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Abstract
In this work, we propose a modified phase-field model for simulating the evolution of mixed mode fractures and compres-
sive driven fractures in porous artificial rocks. For the purpose of validation, the behaviour of artificial rock samples, with 
either a single or double saw cuts, under uniaxial plane strain compression has been numerically simulated. The simulated 
results are compared to experimental data, both qualitatively and quantitatively. It is shown that the proposed model is able 
to capture the commonly observed propagation pattern of wing cracks emergence followed by secondary cracks driven by 
compressive stresses. Additionally, the typical types of complex crack patterns observed in experimental tests are success-
fully reproduced, as well as the critical loads.

Keywords Phase-field fracture model · Porous rock · Compression driven fractures · Comparison to experiments · 
Isogeometric analysis

1 Introduction

The prevention of fracture-induced failure is an important 
aspect to consider in most designs. The consequences of 
brittle fractures are often critical for any design, and numeri-
cal simulations have become common practice to analyse 
the fracture process. Most methods of analysing fractures 
stem from the pioneering work by Griffith (1921) and Irwin 
(1957) on brittle fractures. In these works, crack propagation 
is related to a critical value of the energy release rate. Dur-
ing the last decades, a number of methods have been devel-
oped for numerical analysis using the finite element method 
(FEM). These methods have two significant drawbacks, the 
first being that crack propagation leads to a change of the 
geometrical discretisation and the second that the crack 
path needs to follow the mesh lines. There are methods to 
overcome the second issue. One method is to use enrich-
ment techniques such as the extended finite element method 

introduced by Melenk and Babuška (1996) and Moës et al. 
(1999), see e.g., Liu and Borja (2008) or Shen et al. (2014) 
for a work on fractures in rock. Another method is the dis-
continuous finite element method as described by Mergheim 
and Steinmann (2006). Here strong discontinuities in the 
form of a cohesive zone model are introduced independent 
of the mesh structure. Whereas in classical cohesive zone 
modelling cracks have to follow mesh lines, see Hillerborg 
et al. (1976) and e.g., Ottosen and Ristinmaa (2016) for a 
recent work. The issue of tracking the evolution of complex 
fractures has, however, proven to be difficult.

In recent times, an alternative method has been intro-
duced for numerical simulations of brittle fractures, using a 
phase-field to simulate the fracture zone. In these phase-field 
models, a fracture is indicated by a scalar order parameter, 
which is coupled to the material properties to model the 
change in stiffness between broken and undamaged material. 
Where the material is undamaged, the order parameter takes 
the value one and the material properties remain unaltered. 
Broken material is characterised by the value zero and the 
stiffness of the material is reduced accordingly. Thus, in the 
phase-field model, cracks are represented as lines or areas in 
the material, where the order parameter has the value zero 
and the stiffness is significantly reduced. The variational 
formulation of quasi-static brittle fracture mechanics was 
introduced by Francfort and Marigo (1998). A numerical 

 * Ralf Denzer 
 ralf.denzer@solid.lth.se

1 Department of Construction Sciences, Faculty 
of Engineering, Lund University, P. O. Box 118, 
221 00 Lund, Sweden

2 Division of Solid Mechanics, Faculty of Engineering, Lund 
University, P. O. Box 118, 221 00 Lund, Sweden

http://orcid.org/0000-0002-8137-9854
http://orcid.org/0000-0002-6127-7658
http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-021-02627-4&domain=pdf


5376 A. Spetz et al.

1 3

implementation of the regularised approximation of the 
variational formulation was first introduced by Bourdin 
(2007) and further explored in Bourdin et al. (2012). Miehe 
et al. (2010b) presented the interpretation in the context of 
a gradient damage model and introduced alternative models 
based on a history field that ensures growth of the phase-
field parameter. The phase-field fracture model has since 
been extended in a number of directions, including dynamic 
fracture (Borden et al. 2012; Tanné et al. 2018; Schlüter 
et al. 2014; Carlsson and Isaksson 2018; Schlüter et al. 
2014), coupled thermo-mechanical-driven fracture (Hesch 
and Weinberg 2014), high-order phase-field approaches 
(Weinberg and Hesch 2017), and various solution techniques 
(Wick 2017) to name a few.

However, these contributions are not specific for rocks 
and rock-like materials and, therefore, are not capable of 
capturing their behaviour. The fracturing process in rocks 
is complex and often accompanied by other failure mecha-
nisms, like conjugated microcracks and shear bands, as 
shown by Lewis et al. (2019). A number of authors have 
made an effort to numerically analyse this complex phenom-
enon. Li et al. (2018) investigated the influence of microc-
racks distribution in a rock specimen based on a stochastic 
model. The model provides reasonable results but requires 
pre-knowledge about the material that is difficult to obtain 
for full scale simulations. Backers and Stephansson (2012) 
studied the development of fractures for varying bound-
ary conditions suggesting that these influence significantly 
the behaviour of the material and consequently the model 
parameters. Phase-field methods have also been used to sim-
ulate fracture propagation in rocks in different conditions. 
Santillán et al. (2018) explored the effect of hydraulic pres-
sure in fractured rock. Nguyen et al. (2016) compared phase-
field simulations with micro-CT images of tension cracks 
in lightweight plaster and concrete and identified material 
parameters by inverse analysis. These works, however, are 
based on models not specific to rock-like materials.

