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Abstract
Rock properties are important for design of surface and underground mines as well as civil engineering projects. Among 
important rock properties is the characteristic impedance of rock. Characteristic impedance plays a crucial role in solving 
problems of shock waves in mining engineering. The characteristics impedance of rock has been related with other rock 
properties in literature. However, the regression models between characteristic impedance and other rock properties in 
literature do not consider the variabilities in rock properties and their characterizations. Therefore, this study proposed two 
soft computing models [i.e., artificial neural network (ANN) and adaptive neuro-fuzzy inference system (ANFIS)] for better 
predictions of characteristic impedance of igneous rocks. The performances of the proposed models were statistically evalu-
ated, and they were found to satisfactorily predict characteristic impedance with very strong statistical indices. In addition, 
multiple linear regression (MLR) was developed and compared with the ANN and ANFIS models. ANN model has the best 
performance, followed by ANFIS model and lastly MLR model. The models have Pearson's correlation coefficients of close 
to 1, indicating that the proposed models can be used to predict characteristic impedance of igneous rocks.

Highlights

•	 The characteristic impedance of rock is crucial in solving 
shock waves problems in mining engineering.

•	 Novel soft computing models are proposed to predict the 
characteristic impedance of igneous rock.

•	 The proposed novel soft computing models outperformed 
the regression-based models.

Keywords  Artificial neural network · Adaptive neuro-fuzzy inference system · Multiple linear regression · Characteristic 
impedance · Uniaxial compressive strength · Water absorption

1  Introduction

Rock is a naturally occurring solid material, formed by 
various geological processes. As such, the physical and 
mechanical properties vary very rapidly even within the 
same deposit and from outcrop to another (e.g., Aladejare 
2016; Guan et al. 2021). The determination of these proper-
ties remains one of the research questions in rock mechanics 
and mining engineering (e.g., Heidari et al. 2012; Wang and 
Aladejare 2015; Aliyu et al. 2019; Aladejare 2020, 2021; 
Aladejare et al. 2021). It is a common practice in mining 
engineering to relate a rock property to others. In literature, 
mechanical properties like uniaxial compressive strength, 
tensile strength, Young’s modulus among other have been 
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related to other properties of rock (e.g., Jaeger et al. 2009; 
Singh et al. 2012; Karakul and Ulusay 2013; Sharma et al. 
2017; Heidari et al. 2018; Aliyu et al. 2019). These empiri-
cal relationships among rock properties have helped mining 
engineers and practitioners to bypass the difficulty often 
associated with the determination of any rock properties. 
Among the rock properties that have emerged very important 
for decision making and design analysis in mining engineer-
ing is rock characteristics impedance. In shock waves, the 
characteristic impedance of a material was defined as the 
product of the density and the shock wave velocity of the 
material (e.g., Cooper 1996). The concept of characteris-
tic impedance of rock can be used to resolve many issues 
involving shock wave transmission and dissipation in rock-
mass. Zhang et al. (2020) explained that shock waves change 
as they travel from low-impedance material to high-imped-
ance one. The shock pressure in the former is smaller than 
that in the latter. This is logical because from the definition 
of characteristic impedance, the higher the wave velocity, 
the higher the corresponding impedance and vice versa. As 
the characteristic impedance of rock depends on density and 
shock wave velocity which change within the same forma-
tion themselves, the impedance of rock is also a variable 
parameter and not a constant.

