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Abstract
Blasting is widely employed as an accepted mechanism for rock breakage in mining and civil activities. As an environmental 
side effect of blasting, flyrock should be investigated precisely in open-pit mining operations. This paper proposes a novel 
integration of artificial neural network and fuzzy cognitive map (FCM) with Z-number reliability information to predict 
flyrock distance in open-pit mine blasting. The developed model is called the artificial causality-weighted neural networks, 
based on reliability (ACWNNsR). The reliability information of Z-numbers is used to eliminate uncertainty in expert opin-
ions required for the initial matrix of FCM, which is one of the main advantages of this method. FCM calculates weights of 
input neurons using the integration of nonlinear Hebbian and differential evolution algorithms. Burden, stemming, spacing, 
powder factor, and charge per delay are used as the input parameters, and flyrock distance is the output parameter. Four 
hundred sixteen recorded basting rounds are used from a real large-scale lead–zinc mine to design the architecture of the 
models. The performance of the proposed ACWNNsR model is compared with the Bayesian regularized neural network and 
multilayer perceptron neural network and is proven to result in more accurate prediction in estimating blast-induced flyrock 
distance. In addition, the results of a sensitivity analysis conducted on effective parameters determined the spacing as the 
most significant parameter in controlling flyrock distance. Based on the type of datasets used in this study, the presented 
model is recommended for flyrock distance prediction in surface mines where buildings are close to the blasting site.

Highlights 

• An expert-based ANN is developed to predict blast-induced flyrock distance.
• A Fuzzy cognitive map and expert knowledge are used to simulate the weight of neurons.
• Z-number theory is employed to overcome the uncertainty of opinions.
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1 Introduction

Blasting is usually the first step in open-pit mining opera-
tion for rock breakage and is widely implemented in min-
ing and civil projects. Although the primary goal of blast-
ing is rock fragmentation, about 80% of the total energy 
of charged explosives is wasted in other ways. The wasted 
energy is dissipated in flyrock, air-overpressure (AOp), 
ground vibration, back break, and dust and fumes emission 
(Sari et al. 2014; Bakhtavar et al. 2021b; Zhou et al. 2020; 
Hosseini et al. 2021; Hajihassani et al. 2015; Khandelwal 
and Monjezi 2013a). Flyrock is determined as the rock frag-
ments propelled beyond the blasting region by the energy of 
charges. The main reasons for flyrock production in blasting 
are an inappropriate design of the blasting pattern, inaccu-
rate drilling work, inadequate stemming and burden, and 
unwarrantable specific charges (Yari et al. 2016). Blasting 
design parameters such as spacing, sub-drilling, powder fac-
tor, charge per delay, hole length, and stiffness factor are 
the most important controllable factors on flyrock distance 
(Khandelwal and Monjezi 2013b). On the other hand, rock 
mass characteristics such as rock density and rock mass rat-
ing (RMR) are the uncontrollable parameters in this process 
(Ghasemi et al. 2012a; b; Khandelwal and Monjezi 2013a, 
b; Rad et al. 2020).

Accurate flyrock prediction can prevent or minimize 
blasting-related fatal and nonfatal injuries (Ghasemi et al. 
2012a; b). Recently, soft computing techniques have been 
used to predict flyrock distance in mining and civil engineer-
ing projects. The following paragraphs include a concise 
review of the recent application of different prediction meth-
ods with their success measured by  R2 values were available.

The least-squares support vector machines (LS-SVM) 
were used by Rad et al. (2018) to predict flyrock distance 
in the Gole-E-Gohar surface mine in Iran using data from 
90 blastings. Their proposed model predicted the flyrock 
distance with an R2 of 0.969. Kalaivaani et al. (2020) simu-
lated the flyrock distance caused by bench blasting using an 
integrated recurrent fuzzy neural network (RFNN) with the 
Particle Swarm Optimization (PSO) algorithm. They used 
a dataset of 72 blastings and reached an R2 of 0.933. Yari 
et al. (2016) predicted flyrock distance using a hybrid mul-
tilayer perception neural network (NN) and empirical mod-
els. They found the NN model more accurate than empirical 
models for flyrock distance prediction. An adaptive network-
based fuzzy inference system (ANFIS) model was applied 
by Trivedi et al. (2015) and reported comparable results to 
the ANN and statistical models for flyrock prediction. In 
another study, Monjezi et al. (2012) successfully integrated 
multilayer perceptron NN (MLPNN) and genetic algorithm 
(GA) to predict blast-induced flyrock by a hybrid ANN-GA 
technique.

Faradonbeh et al. (2016) proposed genetic programming 
(GP) and gene expression programming (GEP) models to 
evaluate flyrock distance. They achieved R2 values of 0.935 
and 0.893 for their GP model's training and testing parts, 
respectively. Their GEP model achieved R2 values of 0.991 
and 0.987 for its training and testing, respectively, which 
suggested the GEP model was more accurate in predicting 
flyrock distance. Guo et al. (2021a) presented a combina-
tion of support vector regression models (SVRs) and Lasso 
and elastic-net regularized generalized linear model (GLM-
NET) as the SVRs–GLMNET model to predict flyrock dis-
tance in a quarry mine. They developed six SVR models 
and imported training data into the GLMNET produced the 
most accurate results for flyrock distance prediction with an 
R2 of 0.993.

In another recent attempt, Lu et al. (2020) develped an 
outlier robust ELM (ORELM) model for flyrock distance 
prediction and compared their results with extreme learning 
machine (ELM) and ANN models. They collected 82 blast-
ing data by monitoring blasting events in 3 granite quarries 
for their study. Their ORELM model achieved an R2 value of 
0.958, providing higher accuracy than ANN with an R2 value 
of 0.912 and ELM with an R2 value of 0.955. In another 
research, Murlidhar et al. (2020) proposed an extreme learn-
ing machine (ELM) optimized by biogeography-based opti-
mization (BBO) for flyrock distance prediction and used a 
particle swarm optimization (PSO)-ELM model for com-
parison. The R2 values related to testing of PSO-ELM, BBO-
ELM and ELM model were obtained as 0.93, 0.94, and 0.79, 
respectively, which proved the BBO-ELM a more reliable 
tool for flyrock distance estimation. In a study conducted by 
Guo et al. (2021b), the deep neural network (DNN) method 
was used to predict flyrock distance in Ulu Thiram quarry, 
Malaysia. They optimized the DNN model by whale optimi-
zation algorithm (WOA) and obtained the R2 value of 0.9829 
and 0.9781 for the training and testing dataset. Fattahi and 
Hasanipanah (2021) introduced an integrated model based 
on ANFIS and grasshopper optimization algorithm (GOA) 
to predict blast-induced flyrock in open-pit mines and 
obtained an R2 value of 0.974. Hasanipanah et al. (2020a) 
proposed an adaptive dynamical harmony search (ADHS) 
algorithm to optimize the ANN architecture. They employed 
the ANN-ADHS to develop a model to estimate flyrock and 
predicted the flyrock distance with R2 value of 0.929.