In fact, in these materials the Mode I and Mode II fracture 
toughness for energy ( GIc and GIIc ) can differ significantly. 
Shen and Stephansson (1994) state that GIIc in rocks is much 
greater than GIc , typically GIIc ≥ 100GIc , due to differences in 
failure mechanisms. They further demonstrated that failure 
under compression is not correctly predicted when this dif-
ference is ignored as, e.g., in the original maximum strain 
energy release rate criterion (G-criterion). They proposed, 
therefore, a modified criterion based on the normalised 
strain energy release for Mode I and Mode II. Based on 
this idea, Zhang et al. (2017) proposed a phase-field frac-
ture model that distinguishes between Mode I and Mode II 
toughness for energy. However, their suggested split does 
not allow the uncoupling between deviatoric and volumetric 
strain, which is a common split in rock mechanics. Moreo-
ver, porous rocks, e.g., sandstone and volcanic rock, often 

display fractures in compression, referred to as compaction 
bands, see e.g. Labuz and Drescher (2003). A further modi-
fication to the model is required to allow the correct simula-
tion of this kind of fracture.

In this work we propose a modified phase-field frac-
ture model that distinguishes between fractures in Mode I 
and Mode II and assures the uncoupling of volumetric and 
deviatoric strain. The model also enables for simulation of 
compression driven fractures (compaction bands) in porous 
rock-like materials. The model is a quasi-static phase-field 
model, where the evolution of the crack field with respect to 
time is described by a thermodynamically motivated Ginz-
burg-Landau type evolution equation (Miehe et al. 2010b). 
To obtain a robust implementation of the phase-field model 
a staggered integration scheme has been utilised. Informa-
tion about the energy release during the advancement of 
compressive driven fractures was found in Vajdova and 
Wong (2003) while Rudnicki and Sternlof (2005) presented 
a model to determine the energy release rate for the com-
pression driven fractures Gband . Furthermore, most of the 
work proposed on phase-field models of fractures have thus 
far been applied to academic benchmarks. It is, therefore, of 
interest to evaluate the method against experimental obser-
vations. In this work, we compare the proposed phase-field 
fracture model with experimental data on the evolution of 
wing cracks and compression cracks in a porous artificial 
rock, see the extensive experimental work in Nguyen (2011). 
Our model is restricted to wing cracks and the onset of com-
paction band formation and is able to capture the experi-
mental results both qualitatively and quantitatively. Further 
experimental data would be needed to extend our model to 
other types of cracks observed in porous rocks.

The outline of this work is as follows. In Sect. 1.1 we 
compare the experimentally observed crack paths in a porous 
artificial rock (Nguyen (2011)) with the numerically pre-
dicted crack path by the unified phase-field theory presented 
in Wu (2017). In Sect. 2, we give an outline of the proposed 
modified phase-field model for brittle fracture including a 
brief description of the numerical formulation in Sect. 2.3. 
In Sect. 3 we present numerical examples that demonstrate 
the capability of the proposed modified phase-field model. 
The paper is summarised with concluding remarks.

1.1  Crack Path Prediction with the Unified 
Phase‑Field Theory

We consider here the experimentally observed crack paths in 
a sample of an artificial porous rock CPIR09 with one initial 
inclined cut under uniaxial compression load, see Fig. 1a, 
as described in detail in Nguyen (2011). Plane strain condi-
tions are experimentally enforced by two very stiff sapphire 
glass platens to confine the specimen in thickness direction. 
The sample is manufactured from an artificial mixture based 
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on clay mixed with water, organic glues and fly ash. This 
mixture is pressed (solidified) and afterwards sintered at 
1300◦ C. The resulting artificial rock has very high poros-
ity � = 0.45… 0.5 and shows hollow spheric pores with a 
diameter in the range 0.1… 0.4 mm, see Nguyen (2011) for 
further details. The artificial rock sample has dimensions 
of 100 × 50 × 35 mm3 and a 0.4 mm wide and 12 mm long 
initial sawed cut inclined at 45◦ as indicated by the blue line 
in Fig. 1a. Under displacement controlled compression load 
in vertical direction, so called wing cracks, W1 and W2, 
are evolving from both ends of the initial sawed cut. At a 
certain load level additional compaction bands C1 and C2 
start growing from the sawed cut ends. See Fig. 7 for a more 
detailed evolution of the experimentally observed cracks.