Zhang et al. (2020) explained that characteristic imped-
ance can be used to classify rocks, because it is well related 
to the mechanical properties of rocks. The popular methods 
of classifying and characterizing rocks include rock quality 
designation (RQD) (Deere 1967), tunnelling quality index 
(Q) (Barton et al. 1974), rock mass rating system (RMR) 
(Bieniawski 1973), geological strength index (GSI) (Hoek 
et al. 1995; Wang and Aladejare 2016a), rock mass index 
(RMi) (Palmström 1996). The classification methods have 
played an important role in rock mechanics and rock engi-
neering, ranging from depicting the type and strength of 
rocks, to obtaining input parameters for mining engineer-
ing design and analysis. However, the classification meth-
ods have drawbacks which includes little to no quantitative 
information on mechanical behaviour of rocks during GSI 
estimation (Hoek et al. 2002; Wang and Aladejare 2016b), 
and extensive field and laboratory testing of rock behaviour 
required in Q, RMR, RMi and RQD estimations. To resolve 
the bottlenecks and drawbacks associated with rock classifi-
cations, Zhang (2016) suggested using characteristic imped-
ance of rock to evaluate a rock mass and classify rocks. This 
suggestion was because the characteristic impedance of rock 
could provide an approximate depiction of the geological 
structures of the rock mass, e.g., joints, faults, bedding, 
and mineral composition. With the recent study by Zhang 
et al. (2020), the characteristic impedance of rocks can be 
related to some physical and mechanical properties of rock. 
The study by Zhang et al. (2020) developed simple regres-
sions between characteristic impedance and different rock 

mechanical properties. However, the inherent variabilities in 
rock properties are not considered in regression models. In 
addition, the study pointed the possibility of relating physi-
cal properties to the characteristic impedance of rock but 
did not explore this possibility. The results of the regres-
sion analyses from Zhang et al. (2020) showed satisfactory 
correlations between characteristic impedance to other rock 
properties like uniaxial compressive strength (UCS), tensile 
strength etc. However, no study has been undertaken to sys-
tematically combine test results of more than one property of 
rock for the estimation of characteristic impedance of rock.

With the recent gain in the application of characteris-
tic impedance in rock mechanics and mining engineering, 
there is need to improve the method for estimation of char-
acteristic impedance of rock. Therefore, this study aims to 
develop more reliable and robust models to predict char-
acteristic impedance of rocks from Jaali, in northern Fin-
land using soft computing analyses. The study makes use of 
artificial neural network (ANN) and adaptive neuro-fuzzy 
inference system (ANFIS) based on laboratory test results to 
eliminate the need for time-consuming and energy demand-
ing experimental analysis. Soft computing models such as 
ANFIS and ANN are becoming increasingly popular in rock 
mechanics, as they have been used in rock property estima-
tion (e.g., Gokceoglu and Zorlu 2004; Yilmaz and Yuksek 
2009; Armaghani et al. 2016; Aladejare et al. 2020; Lawal 
et al. 2021a). Laboratory tests were conducted to determine 
UCS, wave velocity, density, and water absorption of the 
rock samples. The results of the density and wave velocity 
tests will be used to estimate the characteristic impedance 
of the rocks, and they are taken as measured characteris-
tic impedance in this study since they are obtained in the 
laboratory. The UCS and water absorption (WA) test results 
will be used as the input parameters in the proposed models 
and the characteristic impedance will be the targeted output. 
Multiple linear regression (MLR) model will be developed 
to compare with ANN and ANFIS models. The predicted 
results of the ANFIS and ANN as well as MLR will be 
compared with the measured characteristic impedance. The 
model with the best fit/performance from the coefficient of 
determination, average absolute error, average biased error 
and mean the absolute error will be proposed for predicting 
the characteristic impedance of rock from UCS and WA test 
results.