Researchers have also involved theoretical approaches 
and empirical models to predict the flyrock distance (Lun-
dborg et al. 1975; Siskind and Kopp 1995; Raina et al. 
2004; McKenzie 2009). Ghasemi et al. (2012b) proposed 
a theoretical approach for forecasting flyrock distance in a 
copper mine; Marto et al. (2014) developed a multivariate 
linear regression for flyrock prediction in surface mine; 
and in another study, an empirical model was presented for 
estimation of flyrock by Armaghani et al. (2016b).
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In an attempt to integrate fuzzy systems with opti-
mization techniques, Hasanipanah and Amnieh (2020) 
developed a fuzzy rock engineering system (FRES) for 
assessing the risk level of flyrock due to mine blasting. 
They successfully optimized their model using genetic 
algorithm (GA), imperialist competitive algorithm (ICA), 
and particle swarm optimization (PSO) and achieved the 
R2 values of 0.984, 0.983, and 0.981, respectively. Bakhta-
var et al. (2021a) used the fuzzy cognitive map (FCM) 
technique to analyze the relationship between dust emis-
sion parameters due to mine blasting. The FCM method 
with a fuzzy slack-based efficiency model was also used by 
Rezaee et al. (2021) to improve auto industry projects. The 
FCM framework has several primary advantages among 
other cognitive methods, including as (1) examining the 
causal-effect relationships between concepts (nodes) of the 
network, (2) reducing the complexity of decision-making 
problems, (3) decreasing dependence on experts' views and 
increasing the accuracy of the calculated weights by apply-
ing learning algorithms, and (4) reducing computational 
time (Bakhtavar et al. 2021a). Therefore, this research 
involves this method in predicting flyrock distance.

Zadeh (2011) first introduced the Z-number concept, 
which denotes a fuzzy number pair (A, R). This theory is a 
new concept in fuzzy logic that has been recently adopted 
in engineering applications. One of the advantages of 
Z-number theory is eliminating uncertainty in expert views 
(Hosseini et al. 2022; Poormirzaee and Hosseini 2021). 
Ghoushchi et al. (2019) applied reliability of Z-numbers 
for decreasing complexity of industries and risk assess-
ment of processes. Aboutorab et al. (2018) employed the 
Z-evaluations to solve the uncertainty of supplier develop-
ment problem. Stock selection problems were eliminated 
using Z-numbers by Yaakob and Gegov (2016). In another 
research, the Z-number theory was used by Tian et al. (2021) 
to manage uncertain information and for pattern recogni-
tion. Jiskani et al. (2022) used Z-number theory to overcome 
uncertationy of expert views to analyze health and safety 
risks in surface mines. They integrated Z-numbers with 
fuzzy fualt tree analysis and concluded that this theory is 
capable of increasing the results accuracy. Z-number-based 
fuzzy system has been utilized in predicting food security 
risk levels by Abiyev et al. (2018). The uncertain environ-
mental conditions in the supplier development problems was 
solved using an integrated Z-number theory with Best Worst 
Method proposed by Aboutorab et al. (2018). Yazdi et al. 
(2019) used Z-numbers for eliminating uncertainty of expert 
views in probabilistic risk assessment.

A novel soft computing-based model is presented in this 
research to predict flyrock distance in open-pit mining oper-
ations. This model is based on the integration of a multilayer 
perceptron neural network (MLPNN), fuzzy cognitive maps 
(FCMs), and Z-number theory. The proposed model is called 

the artificial causality-weighted neural networks based on 
reliability (ACWNNsR) and is the first study that simultane-
ously employs the ANN, FCM, and Z-numbers for flyrock 
prediction to the best of the authors' knowledge. The pro-
posed model eliminates the uncertainties in the FCM mode-
ling through the use of reliability information of Z-numbers. 
Notably, the weight of ANN neurons is simulated using the 
learned FCM by combining nonlinear Hebbian algorithm 
(NHL) and differential evolution (DE) algorithms, which is 
an improvement compared to previous models. Implement-
ing the FCM based on Z-number in neurons weighting is 
expected to help predict the flyrock distance and provide a 
safer working environment for blasting operation.

2  Research Methodology

2.1  Artificial Neural Networks (ANNs)

Since the 1940s, ANNs have been first pioneered by McCull-
och and Pitts (1943). They pointed that ANNs are capable of 
computing any logical or arithmetic function. The computa-
tions of neural signals human-brain inspire the concept of 
ANNs by translating them into a simple linear mathematical 
equation to establish an input–output relationship. Simula-
tion of the learning process is one of the prominent charac-
teristics of ANNs (Esmaeili et al. 2014). An original ANNs 
is structured based on three main components: learning rule, 
network training architecture, and activation function (Simp-
son 1990). The recurrent and back-propagation feed-forward 
neural networks are two major types of ANNs (Armaghani 
et al. 2015). Besides, the various architectures of ANNs such 
as radial basis function (RBF), multilayer perceptron neu-
ral networks (MLPNN), deep feed-forward neural networks 
(DFF), recurrent neural networks (RNN), extreme learning 
machine (ELM), echo state network (ESN), Bayesian regu-
larized neural network (BRNN), generalized feed-forward 
neural networks (GFNN), etc. have been presented so far. 
However, optimal constructing of the ANN architecture is a 
challenge (Nguyen and Bui 2020; Hajihassani et al. 2015). 
Depending on the different applications of an ANN, various 
methods are presented to design an ANN.