In the following, we want to compare these experimen-
tally observed crack paths with simulation based on the uni-
fied phase-field theory presented in Wu (2017). An imple-
mentation of this model is available in the open source 
FEM code MOOSE (Permann et al. 2020), see also Nau-
mov et al. (2021) for a similar model provided by the open 
source FEM code OpenGeoSys. To be specific, we choose 
the unified model parameters of Wu (2017) such that the 
model coincides with the widely used phase-field fracture 
model described in Miehe et al. (2010a). Without going into 
details, we set Young’s modulus E = 5 GPa, Poisson’s ratio 
� = 0.18 , and the critical energy release rate Gc = 1.0 N/m. 
From the artificial rocks tensile strength �t = 1.6 MPa we 
determine a regularisation length parameter �0 = 0.104 mm. 
We discretised the specimen with approximately 350,000 
second order Lagrange finite elements. The predicted crack 
path is depicted in Fig. 1b and one observes quite large devi-
ations between the experimentally observed and numerically 
predicted paths of the two wing cracks. Furthermore, the 
model formulation explicitly assumes that no cracks under 

compressive strains evolve thus the experimentally observed 
compaction bands can not be modelled. For comparison we 
depict beforehand in Fig. 1c the predicted crack paths using 
our modified phase-field fracture model. One observes a 
considerably better agreement with the experimental result. 
In the following, we describe this modified model in detail.

2  Formulation of the Modified Model

In this section, we give a brief recapitulation of the Grif-
fith energy-based failure criterion. The criterion is based on 
elastic fracture mechanics and states that the elastic energy 
released during fracture propagation is balanced by newly 
created surface energy.

2.1  Griffith’s Theory of Brittle Failure

Consider an arbitrary body � with boundary �� and inter-
nal discontinuity boundary �  , see Fig. 2a. Let u denote the 

Fig. 1  a Experimentally 
observed crack path (red lines) 
initiated by the initial sawed cut 
(blue line), Nguyen (2011), b 
crack path prediction based on 
the unified phase-field theory 
by Wu (2017) and c predicted 
crack path by our modified 
phase-field fracture model. For 
details, see Sect. 3.2

(a) (b)

Fig. 2  a Representation of a solid body � with internal discontinuity 
boundary �  . b Approximation of internal discontinuity boundaries by 
the phase-field d(x, t)
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displacement vector, then the infinitesimal strain tensor � is 
defined as the symmetric part of the displacement gradient 
tensor ∇u , i.e. �(u) = 1

2
[∇u + [∇u]T ].

By assuming isotropic linear elasticity, the elastic energy 
stored in the undamaged bulk of a body � is given by

where � and � are the Lamé constants. Griffith’s theory of 
brittle failure states that the total energy �  of the body is 
given by

where �ext is the potential of the external forces and �d is 
the energy needed for evolution of the internal discontinuity 
boundary � (t) , defined as

with Gc the critical fracture energy density.

2.2  Modified Phase‑Field Approximation

The basic idea behind the phase-field fracture models is to 
let a scalar order field parameter d(x, t) ∈ [0, 1] indicate a 
fracture in the body � , see Fig. 2b. In this work the material 
is undamaged as long as the phase-field d = 1 , and a fracture 
is represented by d = 0 . The phase-field model is based on 
an approximation of the total energy needed for a fracture 
to grow, �d , in a body � . A number of different methods 
have been suggested to approximate the fracture energy, one 
widely used formulation was suggested by Bourdin et al. 
(2000). Where the fracture energy is approximated as

with ∇d representing the spatial gradient of the phase-field, 
imperative for driving the crack propagation, and where �0 
is a model parameter that controls the width of the approxi-
mation of the fracture zone. Earlier work (Pham and Marigo 
2010a, b; Kuhn and Müller 2010; Pham et al. 2011) have 
suggested that the length, �0 , can be regarded as a material 
parameter. The suggested expression links the length param-
eter to the Young’s modulus E, the tensile strength �t , and 
the critical energy release rate Gc by the relation �0 =

27EGc

512�2
t

 . 
Bourdin et al. (2000) pointed out that the early phase-field 
approximations gave unrealistic crack patterns during 

(1)
�e =∫

�

�0

e
(�) dV

=∫
�

1

2
�[tr�]2 + �tr[�2] dV

(2)� = �e + �d − �ext

(3)�d = ∫
�

Gc dA

(4)
�d =∫

�

Gc dA

≈∫
�

Gc

[ (d − 1)2

4�0

+ �0|∇d|2
]
dV

compression. Miehe et al. (2010a) suggested a decomposi-
tion of the elastic energy �e(�) = �+

e
(�) + �−

e
(�) based on 

positive and negative eigenvalues of the strain tensor to rem-
edy the problem with unrealistic cracks during compression. 
An alternative split of the strain energy was proposed earlier 
by Amor et al. (2009). Using the decomposition of the elas-
tic energy, Miehe et al. (2010a) proposed a reformulation of 
the elastic energy density Eq. (1), to

where 𝜂 ≪ 1 is a small residual stiffness, introduced to pre-
vent numerical problems and where �+

e
 and �−

e
 are the strain 

energies based on positive and negative eigenvalues of the 
strain tensor.