2 � Geography and Geology of Study Area

The sample materials for this study were recovered from 
an exposed section along Ouluntie road, close to Jaali. This 
location is about 15 km northeast of Oulu and about 106 km 
southeast of Kemi, a mining town in Northern Finland. The 
study area is part of the Karelia province of Finland (Fig. 1). 
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The Karelia province comprise five major Archaean blocks 
namely Central Lapland nappe complex, Northern Karelia 
nappe complex, Northern Ostrobothnia nappe complex, 
Northern Savo nappe complex and Kainuu nappe complex 
(GTK 2017). The Karelia province experienced several tec-
tonic events, some of which significantly modified the prov-
ince. The Northern Ostrobothnia nappe which represents a 
lithologic unit that was thrust against the Pudasjärvi block 
during early Svecofennian orogeny. This, amongst several 
orogenic events have led to the formation of deep seated 
fault lines with NE–SW and NNE–SSW trends as well as 
zones of mineral enrichment in the study area (Fig. 1). The 
Pudasjärvi Granulite Belt (PGB) is a north–south trending 
belt located about 70 km northeast of Oulu (Fig. 1). The 
Pudasjärvi Granulite Belt are characterized by bimodal mag-
matism forming both felsic rocks [e.g., the tonalite–trond-
hjemite–granodiorite (TTG) group] and mafic rocks (e.g., 

pyribolites and basalt) (Mutanen and Huhma 2003). In this 
study area, lithologic units were cored from the basaltic sec-
tion of the Pudasjärvi complex. Cored lithologic units were 
mafic with aphanitic texture, suggesting abundance of mafic 
minerals and relatively fast cooling paleo-environmental 
conditions.

3 � Sample Preparation and Testing

Test specimens which are basalts were sampled in  situ 
using NX core drill bits. Each of the recovered samples was 
cut into sizes suitable for uniaxial compression and wave 
velocity tests. Lengths of the prepared test specimens fol-
lowed the recommendation of International Society for Rock 
Mechanics (ISRM 2007). Care was taken to ensure paral-
lelism and smoothness of the specimen end faces by using 

Fig. 1   Geologic map showing location of the Karelia province in 
Finland (modified from GTK 2017). Inset: tectonostratigraphic units 
of Kainuu and Northern Ostrobothnia according to Finstrati (GTK 
2017). Rk Rimpikangas klippe, Ik Itämäki klippe. Lithodemic units in 

the Archaean basement blocks are LeC Lentua complex, IsC Iisalmi 
complex, PuC Pudasjärvi complex, MaC Manansala complex, KaC 
Kalpio complex, KjC Kalhamajärvi complex
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relatively low cutting speed and sandpapering using 220 and 
320 grit sandpaper. In addition, some rock fragments were 
also obtained from each core sample for determination of 
physical properties. All specimens were air-dried to constant 
mass.

Instron compression machine was used to perform uni-
axial compression tests. The test procedure followed was in 
accordance with ISRM (2007), in which prepared specimens 
were loaded at a constant rate of 1 MPa/s. The core surfaces 
were kept parallel to avoid surface irregularities.

A PunditLab digital ultrasonic tester (transit time range: 
from 1 to 9999 μs; EHT voltage: 500 V; pulse mode: con-
tinuous; measuring resolution: 0.1 μs) with two 250 kHz 
transducers was used to measure P-wave velocity (Vp) of the 
specimens prepared for the uniaxial compression test. A thin 
film of coupling gel was applied uniformly to the specimen 
end faces to increase precision of the test. Direct pitch-catch 
transmission technique was employed for ultrasonic testing 
with the coaxial arrangement of the specimen and the trans-
ducers at a constant coupling pressure. P-wave velocities 
(Vp) were determined by the tester by processing the arrival 
times of the waves from the transmitter to the receiver.

To measure water absorption, rock specimens were 
placed in an oven and dried at a constant temperature of 
105 °C for 24 h to remove all absorbed fluids in its natural 
state. The specimen dimensions were more than ten times 
the maximum grain size to ensure that the specimen are rep-
resentatives of the rock mass in accordance with the ISRM 
(2007) recommendation. The specimens were then placed 
in a desiccator for 30 min to cool after which the weight 
in air (i.e., weight of dry rock) was measured as (W1). The 
specimens were then soaked in distilled water for 24 h, after 
which the surface was cleaned and air-dried to eliminate 
surface moisture. The weight of the saturated specimen was 
then measured (W2). The water absorption of specimen was 
then estimated using Eq. (1).