2.2  Multilayer Perceptron Neural Network (MLPNN)

Multilayer perceptron neural networks (MLPNN) have been 
employed successfully to overcome different and complex 
engineering problems through supervised training using 
the error back-propagation algorithm. The feed-forward 
back-propagation neural network suggested by Shahin et al. 
(2002) is one of the most widely used ANNs in predic-
tion aims (Armaghani et al. 2016a; Hoseinian et al. 2017; 
Alizadeh et al. 2021). An error-correction learning rule is 
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used in this algorithm, in which a backward and a forward 
pass are performed for error back-propagation learning to 
take place. In the forward pass, a learning process is ini-
tialized in nodes (input vector) of the networks, and con-
ducted calculations propagate from the first layer to the last 
layer (Hosseini et al. 2021). Then, network outputs (actual 
response) are determined based on a set of inputs. In this 
process, the generated synaptic weights remain unchanged. 
However, the error-correction rule has been used to adjust 
the synaptic weights in the backward pass. In addition, an 
error signal is produced by subtracting network output from 
a desirable target. Synaptic connections are reversible as this 
error propagates backward (Esmaeili et al., 2014; Bakhtavar 
et al., 2021a).

A multilayer perception (MLP) is the famous and most 
well-known structure of ANN. This network is structured 
from three primary input, hidden, and output layers, each 
considering several neurons (nodes). As the simple form of 
a biological neuron, the nodes are connected to other nodes 
by an exclusive weight. The MLPNN receives the input data 
and propagates in a forward path. It should be noted that the 
weight value is initialized to make connections among input, 
hidden, and also output nodes, which are randomly assigned. 
The general architecture of an MLP is shown in Fig. 1.

MLP simulates the output value by Eq. (1):

where x and y indicate the input matrix and output value, 
respectively. w represents the weight vector, and b shows the 
bias value of each neuron. f indicates the activation (trans-
fer) function. According to the various usage, the number 
of hidden layers and the number of hidden neurons in each 
hidden layer, learning algorithm, and activation function, 
can be different.

The created error during MLP training is calculated as 
follows:

where e(w) is the MLP network error, w indicates tth itera-
tion weight, si denotes output node, oi represents output 
value of the ith output node, I signify output nodes number, 
and n stands patterns number. The main disadvantages of 
MLP are getting trapped in local minima and a slow learn-
ing rate. Researchers solve these difficulties by applying 
metaheuristic algorithms to optimize the weight of neu-
rons and increase ANN performance (Taheri et al. 2017; 
Moosazadeh et al. 2019).

(1)y = fi

(
n∑
i=1

wijxj + bi

)
,

(2)e(w) =
1

n

n∑
j=1

I∑
i=1

(
si − oi

)
,

2.3  Bayesian Regularized Neural Network (BRNN)

An ANN can be designed with various hidden nodes, so it is 
difficult to be determined precisely. Once overfitting occurs, 
the results will be unreliable if too many hidden neurons are 
considered. Inversely, an ANN with inadequate neurons has 
difficulty in the learning process. The Bayesian regularized 
neural network (BRNN) is proposed to overcome these prob-
lems by combining Bayes’ theory into the regularization sys-
tem. The learning process of the Bayesian scheme considers 
the uncertainty in the weight vector.

BRNN can be used for solving nonlinear problems effec-
tively. BRNN was first basically presented by MacKay (1992), 
which focuses on the probabilistic learning operation of 
ANNs. The outstanding feature of BRNN is to determine the 
number of effective weights of the network. Based on this fact, 
an optimal network size is automatically determined based on 
the number of training cases needed for the learning process. 
BRNN, as one of the AI methods, employs the propagation 
algorithm which computes the amount of the least-squares 
error function as in Eq. (3) (Nguyen et al. 2020):

where α and β indicate the hyperparameters (regularization 
parameters). n indicates the number of data, w denotes the 
weight of inputs value, y signify the weight of output values, 
and t is the weight of target values.

(3)S(w) = �

n∑
i=1

(
yi − ti

)2
+ �

m∑
i=1

w2

i
,

Fig. 1  General MLP architecture
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BRNN performs best when the regularization parameters 
are set at their optimum. Based on a Bayesian model, the 
weights in the network can be operated as random elements. 
The weights are represented in the form of a density function, 
which is determined using Bayes' theorem (Kurnaz and Kaya, 
2018):

where P(w|α) denotes the prior density.
Before collecting databases, the degree to which the weights 

are known is signified by P(w|α). Furthermore, P(D|w,β) indi-
cates the possibilities function determined the probability of 
the error, and P(D|α,β) denotes model evidence or normaliza-
tion parameter. Maximizing the posterior probability of the 
model can lead to optimal weights in the training process; thus, 
the error function of BRNN is obtained. Suppose the prior-
ity data and the probability distribution of weights be Gauss; 
weights are assigned a priority probability function with the 
following:

The probability of errors, possibility, is formulated as:

The posterior distribution is achieved as Eq. (7):

The optimal Regularization parameters α, β are calculated 
through the Bayes theorem as follows:

where P(α, β) and P(D| α, β) are the prior probabilities for 
the normalized parameters α, β, and the term of possibility, 
respectively. The optimum values of α, β are determined as 
Eqs. (9)–(11):

In which γ indicate the effective parameter, m is the 
number of parameters, and A denotes the objective function 
(Hessian matrix of S(w)).

(4)P(w|�, �,D) = P(D|w, �) ⋅ P(w|�)
P(D|�, �) ,

(5)P(w|�) = 1

Zw(�)
⋅

(
e−�Ew

)
.

(6)P(D|w, �) = 1

ZD(�)
⋅

(
e−�Ew

)
.

(7)P(w|�, �,D) = 1

ZS(�, �)
⋅

(
e−S(w)

)
.

(8)P(�, �|D) = P(D|�, �) ⋅ P(�, �)
P(D)

,

(9)� = �∕2Ew

(10)� = (n − �)∕2ED

(11)� =

m∑
i=1

m − � ⋅ trace−1(A).