Following Miehe et al. (2010a and 2015) we get a coupled 
set of equations,

where the crack driving ratio

is introduced as a local history field which drives the phase-
field and prevents the crack from healing in the case of 
unloading. In Eq. (7) the term 

[
1

2�0

[d − 1] + 2�0�d
]
 is called 

the geometric resistance of the regularised crack and the 
term −2d[1 − 𝜂]H̃ is a crack driving force. The kinetic coef-
ficient or mobility parameter M̃ in the evolution term ḋ

M̃
 is a 

non-negative scalar function M̃(�, d,∇d, ḋ) introduced to 
control the crack velocity. The most simple assumption, M̃ = 
constant, leads to the standard Ginzburg-Landau evolution 
equation, see Kuhn and Müller (2010).

Remark 1 This evolution equation of the phase-field d is 
interpreted in Miehe et al. (2015) as a generalised formula-
tion of a constitutive balance equation for the regularised 
crack surface in the sense of a Ginzburg–Laudau equation. 
It is open for different constitutive models of energetic and 
non-energetic crack driving forces. It is not an approxima-
tion of Francfort and Marigo (1998) variational approach 
as shown by May et al. (2015). Miehe et al. (2016) show 
the thermodynamic consistency of this evolution equation 
in the sense of the (reduced) Clausius-Duhem dissipation 
inequality. E.g., positive dissipation is achieved for material 
parameters Gc,�0, M̃ > 0 , a positive and monotone increas-
ing history field H̃ etc.

(5)�0

e
(�, d) = [(1 − �)d2 + �]�+

e
+ �−

e

(6)0 =div� + f with �n|��t
= t∗

(7)
ḋ

M̃
= − 2d[1 − 𝜂]H̃ −

[
1

2𝓁0

[d − 1]

+2𝓁0𝛥d
]

with ∇d ⋅ n|𝜕𝛺 = 0

(8)H̃ =
H

Gc

=
1

Gc

max
s∈[0,t]

(𝜓+
e
(x, s))
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The main idea is to propose a constitutive model of the 
crack driving force term, by modifying the crack driving 
ratio H̃ = H∕Gc . We start with the common volumetric-
deviatoric split of the isotropic linear elastic strain energy 
density

where �d = � − 1∕3 tr� is the deviatoric part of the strain 
tensor and K the bulk modulus. Furthermore, we introduce 
a split of the deviatoric part of the strain tensor in a positive 
and negative part by

where {�i
d
}i=1…� are the principal values and {ni}i=1…� are 

the orthonormal eigenvectors of the deviatoric strain ten-
sor. ⟨x⟩ = ⟨x⟩+ = [x + �x�]∕2 are the Macaulay brackets and 
⟨x⟩− = [x − �x�]∕2 a similar bracket operator for the negative 
range. With this at hand we define

where the Heaviside function H(tr[�]) is used. With these 
parts of the strain energy density we propose the following 
crack driving ratio

In comparison to Eq. (8), we use two different model param-
eters G+

vol
 and G+

dev
 to scale the crack driving forces stemming 

from positive volumetric strain (leading to �vol+
e

 ) and posi-
tive deviatoric strains �+d  (leading to �dev+

e
).

Moreover, porous rocks, e.g., sandstone or volcanic 
rock, in general exhibit cracks during compression, see e.g., 
Rudnicki (2002). To allow for so-called compaction bands 
caused by compressive strains, i.e., negative volumetric and 
negative deviatoric strains �−d  , we use a third model param-
eter Gband to scale the corresponding strain energy part �−

e
 . 

This is motivated by the energy release model of compaction 

(9)
�e(�) =�vol

e
+ �dev

e

=
1

2
K[tr�] + �tr[�2

d
]

(10)

�d+ =

𝛿�

i=1

⟨𝜀i
d
⟩+ni ⊗ ni and

�d− =

𝛿�

i=1

⟨𝜀i
d
⟩−ni ⊗ ni

(11)

�vol+
e

=
1

2
K⟨tr[�]⟩2H(tr[�])

�dev+
e

= �tr[(�+
d
)2]H(tr[�])

�−
e
=

1

2
K[tr[�] − ⟨tr[�]⟩]2

+ �tr[(�−
d
)2][1 − H(tr[�])]

(12)

H̃ = max
s∈[0,t]

(𝜓±) with

𝜓± =
𝜓vol+
e

G

+

vol

+
𝜓dev+
e

G
+
dev

+
𝜓−
e

Gband

bands by Rudnicki and Sternlof (2005). They introduced 
an energy release per unit area created of compaction band 
with thickness h

with � the applied displacement which is necessary to create 
the compaction band.