The density of the specimens is expressed as the ratio of 
specimen mass (kg) in air to its volume. The volume of the 
specimen is calculated using the dimensions of the core sam-
ples. Therefore, density is calculated as expressed in (Eq. 2).

For the characteristic impedance (Z) of rocks, no labora-
tory testing was done. The study adopted the relationship 
explained by Zhang et al. (2020) that characteristic imped-
ance of rock is a product of its density and wave velocity as 
expressed in Eq. (3).

(1)Water absorption (WA) =
W2 −W1

W1

× 100%.

(2)Density (�) =
W1

V
.

Hence the characteristic impedance from laboratory is 
determined based on this relationship and treated as meas-
ured characteristic impedance of rock in this study.

4 � Artificial Neural Network (ANN)

ANN has been used successfully in previous research stud-
ies to estimate rock properties (Yılmaz and Yuksek 2008; 
Miah et al. 2020). An ANN model is developed for pre-
dicting the characteristic impedance of the igneous rock 
in this study using the data presented in Appendix 1. The 
number of samples upon which various tests were carried 
out are 100 samples. However, many of these samples fail 
during the compression test and as a result the P-wave 
velocity and UCS could not be obtained for the failed 
samples. Hence, about 38 datasets are used in develop-
ing the proposed model. The number of datasets adopted 
is enough to give a reasonable ANN model since there is 
no rule established in literature that specified the mini-
mum or maximum number of datasets required for ANN 
model and many previous researchers have used less than 
the number of datasets adopted in this study to develop 
reliable models. For instance, Monjezi et al. (2013) used 
20 datasets to predict the blast induced ground vibration. 
Dehghan et al. (2010) used 30 datasets to predict both 
the uniaxial compressive strength and Young modulus of 
rock. Ebrahimi et al. (2015) used 34 datasets to predict 
rock fragmentation size. All the above-mentioned authors 
used ANN approach in developing their models and their 
models have been well adopted.

The datasets are first pre-processed by normalizing 
them within the range compatible with the adopted transfer 
functions using Eq. (4) (Lawal and Idris 2019).

where Xnorm is the required normalized data, Smin and Smax 
are the maximum and minimum normalization range, X is 
the actual data while Xmin and Xmax are the minimum and 
maximum values of X. Afterwards, the model parameters 
such as the water absorption, UCS, and the characteristic 
impedance which is the only targeted output are loaded into 
the MATLAB. The model parameters are then divided into 
three datasets which are 70% for the training, 15% for the 
testing and 15% for the validation respectively. The transfer 
functions for the hidden and output layers are then defined 
to be hyperbolic tangent (f1) and purelin (f2) respectively. 
The number of hidden neurons is varied between 1 and 5 
to obtain a model that is of practical interest. The optimum 

(3)Z = �Vp.

(4)Xnorm =
(Smax − Smin)(X − Xmin)

Xmax − Xmin

+ Smin
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Fig. 2   Best validation performances of the tried ANN structures for a 2–1–1, b 2–2–1, c 2–3–1, d 2–4–1, and e 2–5–1
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ANN architecture selected is 2–2–1 based on the best vali-
dation performances of different networks tried as shown in 
Fig. 2 and the correlation coefficients obtained as presented 
in Table 1. The convergence of the curves of the networks 
tried are as presented in Fig. 2. All the tried networks con-
vergence curves indicated a successful ANN model although 
some variations in the trend of curves are noticed in 2–4–1 
and 2–5–1 architectures. The 2–2–1 network has the low-
est best validation performance error and consequently, the 
best R-values for the training, testing and validation data-
sets. Therefore, 2–2–1 network (Fig. 3) is selected in this 
study for further transformation into the mathematical form 
(Eq. (5)).

where x1 and x2 are given as in Eq. (6)

5 � Adaptive Neuro Fuzzy Inference System 
(ANFIS)

An adaptive network-based fuzzy inference system 
(ANFIS) is a variant of ANN that is centred on the 
Takagi–Sugeno fuzzy inference system. The origin of 
the ANFIS can be traced back to 1990s and it has been 
widely used in various fields including engineering due 
to its potential to capture the advantage of both the ANN 

(5)Z = 5720.043(x1 + x2) + 13785.228.