2.4  Fuzzy Cognitive Maps (FCMs)

The cognitive map (CM) approach is widely employed in 
engineering since it can examine and obtain the compli-
cated cause-and-effect interactions between several param-
eters (variables). Various parameters communicate complex 
relations with the other parameters supporting a cause-and-
effect status in actual issues. A CM is structured to connect 
knots through organized arcs consisting of signs on the bow. 
In a precise scheme of a cognitive map, nodes denote unique 
theories which represent a system. In addition, arcs indicate 
cause-and-effect relations (weights) among the nodes.

The fuzzy CM (FCM) is a powerful method applied to 
specific problems in which the cost of collecting data is high 
or inaccessible. An FCM uses fuzzy numbers in the inter-
val [− 1,1] or [0,1] to explain intellectual opinion, which 
indicates the strength of attraction of causal relationships. 
The mental perspective of experts is crucial to design the 
map of FCM and predict concept weights and relationships 
between factors using neural network logic (Rezaee et al. 
2017, 2018). A view of the cognitive map is presented in 
Fig. 2.

As illustrated in Fig. 2, Ci shows concepts (nodes) that 
are connected with weighted arcs. Wij represents cause-and-
effect relationships between Ci and Cj. Wij > 0 and Wij < 0 
denote a positive and negative causal relationship, respec-
tively. In addition, Wij = 0 indicates no relationship among 
connected concepts.

It should be noted the weight of factors should not depend 
on expert opinions. However, the combination of Hebbian 
and metaheuristic algorithms is appropriate for adjusting 
map concept weights. This problem is solved by propos-
ing learning algorithms that decrease dependency on expert 
views and simultaneously improve the weights and map con-
vergence accuracy. Learning algorithms such as the Heb-
bian, hybrid, and population-based algorithms are used to 
apply the FCM (Papageorgiou and Kannappan 2012). This 
study integrates the nonlinear Hebbian algorithm (NHL) 
with the differential evolution (DE) algorithm to apply in 
FCM. The proposed hybrid algorithm is known as the NLH-
DE algorithm, which can update non-dimensional weights in 
various simulations and maintain connections among nodes 
in a general map.

Different type of relationships between concepts shows 
the state vector A = [A1, A2, …, An]. The state vector A must 
continually transfer through the weight vector to develop a 
system. Hence, Eq. (12) is introduced to estimate the state 
vector A for each concept of Ci at repetition t:



4378 S. Hosseini et al.

1 3

where At and At−1 are the values of concept Ci at iteration 
t and t−1, respectively. Wij denotes the connection weight 
through concept Cj to concept Ci. In addition, f(x) indicates 
a threshold function. The unipolar sigmoid function (Eq. 13) 
is the best function to convert the result in the interval of 
[0, 1] or [− 1, 1] compared among other threshold func-
tions, where λ represents the function slope. State vector A 
is simulated using Eqs. (12) and (13), and the new value of 
A is updated, and this proceeds until convergence is achieved 
(Onari et al. 2020).

2.5  Z‑Number Concept

This theory was presented to overcome the numbers that 
are not reliable at all (Onari et al. 2020). Pair of Z-number 
(A, R) denotes restrictions to representing the behavior of 
the Z-numbers. Components of A and R describe a fuzzy set 
and degree of reliability, respectively. The degree of cer-
tainty can be denoted as a probability density function or 
a fuzzy set. For example, the production rate is announced 
as follows:

"daily blasted rocks in a large scale mine is about 1500 
tons", low.

(12)At
i
= f

⎛⎜⎜⎜⎝
At−1
i

+

N�
j≠i
j=1

At−1
j

⋅Wij

⎞⎟⎟⎟⎠
,

(13)f (x) =
1

1 + e(−�x)
.

This announcement can be expressed as "X is Z = (A, R)." 
In contrast, X is the "daily blasted rocks" variable, A is a 
fuzzy set that expresses the daily blasted rocks "about 1500 
tones", and R is the degree of certainty of A in the event that 
is "low" (Eq. 14).

Equation  (14) describes probability constraint and A 
expressed probability distribution X. In this regard, it can 
be stated that:

where u is the general value of X and µA is the membership 
function of A, and set of A can be indicated as a restriction 
that is related to R(X):

whereas p is the probability density function of X (Zadeh 
2011):

The problem description by Z-numbers is clear; neverthe-
less, performing problem calculations by Z-numbers are com-
paratively difficult (Zadeh 2011). Z-numbers are disposed of 
accurately with their operations to overcome this problem, and 
transforming them into crisp numbers is investigated (Song 
et al. 2020). The complicated computational procedures of 
Z-number are solved by transforming Z-value to the fuzzy 
number or crisp value; however, this method significantly 
loses some information and decreases the advantages of using 
Z-information during information transformation (Onari et al. 

(14)R(X) = Xis A.

(15)R(X) ∶ X is A → Poss(X = u) = �A(u),

(16)R(X) ∶ X is p,

(17)R(X) ∶ X is p → Prob(u ≤ X ≤ u + du) = p(u)du.

Fig. 2  A view of the cognitive 
map
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2020). Therefore, triangular fuzzy numbers (TFNs) convert 
Z-number into fuzzy numbers. These conversion rules were 
first proposed for reliable linguistic variables. In this research, 
the first way is applied to Z-number conversion. The opinions 
of the team of experts require linguistic variables to explain 

each estimation (Table 1), which its membership function is 
illustrated in Fig. 3 schematically.

Figure 3 illustrates the reliability level of Z-number in the 
ranges 0–100%. The value of 100% is used for strong reliabil-
ity, while 0% represents unreliability. In other words, experts 
used this scale to express their judgments confidence. Notably, 
the reliability level has hugely improved the obtained results; 
therefore, experts' judgments are modified based on reliability, 
and reliable results are presented.

Suppose Z = (Ã, R̃):

The Z-numbers reliability is calculated as follows:

Finally, crisp numbers of reliability are applied to the 
restriction:

For example, Let a Z-number Z = (Ã, R̃) for the con-
straint. There is a linguistic variable 'High (H)' (A = H) with 
a reliability' 0.95% sure' (R = 0.95% sure). This is explained 
as follows:

(18)
{
Ã =

(
x, uÃ

)|x ∈ [0, 1]
}

(19)
{
R̃ =

(
x, uR̃

)|x ∈ [0, 1]
}
.

(20)𝛼 =
∫ x𝜇B̃(x) dx

∫ 𝜇B̃(x) dx
.