As compressive strains now lead to crack-like failures, 
i.e., compaction bands, we modify the stress computation 
in the balance of linear momentum, Eq. (6) as

Besides the modification of the crack driving ratio H̃ , 
we further propose a non-constant mobility parameter 
M̃(�) = m̃1 + m̃2H(tr[�]) . Making use of the equations of 
above the proposed phase-field fracture model may be writ-
ten as

Remark 2 The failure mechanism observed in compaction 
bands of porous rocks is the collapse of hollow pores under 
compressive load. This results in a strong reduction of the 
local stiffness. Further loading leads the compaction band to 
close and full contact is achieved. Thus, the local stiffness of 
the compaction band increases again. Our model can predict 
with the help of Eq. (14) in combination with the evolution 
Eq. (15) only the onset of the compaction band formation. 
I.e., the initial strong reduction of the stiffness in a local-
ized band. In our model further compressive loading leads 
to interpenetration of the compaction band faces as Eq. (14) 
does not contain an unilateral contact. Nevertheless, we can 
model the onset of compaction bands and also the evolu-
tion of relative small compaction bands quite good as shown 
later by comparing numerical examples with experimental 
results.

Remark 3 Following Miehe et al. (2016) positive dissipation 
is achieved for G+

vol
,G

+
dev

,Gband > 0 as this results in a posi-
tive and monotone increasing history field H̃ . Furthermore, 
observe that in the case we set G+

vol
= G

+
dev

= Gc and formally 

(13)Gband =
1

2

[
E
(
�

h

)]
�

(14)
�0

e
(�, d) = [(1 − �)d2 + �]�e(�) and

� =
��0

e

��
.

(15)

0 = div� + f

0 = 2d[1 − 𝜂]H̃ +
1

2�0

[d − 1] + 2�0𝛥d +
ḋ

M̃
with

H̃ = max
s∈[0,t]

(𝜓±) and

𝜓± =
𝜓vol+
e

G
+
vol

+
𝜓dev+
e

G
+
dev

+
𝜓−
e

Gband
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set the factor 1∕Gband = 0 in Eq. (12) then we obtain the same 
crack driving ratio as in Eq. (8) because �+

e
= �vol+

e
+ �dev+

e
.

2.3  Numerical Formulation

We briefly present the spatial discretisation of the phase-
field model presented in the previous section. The spa-
tial discretisation is formulated by means of the Galerkin 
method, using C1-continuous NURBS basis functions as the 
finite dimensional approximations to the function spaces 
of the weak form. Moreover, earlier work by Wick (2017) 
have shown that the non-linearities and non-convexity of 
the phase-field fracture model has proved difficult to solve 
using a fully monolithic scheme. In this work we utilise a 
staggered scheme, first presented by Bourdin et al. (2000), 
to solve the displacements and phase-field separately. The 
staggered approach allows for robust solution of the incre-
mental update of both the displacement and phase-fields. 
We solve for the field variables for each discrete time step 
0, t1,… , tn, tn+1,… , T  , where tn denotes the last time step 
for which all field variables, un, dn , are assumed to be 
known. With the staggered scheme we determine the field 
variables in the current time step tn+1 for the time incre-
ment �t = tn+1 − tn . The rate of the phase-field is considered 
to be constant over each time increment, and is defined as 

ḋ = (dn+1 − dn)∕𝛥t and we use a Euler backward method for 
the time integration of the phase-field evolution equation.

Furthermore, we define the displacement field using a 
vector-matrix notation, i.e., �e = �

e
u
�̂
e and the phase-field 

as de = �
e
d
�̂
e for each control point in the support of an ele-

ment, see Cottrell et al. (2009). Moreover, �e
u
 and �e

d
 are 

the NURBS basis functions. Using these definitions we 
can write the discretised version of the weak form of the 
mechanical part of the phase-field model as

where �e
u
 is an operator mapping the element discrete dis-

placements to the local strains. Likewise, the discretised ver-
sion of the weak form of the phase-field part is defined as

where the discrete gradient of the phase-field is determined 
as ∇de = �

e
d
�̂
e , where �e

d
 is an operator containing the deriv-

ative of the basis functions.

(16)

n∑

e=1

(�ue)

[

∫
�

[
− [�e

�u
]T�h + �

e
�u

fh

]
dV + ∫

��t

�
e
�u

t∗dA

]
= 0

(17)

n∑

e=1

𝛿de
[
− ∫

𝛺

�
e
𝛿d

(
ḋe

M̃
+

1

2�0

(de − 1)
)
− [�e

𝛿d
]T2�0∇d

e

+ .. �
e
𝛿d

(
2de(1 − 𝜂)H̃

)
dV

]
= 0.