(6a)
x1 = −1.74701 tanh(−0.02025WA − 0.03624UCS + 1.3225)

(6b)
x2 = 0.15382 tanh(0.3289WA + 0.1781UCS − 12.3108)

and fuzzy logic principles (Jang 1991, 1993; Lawal and 
Kwon 2020). It utilizes the If–then rule inference system 
which has the learning capability to approximate nonlinear 
functions (Abraham 2005). Therefore, it is said to be a 
universal estimator (Jang 1997). Considering the archi-
tecture, ANFIS has five layers. The first layer serving 
as the input layer and determination of the membership 
functions belonging to the input variables (fuzzification 
layer). The second layer is known as rule layer where the 
firing strength for the rules is generated. The third layer 
normalize the computed firing strengths by using the over-
all firing strength to divide each value. The fourth layer 
receives the output of the third layer and the consequence 
parameter set and then returned the defuzzificated values 
which are then passed to the fifth layer for the final output 
(Karaboga and Kaya 2018; Lawal et al. 2020, 2021b).

The ANFIS model is developed in this study to enable 
the comparison of its prediction with that of the ANN 
model. The same number of parameters used in developing 
the ANN is also used in this case. However, the data pre-
processing is slightly different in that the datasets are nor-
malized within the range of 0 and 1 (Eq. (5)). Although, 
the same number of experimental datasets used for train-
ing, testing and validation is also used but it was ensured 
that the data belonging to the training phase contains the 
minimum and maximum values of the model parameters.

The dataset for the training is loaded to the ANFIS tool-
box in MATLAB, then the triangular membership type/func-
tion is selected for the input while the constant member-
ship type/function is selected for the output. The linguistic 
variable used for both the WA and UCS are low (L), high 
(H) and very high (VH) as shown in Fig. 4a and b. The 
number of epoch is set to 100 and the training is performed. 
The obtained ANFIS structure is given as in Fig. 5. The 
plot showing the relationship between the models’ inputs 
together with the 9 rules used in predicting the characteris-
tics impedance are also shown in Fig. 6.

6 � Results and Discussion

6.1 � Model Performance

The performances of the proposed models are evaluated 
firstly by comparing the predictions at various stages of the 
models with the ideal prediction. The ideal fit line is also 
associated with the ± 5% error bar as shown in Fig. 7. For 
the ANFIS model, all the predicted training and testing data 
points fall within the error bar while one of the points under 
the validation falls closely outside the positive error bar, 
indicating that the prediction of the ANFIS model is close to 
the ideal prediction (Fig. 7a). On the other hand, the predic-
tions for the training, testing and validation data points using 

Table 1   Different ANN architecture tried

2–1–1 2–2–1 2–3–1 2–4–1 2–5–1

Train 0.9991 0.99922 0.99857 0.9995 0.9991
Test 0.99868 0.99946 0.99941 0.99534 0.99933
Validation 0.99954 0.99995 0.99948 0.99958 0.99969
Whole 0.99876 0.99928 0.99882 0.9992 0.99896

Fig. 3   2–2–1 ANN architecture selected
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the ANN model are also presented in Fig. 7b. It can be seen 
that some of the datasets fall outside the error bar. However, 
the data points are largely within the ± 5% error bar. This is 
an indication that ANN model can also give a reasonable 
prediction of the characteristic impedance (Z).

The performances of the proposed models are further 
evaluated using some statistical indices such as mean abso-
lute percentage error and coefficient of determination (R2) 
as presented in Eqs. (7) and (8).