(21)Z̃𝛼 =
{(

x, uÃ
)|uÃ𝛼 (x) = 𝛼uÃ(x), x ∈ [0, 1]

}
.

Z = [(5, 7, 9;7), (0.9, 0.95, 1)].

Table 1  Expressed Z-numbers as linguistic values

Number Linguistic terms Membership function

1 0% sure (0, 0, 0.05) Reliability (R)
2 5% sure (0, 0.05, 0.1)
3 10% sure (0.05, 0.1, 0.15)
4 15% sure (0.1, 0.15, 0.2)
5 20% sure (0.15, 0.2, 0.25)
6 25% sure (0.2, 0.25, 0.3)
7 30% sure (0.25, 0.3, 0.35)
8 35% sure (0.3, 0.35, 0.4)
9 40% sure (0.35, 0.4, 0.45)
10 45% sure (0.4, 0.45, 0.5)
11 50% sure (0.45, 0.5, 0.55)
12 55% sure (0.5, 0.55, 0.6)
13 60% sure (0.55, 0.6, 0.65)
14 65% sure (0.6, 0.65, 0.7)
15 70% sure (0.65, 0.7, 0.75)
16 75% sure (0.7, 0.75, 0.8)
17 80% sure (0.75, 0.8, 0.85)
18 85% sure (0.8, 0.85, 0.9)
19 90% sure (0.85, 0.9, 0.95)
20 95% sure (0.9, 0.95, 1)
21 100% sure (0.95, 1, 1)

Fig. 3  Linguistic term sets of Z-number
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First, the reliability part is transformed to a crisp value 
as follows:

Second, the reliability weight is added to the restriction 
by:

Finally, the weighted Z-number is changed into the regu-
lar fuzzy number.

Figure 4 represented Z values after affecting the reliabil-
ity, and the fuzzy number transformed from Z-number. Simi-
larly, other Z-numbers are translated into TFNs.

2.6  Artificial Causality‑Weighted Neural Networks 
Based on Reliability (ACWNNsR) Model

Figure  5 indicates the framework of the proposed 
ACWNNsR Model. As shown in the methodology frame-
work, the effective parameters were first specified by litera-
ture investigations. Generally, the weight of each parameter 
is randomly calculated in the learning process of ANN. 
However, determining weights based on a learning rule is 
of particular importance. Therefore, the FCM technique 
simulated and updated parameter weights in different itera-
tions. In addition, Z-number theory was applied to improve 
the expert's opinions in the matrix corresponding to causal-
effect weights. Hence, the causal-effect weights were used in 
the ANN learning process. The results of the reliability FCM 
were finally utilized in the proposed ACWNNsR model. 
Finally, the sensitivity of flyrock to each input parameter 
was evaluated in two different methods.

𝛼 =
∫ x𝜇B̃(x) dx

∫ 𝜇B̃(x) dx
= 0.95.

Z̃𝛼 = (5, 7, 9; 0.95).

Z̃� = (
√
0.95 × 5,

√
0.95 × 7,

√
0.95 × 9) = (4.87, 6.82, 8.77).

3  Reference Case and Data Analysis

The required dataset for the study was collected from Angu-
ran mine in Iran. This mine is one the large-scale and oldest 
lead–zinc mine in the Middle East, with an annual extrac-
tion rate of one million tons. According to Fig. 6, this mine 
is placed in Zanjan province at the west of Iran, at 47° 82′ 
00″ E longitude and 36° 84′ 00″ N latitude, at an altitude of 
approximately 2935 m above sea level.

Figure 6 illustrates the location of the Anguran based on 
satellite imagery and a snapshot of blasting round. Blasting 
works are operated through 76, 114, and 127 mm blast holes. 
Blasting operations are principally conducted using ANFO 
(combine fuel oil and ammonium nitrate with a specific 
gravity of 0.85–0.95 g/cm3). In this mine, flyrock distances 
were recorded from a total number of 416 blasting works. 
It should be noted that 416 blasting datasets were recorded 
during 4 years. Table 2 summarizes descriptive statistics 
of the collected data and their ranges. The frequency histo-
gram of the flyrock distance is shown in Fig. 7. As shown 
in Fig. 7, 209 blasting events are accompanied by a flyrock 
distance of 100 m, while a flyrock distance of 340 m is 
observed in 7 blasting rounds. Notably, 204 blasting events 
caused 120 m long flyrock.

The B, St, S, Pf, MC, and flyrock factors measured 
in Anguran mine are variated in the range of 3–5  m, 
0.9–0.8 m, 3–6 m, 0.01–1.67 kg/m3, 5.54–697.72 kg and 
46.42–389.03 m, respectively. The parameters were imme-
diately measured after performing the blasting pattern. This 
study defines the flyrock as the maximum distance to which 
rocks are impelled outside the blast location. Due to the dif-
ficulty in measurement of flyrock distance, part of the bench 
was painted before operating each blast rounds, and blast-
ing was recorded on video. The maximum distance related 
to fragment rocks was measured using tracking fragment 
rocks. Note that the Pf and CD were calculated using other 
measured parameters.

Fig. 4  Converting of Z-number 
to fuzzy number
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4  Flyrock Prediction

In this research, MLPNN, BRNN, and the proposed 
ACWNNsR models were employed to predict the flyrock 
distance due to mine blasting. First, 416 collected datasets 
were randomly divided into two main parts; training and 
testing datasets. Subsequently, the normalized values of 
inputs and outputs variables were calculated using the fol-
lowing equation:

In which xn is the normalized value, xi indicates the meas-
ured data, and xmin, and xmax are the minimum and maxi-
mum values of data, respectively. The performance of the 
proposed models was evaluated employing three statistical 
criteria, including coefficient of determination (R2), root-
mean-squared error (RMSE), and value account for (VAF) 
(Keshtegar et al. 2021; Hasanipanah et al. 2020b), which are 
determined as follows:

(22)xn =
xi − xmin

xmax − xmin

.

(23)R2 = 1 −

�∑n

i=1
(Oi − Pi)

2

∑n

i=1
(Pi − Pi)

2

�

where Oi and Pi are measured and predicted amounts, 
respectively; Pi is the average of the predicted values, and n 
is the number of datasets.

