBD-via-FORM that its out-
come reflects context-dependent parameter sensitivities 
and resolves load-resistance duality (e.g. base area A of 
case 1 which affects water force U = uA and cohesive 
resistance cA).

Because parameter sensitivities can vary from case to 
case, it is more meaningful to conduct RBD-via-FORM in 
tandem with limit state design based on partial factors, than 
to attempt to calibrate partial factors back-calculated from 
RBD-via-FORM.

The context-dependent parameter sensitivities (and 
insights and implications for partial factor design) have been 
investigated in this paper based on the simplifying Coulomb 
failure criterion and persistent discontinuity plane. The con-
text-dependent phenomenon and insights for partial factor 
design are pertinent even in other research investigations 
incorporating more advanced features.
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Appendix

Intuitive Understanding of the Reliability Index 
of FORM and Its Design Point

The reliability approach used in this paper is FORM, 
which can deal with correlated nonnormal (non-Gaussian) 
random variables. A special case of FORM is the earlier 
Hasofer–Lind index for correlated normal (Gaussian) 
random variables. The classical u-space approach for the 
FORM and the Hasofer and Lind (1974) method requires 
rotation of coordinate axes if the random variables are 
correlated, as described by Rackwitz and Fiessler (1978), 
Ditlevsen (1981), Ang and Tang (1984), Madsen et  al. 
(1986), Haldar and Mahadevan (1999), Melchers (1999), 
Baecher and Christian (2003), amongst others.

An alternative Excel-automated constrained optimization 
approach for FORM, without rotation of coordinate axes, 
was given by Low and Tang (2004), which computes the 
FORM reliability index β by finding the smallest equivalent 
hyperellipsoid (centered at the equivalent normal mean-
value point μN and with equivalent normal standard devia-
tions σN, where superscript N denotes normal distribution) 
that is tangent to the limit state surface (LSS):

where xi denotes the set of random variables, R is the cor-
relation matrix, and F is the failure domain. The notations 
“T” and “− 1” denote transpose and inverse, respectively. 
μi

N and σi
N can be calculated by the Rackwitz and Fiessler 

(1978) transformation.
Another Excel-based FORM procedure was given by Low 

and Tang (2007), which uses the following equation for the 
reliability index β:

where

An advantage of the Low and Tang (2007) procedure is 
that computation of μi

N and σi
N is not required.

The computational approaches described by Eqs. (19) 
and (20) and associated ellipsoidal perspectives yield iden-
tical results as the classical rotated u-space computational 
approach, and thus may help reduce the conceptual and 
language barriers of FORM. The ellipsoidal perspective is 
shown in Fig. 11, in the space of two shear strength param-
eters c′ and ϕ′ which obey the normal probability distribu-
tion. The mean-value point (μϕ and μc) is in the safe domain. 
The ellipses, tilted due to negative correlation between c′ 
and ϕ′, are probability density contours that decrease in 
value as the ellipse expands. Ellipsoid and hyperellipsoid 
shapes can be visualized in the mind’s eye when the num-
ber of random variables is three or greater. The limit state 
surface (LSS) separates safe from unsafe combinations of 
parameter values. The point where the expanding elliptical 
probability contour just touches the LSS is the most prob-
able point (MPP) of failure, also referred to as the design 
point. The Hasofer and Lind (1974) reliability index can be 
understood as the distance from the safe mean-value point 
to the MPP of failure, in units of directional standard devia-
tion. This intuitive ellipsoidal perspective is also valid for 
FORM (which extends the Hasofer–Lind method to deal 
with correlated non-normal distributions), if one thinks in 

(19)� = min
�∈F
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Fig. 11  Illustration of reliability index β in the c′–ϕ′ plane with c′ and 
ϕ′ negatively correlated. This perspective is also valid for non-normal 
distributions, when viewed as “equivalent ellipsoids”. Tanϕ′ can be 
used instead of ϕ′
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terms of ellipsoidal probability contours with equivalent 
normal standard deviations and centred at the equivalent 
normal mean-value point, based on the equivalent normal 
transformation of Rackwitz and Fiessler (1978).

Readers can enhance their understanding of the reliability 
index of FORM and its design point (briefly explained in this 
Appendix) by conducting hands-on implementation on the 
freely downloadable Excel files from the link given at the 
end of the Introduction of this paper. More details, including 
the relationship between the unrotated n vector of this paper 
and the rotated u vector of the classical approach, are given 
in Chapter 2 of Low (2021).

Rapid RBD‑via‑FORM using the Excel forecast.linear 
Function

Figure 12 illustrates the efficient RBD-via-FORM proce-
dure for obtaining the value of a design parameter for a 
target reliability index, for example β = 2.5. The steps are 
illustrated for the case in Fig. 3a. The same simple steps 
apply to Figs. 4 and 8, and other RBD-via-FORM problems. 
More examples can be downloaded for hands-on apprecia-
tion, as shown in the author’s YouTube upload at https:// 
www. youtu be. com/ watch?v= YQ5J2 edT6j8, and also at the 
bottom of the screen at https:// www. routl edge. com/ autho rs/ 
i21471- bak- kong- low.

Fig. 12  Efficient procedure for RBD-via-FORM using the Excel Forecast.linear function

https://www.youtube.com/watch?v=YQ5J2edT6j8
https://www.youtube.com/watch?v=YQ5J2edT6j8
https://www.routledge.com/authors/i21471-bak-kong-low
https://www.routledge.com/authors/i21471-bak-kong-low
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