(7)MAPE =
1

n

⎛
⎜⎜⎝

���ymi
− yesi

���
ymi

× 100%

⎞
⎟⎟⎠
,

Fig. 4   a Membership function 
for UCS. b Membership func-
tion for WA

Fig. 5   The ANFIS structure
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Fig. 6   Fuzzy rules

Fig. 7   Performances of the models at various stages for a ANFIS and b ANN
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where ym is the measured value, yes is the model estimated 
value and n is the number of datasets. The ym and yesi with 
bar symbol indicated their mean values. The obtained evalu-
ation is presented in Table 2 for the training, testing and vali-
dation datasets. The MAPE values obtained using ANFIS 
for the training, testing and validation are 0.665, 1.177 and 
1.894 while their respective R2 values are 0.9987, 0.9995 
and 0.998. For the proposed ANN model, the MAPE values 
obtained are 0.777, 0.977, and 0.372 for the respective train-
ing, testing and validation while their respective R2 values 
are 0.9984, 0.9989, and 0.9999. Even though the predicted 
R2 values of ANFIS are better than the ANN for the training 
and testing, the MAPE values of ANFIS are higher than the 
ANN for the testing and validation cases. This also agrees 
with Fig. 7 where all the predicted data points fall within 
the ± 5% error bar in the case of both ANFIS and ANN but 
that of ANN seems to be closer to an ideal fit line.

(8)R2 =

⎡⎢⎢⎢⎣

∑n

i=1
(ymi

− ym)(yesi − yes)�∑n

i=1
(ymi

− ym)
2

�∑n

i=1
(yesi − yes)

2

⎤⎥⎥⎥⎦

2

,

6.2 � Model Comparison

The proposed models are further compared using the over-
all dataset used in developing the models to evaluate how 
close the model predictions to the measured values are. To 
ensure logical comparison and to further validate the reli-
ability of the developed models, a multiple linear regression 
is developed to compare with the ANFIS, and ANN models 
developed in this study. The MLR technique in this study 
aims at determining the values of characteristic impedance 
for a function that causes the function to best fit an avail-
able set of measured WA and UCS data. MLR technique has 
been used in many rock mechanics studies to develop models 
for engineering applications (Khandelwal and Armaghani 
2016; Aladejare et al. 2020; Mahmoodzadeh et al. 2021). 
The MLR developed to predict the characteristic impedance 
of igneous rock is presented in Eqs. (9).

The prediction model for Z in Eq. (9) is logical, because 
the dependent variable (Z) increases with decreasing inde-
pendent variable WA and increasing independent variable 
UCS. Since characteristic impedance increases with UCS, 
a strength parameter, it is logical for characteristic imped-
ance to decrease with increasing WA. The study of Zhang 
et al. (2020) also indicates that the characteristic impedance 
increases with increasing uniaxial compressive strength. 
In addition, increasing water absorption leads to decreas-
ing uniaxial compressive strength (Ündül and Tuğrul 2012; 
Tang et al. 2018). Therefore, it is reasonable that charac-
teristic impedance will increase with increasing uniaxial 
compressive strength and decreasing water absorption, and 

(9)Z = 47.3681 − 66.9977WA+ 257.0982UCS.

Table 2   Performance evaluation with statistical indicators

ANFIS ANN

MAPE R2 MAPE R2

Training 0.665 0.9987 0.777 0.9984
Testing 1.177 0.9995 0.977 0.9989
Validation 1.894 0.998 0.372 0.9999

Fig. 8   Comparison of the ANFIS model predictions with measured values
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vice versa. This is because there is an inverse correlation 
between uniaxial compressive strength and water absorption, 
and this propagate to their relationship with characteristic 
impedance.