4.1  Prediction of Flyrock by MLPNN

In this study, MLP neural network is employed to flyrock 
prediction Anguran lead–zinc mine. In this regard, five 
effective parameters and flyrock are considered inputs 
and outputs of the modeling process. The maximum 
number of the hidden layer(s) is considered two layers, 
and the number of hidden nodes is determined based on 
the trial-and-error procedure. The MLP architectures 
are structured based on 3–23 hidden nodes; 100 training 
epochs are fixed. The statistical indicators formulated in 
Eqs. (23) to (25) are calculated for each trained structure. 
Then the best optimal architecture with high performance 

(24)RMSE =

√√√√1

n

n∑
i=1

(Oi − Pi)
2

(25)VAF = 100 ⋅

(
1 −

var(Oi − Pi)

var(Oi)

)
,

Fig. 5  The framework of the proposed ACWNNsR model
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Fig. 6  The geographical location of Anguran mine and blasting rounds

Table 2  Descriptive statistics of 
the recorded blasting parameters

Parameter Sign Unit Min Max Mean Std

Inputs
 Burden B m 3.00 5.00 4.08 0.29
 Stemming St m 0.90 8.00 3.41 0.77
 Spacing S m 3.00 6.00 4.93 0.30
 Powder factor Pf kg/m3 0.01 1.67 0.34 0.12
 Charge per delay CD kg 5.54 697.72 173.76 69.92

Output
 Flyrock Fr m 46 389 124.27 44.25
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on both test and train phase is selected using the scoring 
system presented by Zorlu (Zorlu et al. 2008). In this 
technique, a score is assigned for each training and test-
ing dataset and the highest score is considered to be the 
best model. The MLP modeling with different numbers 
of the hidden layer(s) and node(s) along with the rating 
of indices are presented in Table 3. As a result, the MLP4 
with a total rate of 57 from 60 predicts the flyrock better 
than other architecture. Therefore, the best model with 
the optimal structure is the MLP4 model with a 5-10-1 
structure.

4.2  Prediction of Flyrock by BRNN

In this section, the flyrock distance is predicted using BRNN 
predictive model. The number of hidden nodes causes com-
plexity in the BRNN modeling process. Therefore, stop-
ping criteria is determined based on the number of hidden 
neurons. A range between 1 and 8 was considered for the 
number of hidden neurons to prevent overfitting and learning 

problems. Several trained BRNN models were achieved 
using the trial–error procedure and evaluated using perfor-
mance indices to select the best BRNN structure capable of 
predicting flyrock distance with a high degree of accuracy.

The obtained results from BRNN modeling are tabulated 
in Table 4. The best model is selected by Zorlu scoring sys-
tem. As it can be seen, BRNN, with the total rate value of 
45 from 48, attained the highest value among eight architec-
tures. Hence, it was concluded that the BRNN with a 5-5-1 
structure is the best to predict blast-induced flyrock in the 
reference case.

4.3  Prediction of Flyrock by ACWNNsR

A learned FCM based on the NHL and DE hybrid learning 
algorithm was developed to calculate the weight linked to 
the hidden layers of ANN. In this regard, the cause-and-
effect relationships between concepts (effective parame-
ters and flyrock distance) were initialized using an expert 

Fig. 7  Frequency distributions 
of the flyrock distances

Table 3  Obtained performance indices to detect the optimum MLPNN model

Model MLP architecture Train Test Train rating Test rating Toral rate Total rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

MLP 1 5-3-1 0.891 6.421 89.061 0.839 6.079 83.900 3 7 3 2 10 1 26 9
MLP 2 5-5-1 0.892 6.259 89.195 0.876 7.197 87.469 4 8 4 4 5 5 30 6
MLP 3 5-7-1 0.888 6.489 88.800 0.886 6.308 88.641 2 6 2 6 9 7 32 5
MLP 4 5-10-1 0.932 5.000 93.849 0.909 6.618 92.188 10 9 10 10 8 10 57 1
MLP 5 5-3-5-1 0.907 7.616 90.658 0.873 7.897 87.298 8 5 8 3 2 3 29 8
MLP 6 5-5-7-1 0.930 4.869 93.020 0.883 8.819 84.002 9 10 9 5 1 2 36 3
MLP 7 5-7-9-1 0.885 7.881 88.537 0.803 6.803 87.807 1 1 1 1 7 6 17 10
MLP 8 5-8-10-1 0.894 7.818 89.421 0.902 7.056 87.336 5 2 5 8 6 4 30 6
MLP 9 5-9-12-1 0.898 7.771 89.834 0.909 7.287 90.260 6 4 6 9 4 9 38 2
MLP 10 5-10-13-1 0.900 7.814 90.050 0.891 7.896 89.112 7 3 7 7 3 8 35 4
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team's opinion. It should be noted that experts expressed 
their opinions at all stages by applying the Z-number 
reliability in the interval 0–100%. An example of expert 
opinions and the reliability of opinions are tabulated in 
Table 5. The effect of Z value in their opinions is tabulated 
in Table 6.

The final matrix resulting from integrating an expert 
team of six-member opinions is reported in Table 7, which 
indicates the cause-and-effect relationships between the 
inputs and output variables.

This obtained matrix is used in the proposed FCM 
method as an initial matrix. Subsequently, an initial matrix 
was trained by applying hybrid NHL-DE algorithms to 
reduce the expert opinion and weighting errors dependency. 
Dynamic FCM solved this matrix and resulted in concept 

weight as a final point. The weighting outcomes by the pro-
posed FCM model based on the hybrid NHL-DE algorithms 
are shown in Fig. 8.

The weighting effective parameters using the proposed 
FCM provides more realistic results than the weighting 
method based on random numbers in a usual ANN. As 
illustrated in Fig.  8, the trained FCM shows weights 
among intervals [0, 1] and the sensitivity level of each 
parameter on the target node, which can be interpreted. 
According to the concept of cause-and-effect, burden 
and charge per delay with weights of 0.707 and 0.648 
denote the highest sensitivity and effect weights on fly-
rock distance.