Fig. 3  a Geometry and bound-
ary conditions for the 1 × 1 mm2 
plate in the single edge notched 
shear test. b Force-displacement 
curve for the single edge 
notched shear test

(a) (b)

Fig. 4  Crack patterns for the 
single edge notched shear 
test. a u = 9.8 × 10−3 mm, b 
u = 11.8 × 10−3 mm and c 
u = 14.0 × 10−3 mm
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3  Numerical Examples

In this section we demonstrate the performance of the pro-
posed modified phase-field fracture model. First, we present 
results for a standard benchmark test, presented by Miehe 
et al. (2010a). Furthermore, we showcase the capacity of 
the proposed model for simulation of brittle fracture and 
compaction band propagation in a porous artificial rock, 
CPIR09, during compression under plane strain conditions. 
The simulations of the rock samples follow the experimental 
work presented in Nguyen (2011). For all the simulations the 
residual stiffness has been selected to � = 1 × 10−12.

Remark 4 For phase-field fracture simulations based on a 
Finite Element framework typically � = 1 × 10−6 is set. For 
much lower values one may get a bad conditioned stiffness 
matrix which leads to numerical problems during the solu-
tion procedure. A value of � = 1 × 10−6 may still have non-
negligible influence on the predicted crack path as shown 
in Geelen et al. (2018). They introduced additional cutting 
elements in the phase-field fracture approach to model the 
fully broken material with zero residual stiffness. Whereas in 
our isogeometric analysis (IGA) based approach we can set 
� to a six order of magnitude lower value without observing 
a bad conditioned stiffness matrix. We assume that this is 
due to larger support of the IGA knots in comparison to the 
support of a FEM node. Variation of � = 10−11 … 10−13 did 
not show any visible influence on the predicted crack paths.

3.1  Single Edge Notched Shear Test

In this section we consider a shear benchmark test, com-
prised of a square plate with a single initial crack from the 
left edge to the middle of the plate along the horizontal 
centre-line, see Fig. 3a. The aim of this shear benchmark 
test is to check whether our modified model has a significant 
influence on the predicted crack path and force-deflection 
behaviour. For the simulation we set the Young’s modulus 
E = 210 GPa, Poisson’s ratio � = 0.3 and our crack driving 
parameters G+

vol
= G

+
dev

= 2.7 × 10−3 MN/m. Furthermore, we 
set Gband = 1 × 1010 MN/m, an artificially high value, such 
that no fractures will evolve from compressive stresses dur-
ing the simulation. According to Kuhn and Müller (2010) the 
effective element size, he , should be approximately one half 
of the regularisation length �0 for the phase-field model to 
capture the accurate crack paths. We choose a uniform mesh 
with element size he =

1

2
�0 which coincides with a mesh 

of approximately 74,000 elements. Furthermore, the simu-
lation is conducted in a displacement driven context with 
constant displacement increment of �u = 1 × 10−5 mm, and 
the mobility parameter m̃1 = 1.0 × 10−12 and m̃1 + m̃2 = 1.0.

Figure 4 presents the crack pattern at different stages of 
the simulation while Fig. 3b shows the load-deflection curve 
for the single edge notched test. The results produced with 
the suggested modified phase-field model are in good agree-
ment with the results presented by Miehe et al. (2010a).

The results shown in Figs. 3b and  4 demonstrate that 
the proposed modified phase-field fracture model produces 
negligible changes in the predicted crack path as well as only 
small differences in the load-deflection curves compared to 
earlier work using the standard phase-field fracture model.

3.2  Uniaxial Compression of CPIR09 Sample 
with One Initial Inclined Cut

In this section we consider a plane strain compression test of 
an artificial rock, CPIR09, with an inclined cut. The results 
from the simulation are compared to the results from experi-
ments conducted by Nguyen (2011), see also Nguyen et al. 
(2011). The rock sample has dimensions of 100 × 50 × 35 
mm3 with a 0.4 mm wide and 12 mm long initial sawed cut 
inclined at 45◦ , see Fig. 5. The experiment was conducted 
under plane strain uni-axial compression, and the sample 
was subjected to a displacement rate of 0.01 mm/min until 
failure. The left and the right faces of the sample are load 
free. The artificial rock exhibits a crack pattern with initial 
anti-symmetric cracks, called wing cracks W, starting at the 
tips of the initial cut, see Fig. 7a–c. The wing cracks are fol-
lowed by secondary compression cracks C, which emerge on 
the opposite side from the wing cracks at tips of the initial 
notches. For the numerical simulations of the experiment we 
use the set-up and geometry of the experiment. According 
to the results presented in Nguyen (2011) the stiffness of the 
tested rock samples varied within a range of approximately 
30% , while both the fracture patterns and the strength of the 