The outcome of the comparison is presented in Figs. 8, 
9 and 10. The ANN model’s predicted data points are the 
closest to the measured characteristic impedance, followed 
by the ANFIS model’s predicted data points and the MLR 
model’s predicted data points in that order (see Figs. 8a, 9a 
and 10a). Their respective R2 values which are 0.997 for 
ANFIS (Fig. 8b), 0.999 for ANN (Fig. 9b) and 0.991 for 

MLR (Fig. 10b) also indicate that ANN model predictions 
are slightly better than those of ANFIS and MLR. Although, 
both soft computing models as well as the MLR model 
can give reasonable predictions of the rock characteristics 
impedance. The proposed models will help mining engineers 
and practitioners when there is need to estimate character-
istic impedance of rocks. Although efforts have been made 
previously to develop models to enhance rock properties 
estimation, like the generic transformation models devel-
oped by Ching et al. (2018). However, they did not develop 
models for estimation of characteristic impedance and did 

Fig. 9   Comparison of the ANN model predictions with measured values

Fig. 10   Comparison of the MLR model predictions with measured values
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not use soft computing approaches in their study. Interest-
ingly, no study is reported in literature to have developed 
soft computing-based models for estimation of character-
istic impedance. Therefore, mining practitioners will find 
the proposed models useful when there is data of uniaxial 
compressive strength and water absorption at project sites 
and there is a need to estimate characteristic impedance of 
rock for such project sites.

7 � Conclusion

Based on the experimental data obtained and models of 
ANN, ANFIS and MLR developed in this study, the fol-
lowing conclusions can be drawn:

1.	 The characteristic impedance of rock is related to both 
physical and mechanical properties of rock. Therefore, 
the characteristic impedance can be estimated using 
combination of data of physical and mechanics proper-
ties of rock.

2.	 The Pearson's correlation coefficients of the models 
show that ANN has the highest R2, followed by ANFIS 
and lastly MLR. This indicates that the soft computing 
models (i.e., ANN and ANFIS) have high reliability in 
estimating characteristic impedance of rock.

3.	 The ANN model gives a lower RMSE than ANFIS 
model, indicating that it produces low error when used 
to estimate characteristic impedance of rock.

4.	 The performances of the proposed soft computing mod-
els are promising with the ANN being the best of the 
models developed.

5.	 Both ANN and ANFIS models as well as the MLR 
model can be used to estimate the characteristic imped-
ance of rock when there are results of physical and 
mechanical tests (i.e., data of water absorption and uni-
axial compressive strength) for a rock site/deposit.

6.	 It is possible to estimate characteristic impedance of 
rocks using the proposed models. However, the reliabil-
ity of such estimates depends on the quality and quantity 
of rock data available and the rock type at a project site. 
Rock properties are site-specific; therefore, the models 
may have varying performance levels across different 
rock types because of geological features and lithology 
of different rock types. For instance, the models in the 
study are developed from data of igneous rocks and may 
perform better in estimation of characteristic impedance 
of igneous rocks than other rock types.

Appendix 1: Results of laboratory 
experiments

S/N Vp 
(m/s)

Den-
sity (g/
cm3)

Characteristic 
impedance, Z 
(× 106 kg/s m2 × 10–3)

WA 
(%)

UCS 
(MPa)