The weightings of effective parameters are imported 
into an ANN architecture. Figure 9 shows the employed 

Table 4  Obtained performance indices to detect the optimum BRNN model

Model BRNN 
architec-
ture

Train Test Train rating Test rating Total rate Total rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

BRNN 1 5-1-1 0.903 7.890 90.296 0.883 6.738 87.838 1 1 1 3 4 3 13 7
BRNN 2 5-2-1 0.932 4.954 93.242 0.912 5.606 91.195 4 4 4 7 7 6 32 4
BRNN 3 5-3-1 0.917 7.605 92.653 0.908 6.781 94.676 3 3 3 6 3 8 26 5
BRNN 4 5-4-1 0.912 7.744 91.203 0.770 7.407 71.755 2 2 2 1 2 2 11 8
BRNN 5 5-5-1 0.949 4.605 94.226 0.921 4.350 92.267 8 8 8 8 8 7 47 1
BRNN 6 5-6-1 0.933 4.757 93.562 0.848 13.499 59.238 5 7 5 2 1 1 21 6
BRNN 7 5-7-1 0.938 4.903 93.825 0.901 5.647 89.489 7 5 7 4 6 4 33 2
BRNN 8 5-8-1 0.936 4.851 93.613 0.902 6.251 89.587 6 6 6 5 5 5 33 2

Table 5  Example of expert opinion

(A, R) B St S Pf Cd FR

B Constraint (0, 0, 0) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.7, 0.9, 1) (0, 0, 0) (0, 0, 0)
Reliability (α) (0, 0, 0) (0.7, 0.75, 0.8) (0.75, 0.8, 0.85) (0.8, 0.85, 0.9) (0.75, 0.8, 0.85) (0, 0, 0)

0 0.866 0.894 0.922 0.894 0
St Constraint (0, 0, 0) (0, 0, 0) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0, 0, 0) (0, 0, 0)

Reliability (α) (0.75, 0.8, 0.85) (0, 0, 0) (0.5, 0.55, 0.6) (0.6, 0.65, 0.7) (0.7, 0.75, 0.8) (0, 0, 0)
0.894 0 0.742 0.806 0.866 0

S Constraint (0, 0, 0) (0.3, 0.5, 0.7) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
Reliability (α) (0.8, 0.85, 0.9) (0.4, 0.45, 0.5) (0, 0, 0) (0.55, 0.6, 0.65) (0.7, 0.75, 0.8) (0, 0, 0)

0.922 0.671 0 0.775 0.866 0
Pf Constraint (0, 0, 0) (0.3, 0.5, 0.7) (0.7, 0.9, 1) (0, 0, 0) (0.5, 0.7, 0.9) (0, 0, 0)

Reliability (α) (0.6, 0.65, 0.7) (0.6, 0.65, 0.7) (0.9, 0.95, 1) (0, 0, 0) (0.6, 0.65, 0.7) (0, 0, 0)
0.806 0.806 0.975 0 0.806 0

Cd Constraint (0, 0, 0) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0, 0, 0) (0, 0, 0)
Reliability (α) (0.85, 0.9, 0.95) (0.75, 0.8, 0.85) (0.8, 0.85, 0.9) (0.85, 0.9, 0.95) (0, 0, 0) (0, 0, 0)

0.949 0.894 0.922 0.949 0 0
FR Constraint (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.7, 0.9, 1) (0.7, 0.9, 1) (0.5, 0.7, 0.9) (0, 0, 0)

Reliability (α) (0.7, 0.75, 0.8) (0.7, 0.75, 0.8) (0.9, 0.95, 1) (0.75, 0.8, 0.85) (0.85, 0.9, 0.95) (0, 0, 0)
0.866 0.866 0.975 0.894 0.949 0
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weights in the MLP process. Ten trained ACWNNsR 

models were achieved by means of the trial-and-error 
method and evaluated using R2, RMSE, and VAF, to select 
the best architecture. The obtained results are reported in 
Table 8. The ACWNNsR7 is the best structure that can be 
used to predict flyrock distance accurately.

5  Result and Discussion

The current paper developed the MLP, BRNN, and 
ACWNNsR models to estimate flyrock distance in sur-
face mines. The comparative analyses related to calculating 
statistical indices (R2, RMSE, and VAF) are tabulated in 
Table 9. The results show that the ACWNNsR model (with 

R2 (0.996,0.991), RMSE (1.404,2.535), and VAF (99.867, 
99.136)) performed better in estimating blast-induced flyrock 
distance compared to the BRNN model with R2 (0.949,0.921), 
RMSE (4.605, 4.350), and VAF (94.226, 92.267) and also 
MLP model with R2 (0.932, 0.909), RMSE (5.000, 6.618), and 
VAF (93.849, 92.188). Furthermore, measured flyrock com-
pared to predicted values by MLP, BRNN, and ACWNNsR 
models for 416 blasting rounds is plotted in Figs. 10, 11, 12, 
respectively. The correlation of the ACWNNsR model shows 
a significant relationship between the actual and estimated fly-
rock. Figure 13 shows the error in flyrock distance predicted by 
the ACWNNsR, BRNN, and MLP models for all 83 blasting 
events (testing dataset), comparing them with the recorded 
flyrock. These results show that the ACWNNsR model can 
predict the flyrock diatance more accurately than the MLP and 
BRNN models in training and testing datasets.

6  Sensitivity Analysis

The effectiveness and relative significance of the con-
trollable parameters burden (B), stemming (St), spacing 
(S), powder factor (Pf), and charge per delay (CD) on 
the flyrock distance was evaluated using a sensitivity 
analysis. The cosine amplitude method (CAM) (Jong 
and Lee 2004) and partial derivatives (PaD) method 
(Gevrey et al. 2003) were used in this sensitivity anal-
ysis as shown in Eqs. (26) and (27). The sensitivity 
analysis results are shown in Fig. 14, which shows the 

Table 6  Final value of one of the expert opinions

B St S Pf Cd FR

B (0, 0, 0) (0.433, 0.606, 0.779) (0.268, 0.447, 0.626) (0.645, 0.83, 0.922) (0, 0, 0) (0, 0, 0)
St (0, 0, 0) (0, 0, 0) (0.222, 0.371, 0.519) (0.242, 0.403, 0.564) (0, 0, 0) (0, 0, 0)
S (0, 0, 0) (0.201, 0.335, 0.47) (0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)
Pf (0, 0, 0) (0.242, 0.403, 0.564) (0.682, 0.877, 0.975) (0, 0, 0) (0.403, 0.564, 0.726) (0, 0, 0)
Cd (0, 0, 0) (0.268, 0.447, 0.626) (0.461, 0.645, 0.83) (0.474, 0.664, 0.854) (0, 0, 0) (0, 0, 0)
FR (0.606, 0.649, 