Fig. 5  Geometry of the CPIR09 sample with an inclined notches
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material are consistent throughout the experiments. We have 
chosen to set the Young’s modulus E = 5 GPa and Poisson’s 

ratio, � = 0.18 , which is in the upper region of the stiffnesses 
measured during the experiments. The values for the crack 
driving force parameters, the mobility parameters and the 
tensile strength of the artificial rock are not reported in 
Nguyen (2011). Thus we have chosen to set G+

vol
= 1.0 N/m, 

G
+
dev

= 10 N/m, and Gband = 100 N/m, see also Spetz et al. 
(2020). The mobility parameters m̃1 = 1.0 and m̃2 = 0.0 . 
With the tensile strength selected to �t = 1.6 MPa the regu-
larisation length is calculated to �0 = 0.104 mm. To capture 
the evolving crack paths we use an almost constant element 
size of he ≈

1

2
�0 throughout the entire specimen, which leads 

to a mesh with approximately 350,000 elements.
To illustrate how the choice made for the strain energies 

affects the evolution of a crack, Fig. 6 plots the level set of 
the crack driving ratio H̃ , see Eq. (12), with regards to the 
principal strains �1 and �2 for the artificial rock CPIR09. 
From the figure we can see that by, e.g., increasing Gband we 
decrease the tendency for compressive or shearing cracks to 
appear. Figure 7 illustrates the crack evolution at different 
stages, where Fig. 7a–c are displaying photos taken during 
the experiments conducted by Nguyen (2011), where the 
initial cut is highlighted in blue colour and the propagating 

Fig. 6  Level set plots of the crack-driving ratio H̃ with respect to 
principal strains �1 and �2 for artificial rock CPIR09

Fig. 7  a–c Displays pic-
tures from the experimental 
results, Nguyen (2011), of the 
crack pattern at point 3–5 in 
Fig. 8 and d–f the phase-field 
parameter from the numerical 
simulation for the correspond-
ing points
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cracks in red. For comparison, Fig. 7d–f shows the evolu-
tion of the phase-field parameter d from the simulation at 
equivalent nominal compression strains. From Fig. 7 it is 
clear that the model is able to reproduce the crack patterns 
from the experiment conducted by Nguyen (2011) with high 
accuracy.

Figure 8 depicts the nominal stress–strain curve from 
the simulation of the compression test of the artificial rock 
together with the measurements performed by Nguyen 
(2011). The general stress–strain behaviour from the simu-
lation is in good agreement with the experimental obser-
vations until closure of the compressive cracks take place, 
at point 5, where the experimental measurements show 
that when the compressive fractures close and full contact 
is achieved the rock sample carries additional load before 
total failure. An appropriate additional contact formulation 
is not included in our proposed model, and this is outside the 
scope of this work. To illustrate that the horizontal fractures 
indeed arise from compressive stress state, Fig. 9 compares 
the maximum shear strains, �s-max , and volumetric strain, 
�vol , from the simulations to results from a digital image cor-
relation, DIC, measurements presented in Nguyen (2011). 
Hereby, �s-max =

1

2
(�max − �min) and �vol = �max + �min with 

�max being the maximum value of the principal strains and 
�min the minimum value.

From Fig. 9c and d it is obvious that the volumetric strain 
takes a negative value where the compressive cracks are 
formed. Moreover, it can be noted that the fracture zones 
appear much wider in the DIC images Fig. 9a and c com-
pared to the numerical results. This is a result of the blurring 
effect caused by the DIC measurements. A measure of the 
blurring effect can be estimated by comparing the thickness 
of the initial inclined cut in Fig. 9a with the inclined cut of 
correct thickness depicted in Fig. 9b. Comparing the images, 

we estimate that the DIC measurements blur the cut thick-
ness by approximately a factor 5. Additionally, we want to 
indicate that we use the same colour bar ranges for the DIC 
images as for the results from the numerical simulation.

Another interesting observation in Fig. 9c,d is that in the 
large wing cracks W1 and W2 one find a positive volumetric 
strain. That means the wing cracks show a positive jump in 
the displacement field and the crack surface are not in contact. 
Thus, potential friction forces between the crack surfaces are 
zero or at least very small. We investigated this further by 
computing the normal strain component �nn from our simula-
tion in three positions of the wing cracks. The three selected 
positions are given by the three yellow lines in Fig. 7d, f. The 
lines are aligned to the normal direction n of the wing crack. 
The resulting normal strain component �nn along the normal 

Fig. 8  Comparison of measured Nguyen (2011), and simulated nomi-
nal stress–strain curves for CPIR09 sample with one inclined cut

Fig. 9  Comparison of experimental results from Nguyen (2011) a 
and c and numerical results b and d at point 5 in Fig. 8, a and b dis-
plays the maximum shear strain �s−max , and c and d the volumetric 
strain �vol
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direction n is depicted in Fig. 10. As they show across the 
crack positive values we can conclude that the wing cracks 
are opened during the compressive loading of the specimen.