A1 4462 2.6991 12,043.5044 0.0933 46
A2 4143 2.6625 11,030.9155 0.0129 43.3
A3 3862 2.7198 10,503.7773 0.1872 41.1
A4 4222 2.6652 11,252.4996 0.0197 44
A5 4231 2.7011 11,428.4882 0.0381 44.1
A6 4462 2.7330 12,194.7781 0.0167 46
A7 4462 2.7635 12,330.9589 0.0539 46
A8 4320 2.7009 11,667.7029 0.0159 44.8
A9 4667 2.7158 12,674.6679 0.0261 47.9
A10 4400 2.7140 11,941.7188 0.0061 45.5
A11 3548 2.7894 9896.8566 1.5806 38.7
A12 4462 2.7154 12,116.0462 0.0574 46
A13 4354 2.6821 11,677.7599 0.0454 45.1
A14 4593 2.6690 12,258.6151 0.0074 47.2
A15 4000 2.6525 10,609.9568 0.0473 42.2
A16 3700 2.6847 9933.5333 0.2804 39.8
A17 3333 2.6918 8971.6732 0.1465 37.2
A18 4560 2.6838 12,238.0676 0.0409 46.9
A19 4087 2.6774 10,942.5131 0.1273 42.9
A20 2970 2.7156 8065.1849 0.1304 34.7
A21 4154 2.7344 11,358.8226 1.0486 43.4
A22 4500 2.7504 12,376.9655 0.0147 46.4
A23 4190 2.7162 11,380.8899 0.0486 43.7
A24 4250 2.6513 11,268.0315 0.0205 44.2
A25 3636 2.7529 10,009.5452 0.1405 39.4
A26 2.7305 0.0485
A27 2.7199 0.1275
A28 2.6616 0.0140
A29 6000 2.6877 16,126.1163 0.0791 61.6
A30 2.7145 0.0561
A31 2.6835 0.0621
A32 2.7231 0.2616
A33 2.7137 0.0704
A34 2.7234 0.0297
A35 2.7681 0.0375
A36 5500 2.6840 14,762.1598 0.0046 56.1
A37 2.7116 0.1422
A38 2.6816 0.0136
A39 2.6810 0.0737
A40 2.6724 0.0495
A41 2.6893 0.0243
A42 2.6923 0.0302
A43 2.6814 0.0081
A44 2.7011 0.0384
A45 2.7138 0.0145
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S/N Vp 
(m/s)

Den-
sity (g/
cm3)

Characteristic 
impedance, Z 
(× 106 kg/s m2 × 10–3)

WA 
(%)

UCS 
(MPa)

A46 2.7115 0.0060
A47 2.7350 0.0722
A48 2.7025 0.0145
A49 2.6684 0.0066
A50 2.6881 0.0412
A51 7273 2.6819 19,505.2707 0.0306 78.5
A52 2.7476 0.0375
A53 7167 2.6998 19,349.6416 0.0113 76.9
A54 2.6456 0.0611
A55 2.6867 0.0639
A56 2.6834 0.0807
A57 6333 2.6856 17,007.6338 0.0607 65.7
A58 2.6863 0.0041
A59 2.7596 0.0441
A60 6500 2.6881 17,472.9060 0.0030 67.8
A61 2.7043 0.0536
A62 2.6900 0.0978
A63 2.6927 0.0137
A64 2.7360 0.0055
A65 2.7501 0.0820
A66 6769 2.7837 18,842.9152 0.0254 71.3
A67 2.7132 0.0117
A68 2.6311 0.0170
A69 2.7302 0.0067
A70 2.7074 0.0586
A71 2.7297 0.0649
A72 2.7226 0.0470
A73 2.6671 0.1524
A74 6923 2.7356 18,938.5583 0.0694 73.4
A75 2.7005 0.0026
A76 2.8140 0.0320
A77 2.6575 0.0268
A78 2.7193 0.0169
A79 2.7012 0.0077
A80 2.6934 0.0534
A81 2.6836 0.0535
A82 2.7017 0.4155
A83 2.6560 0.3115
A84 6400 2.7044 17,308.2452 0.0049 66.5
A85 2.6683 0.1805
A86 2.6943 0.0395
A87 6444 2.6778 17,255.8129 0.0068 67
A88 2.7138 0.0075
A89 2.6801 0.0439
A90 2.6283 0.3623
A91 2.7002 0.0036
A92 6000 2.6617 15,970.3059 0.1298 61.6
A93 7111 2.6958 19,169.9075 0.0041 76.1
A94 2.7449 0.0022

S/N Vp 
(m/s)

Den-
sity (g/
cm3)

Characteristic 
impedance, Z 
(× 106 kg/s m2 × 10–3)

WA 
(%)

UCS 
(MPa)

A95 2.7979 0.0845
A96 2.6964 0.0053
A97 2.7160 0.0269
A98 5818 2.6986 15,700.6049 0.0540 59.5
A99 2.7292 0.0060
A100 2.6739 0.0514
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