0.696)
(0.260, 0.433, 0.606) (0.682, 0.877, 0.975) (0.626, 0.805, 0.894) (0.474, 0.664, 0.854) (0, 0, 0)

Table 7  The causal-and-effect 
relationship between inputs and 
output variables

B St S Pf Cd FR

B 0 0.47 0.23 0.21 0.29 -0.73
St 0.17 0 0.26 0.41 -0.13 -0.59
S 0.37 -0.19 0 -0.17 -0.38 -0.48
Pf 0.61 -0.36 0.28 0 0.53 0.38
Cd 0.42 0.1 0.28 0.23 0 0.47
FR 0 0 0 0 0 0
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Fig. 8  Weighting outcomes by the proposed FCM model
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Fig. 9  Designing the ACWNNsR architecture with causal-and-effect relationships

Table 8  Performance indices for ACWNNsR models

Model ACWNNsR 
architecture

Train Test Train rating Test rating Total rate Total rank

R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF R2 RMSE VAF

ACWNNsR 1 5-3-1 0.935 3.511 92.353 0.848 6.315 85.362 2 4 1 1 2 1 11 10
ACWNNsR 2 5-5-1 0.926 5.049 92.925 0.923 6.180 92.163 1 1 2 3 3 3 13 8
ACWNNsR 3 5-7-1 0.980 2.752 98.277 0.975 3.722 97.660 5 6 5 6 6 6 34 7
ACWNNsR 4 5-10-1 0.955 3.871 95.803 0.981 3.210 98.195 4 3 4 8 9 8 36 6
ACWNNsR 5 5-3-5-1 0.988 2.350 99.121 0.969 4.147 96.977 9 8 9 4 5 4 39 4
ACWNNsR 6 5-5-7-1 0.996 1.404 99.867 0.991 2.535 99.136 10 10 10 10 10 10 60 1
ACWNNsR 7 5-7-9-1 0.988 2.191 99.075 0.970 4.370 97.028 8 9 8 5 4 5 39 4
ACWNNsR 8 5-8-10-1 0.981 2.920 98.448 0.983 3.308 98.398 6 5 6 9 8 9 43 2
ACWNNsR 9 5-9-12-1 0.983 2.627 98.591 0.978 3.422 97.904 7 7 7 7 7 7 42 3
ACWNNsR 10 5-10-13-1 0.954 3.875 95.699 0.875 6.610 87.661 3 2 3 2 1 2 13 8

Table 9  Performance indexes 
for the three developed models

Model Train Test

R2 RMSE VAF R2 RMSE VAF

MLP 0.932 5.000 93.849 0.909 6.618 92.188
BRNN 0.949 4.605 94.226 0.921 4.35 92.267
ACWNNsR 0.996 1.404 99.867 0.991 2.535 99.136
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spacing as the most influential parameter on f lyrock 
distance, whereas the charge per delay indicates minor 
importance.

(26)
rij =

∑m

k=1
xik ⋅ xjk��∑m

k=1
x2
ik

�
⋅

�∑m

k=1
x2
jk

� In which yik and yjk are the input and output parameters. m 
denotes the number of datasets, E is elements of data pairs 
participation of ith variable, Op

k
 is output values for pattern 

(27)E =
SSDi∑
i SSDi

, SSDi =
�
p

�
�O

p

k

�O
p

i

�2

.

Fig. 10  Correlations of flyrock estimated by modeling MLP with actual values

Fig. 11  Correlations of flyrock estimated by modeling BRNN with actual values

Fig. 12  Correlations of flyrock estimated by modeling ACWNNsR with actual values
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P, Op

i
 indicates input values for pattern P, and  SSDi the sum 

of the squares of the partial derivatives. Notably, the high-
est E and rij value demonstrates the most influential inputs.

7  Conclusion

A new hybrid model based on the integration of multilayer 
perceptron neural networks (MLPNN) and fuzzy cogni-
tive map (FCM) with the reliability of the Z-number con-
cept was developed to predict flyrock distance induced by 
blasting operations. The developed model called artificial 
causality-weighted neural networks based on reliability 

(ACWNNsR) uses five effective, controllable parameters, 
including burden, stemming, spacing, powder factor, and 
charge per delay, to predict the flyrock distance. Perfor-
mance indices of RMSE, VAF, and R2 were determined 
to estimate the superiority of the predictive models. The 
ACWNNsR model resulted in R2 of (0.996, 0.991), RMSE 
of (1.404, 2.535), and VAF of (99.867, 99.136) for train 
and test, respectively. The higher R2 and VAF values and 
lower RMSE achieved by the ACWNNsR model than the 
conventional ANN and BRNN models show its success 
in providing a more accurate prediction flyrock distance. 
Notably, the proposed approach resulted in 62% and 42% 
improvement in the RMSE of the testing model in com-
parison to the MLP and BRNN models.

The effectiveness and relative significance of the effec-
tive parameters on flyrock distance was evaluated using a 
sensitivity analysis by Cosine Amplitude Method (CAM) 
and PaD method. The sensitivity analysis results showed 
the spacing has the most significant impact on flyrock dis-
tance, while charge per delay is the least important.

The presented approach is recommended for flyrock 
distance prediction in surface mines where buildings are 
close to the blasting site. Since the datasets used in this 
study were specific to the Anguran mine, applying the 
developed model in other projects would demand adjust-
ments based on the employed blasting and mining opera-
tions. In addition, some limitations existed in the scope 
of this study that should be removed in future studies 
to increase the accuracy of the prediction. The applied 
dataset should be more comprehensive by including more 
controllable blasting parameters. The uncontrollable blast-
ing parameters such as geomechanical properties of rock 
masses could also be monitored, measured, and involved 
for more accurate and reliable predictions.

Fig. 13  Errors of flyrock predic-
tion for testing datasets using 
MLP, BRNN, and ACWNNsR
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