3.3  Uniaxial Compression of CPIR09 Sample 
with Two Initial Inclined Cuts

In this section we consider a plane strain compression test 
of an artificial rock, CPIR09, with two inclined cuts con-
ducted by Nguyen (2011). The rock sample presented has 
the dimensions of 100 × 50 × 35 mm3 with two 0.4 mm wide 
and 12 mm long initial cuts, inclined at 45◦ , see Fig. 11. The 
experiments were conducted under plane strain uni-axial 
compression, and the sample was subjected to a displace-
ment rate of 0.05 mm/min until failure. We kept the material 
parameters to the same values as for the previous example.

Fig. 12 illustrates the crack evolution at different stages, 
where Fig. 12a–c shows photos from the experiments con-
ducted by Nguyen (2011), and Fig. 12d–f the evolution of 
the phase-field parameter d for the corresponding points dur-
ing the simulation. We have chosen the first point Fig. 12d 
to be at 0.9 of the peak stress, the second point Fig. 12e at 
the peak stress and the third point Fig. 12f where contact 
between the internal crack surfaces has been reached in the 
compressive cracks during the experiments, see Fig. 13. 
From Fig. 12 we note that the evolution of the phase-field 
is in good agreement with the experimental observation of 
the crack patterns. We also note some deviation between 
the numerical results and the observed velocity of the crack 
evolution of the compression cracks, C1 and W4. The small 
difference between the results may stem from a variety of 
factors, for one, the differences in boundary condition might 

affect the crack paths in the rock sample as the cracks get 
closer to the boundary. In the experimental set-up, friction 
will naturally exist between the compression plates of the 
testing machine and the rock sample, whereas we assume no 
horizontal constraints neither at the top or bottom bounda-
ries in our simulations.

Figure 13 compares the simulated nominal stress–strain 
behaviour to the measurements performed by Nguyen (2011). 
The measured nominal stress–strain behaviour starts with an 
unexpected nonlinear part. According to Nguyen (2011), this 
non-linear behaviour can be related to three factors; (i) clo-
sure of pre-existing cracks, (ii) non-linear behaviour of the 
material, (iii) imperfections in the contact surfaces between 
the rock sample and testing machine. The results presented 
in Fig. 13 have therefore been adjusted to accommodate these 
factors by adding an initial axial strain �initial = 0.0015 . Fur-
thermore, we can see a difference in stiffness between the 
numerical and experimental results, which is within the dif-
ference in stiffness observed from the experiments. Except 
for the difference in stiffness, the general stress–strain behav-
iour from the simulation is in good agreement with the exper-
imental observations until closure of the compressive cracks 
take place, see point 5 in Fig. 13. To give a better picture of 
where compressive cracks are formed and where the cracks 
are driven from tensile stresses, Fig. 14 compares the maxi-
mum shear strains and volumetric strain from the simulation 
to DIC images presented in Nguyen (2011).

Figure 14 illustrates the strain states at point 5. Figs. 13 
and  15 give a close-up of the zone between the two initial 
cuts, where we observe that the model captures the complex 
crack patterns with only small deviations. Additionally, we 
observe the same blurring effect in the DIC measurements 
as in Fig. 9.

Fig. 10  Normal strain component �nn across the diffuse wing crack. 
The positions of Lines 1–3 are indicated by yellow lines in Fig. 7d, f

Fig. 11  Geometry of the CPIR09 sample with two inclined cuts
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4  Conclusion

In this work we have presented a modified phase-field frac-
ture model for simulation of wing crack and compaction band 
propagation in porous rocks. The presented model introduces 
a split in the crack driving force to capture the characteris-
tic behaviour of fractures in porous rock. In porous rock, the 
fracture toughness for energy for Mode I cracks can be orders 
of magnitude smaller than the fracture toughness for energy 
for Mode II cracks and compressive stresses can lead to the 
formation of compressive cracks. To capture these character-
istic behaviours we have introduced three model parameters 
G
+
vol
,G

+
dev

,Gband to scale the different parts of the elastic strain 
energy density which enters the crack driving force. We have 
illustrated how the scaling of the crack driving forces can be 
used to control the tendency for wing cracks and compressive 
cracks to appear. Furthermore, to demonstrate the capability 
of the modified phase-field fracture model first introduced in 
this work, we have compared the numerical results to experi-
mental observations performed on rock samples subjected to 
uni-axial plane strain compression. The presented comparison 

Fig. 12  a–c Displays pictures 
from the experimental results, 
Nguyen (2011), of the crack 
pattern at point 3–5 in Fig. 15 
and d–f the phase-field from 
the numerical simulation for the 
corresponding points

Fig. 13  Comparison of measured Nguyen (2011), and simulated 
nominal stress–strain curves for CPIR09 sample with two inclined 
cuts
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shows that the modified phase-field fracture model gives 
results in good agreement to the experimental observations 
both with respect to crack patterns and critical stress loads. 
We have also shown that the proposed phase-field model is 
able to reproduce the formation of compressive cracks as well 
as complex crack patterns without any additional algorithmic 
treatment.
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