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Abstract
This article discusses the scale dependence of the mode I fracture toughness of rocks measured via the semi-circular bend 
(SCB) test. An extensive set of experiments is conducted to scrutinise the fracture toughness variations with size for three 
distinct rock types with radii ranging from 25 to 300 mm. The lengths of the fracture process zone (FPZ) for different sample 
sizes are measured using the digital image correlation (DIC) technique. A theoretical model is also established that relates 
the value of fracture toughness to the sample size. This theorem is based on the strip-yield model to estimate the length 
of FPZ, and the energy release rate concept to relate the FPZ length to the fracture toughness. This theoretical model does 
not rely on any experimental-based curve-fitting parameter, but only on the tensile strength of the rock type as well as the 
fracture toughness at a specific sample size. The size effects predicted by the theoretical model is in a good agreement with 
the experimental data on both fracture toughness and the FPZ length. Finally, theoretical correction factors are introduced 
for various geometrical configurations of the SCB specimen, using which a scale-independent mode I fracture toughness of 
the rock material can be estimated from the results of experiments performed on small samples.

Keywords Semi-circular bend (SCB) · Size effect · Rock fracture toughness · Fracture process zone (FPZ) · Digital image 
correlation (DIC)

List of symbols
a, aeff  Crack length and effective crack length 

( a + LFPZ)
An,A

∗
n
  Mode I crack parameters and their nor-

malised form for a crack of length a
Ãn, Ã

∗
n
  Mode I crack parameters and their nor-

malised form, for a crack of length aeff
Ãn,cl, Ã

∗
n,cl

,A∗
n,cl

  Mode I crack parameters due to closure 
stress applied on a crack of length aeff , 
their normalised form, and the normal-
ised form A∗

n,cl
 in case of the application 

of a pair of concentrated forces
Ck  The correction factor for fracture tough-

ness defined as K∞
Ic
∕KIc

dj  Constants used for fitting functions to 
numerical results of the normalised crack 
parameters

E, �  Young’s modulus and Poisson’s ratio
Ê  Elasticity parameter used in the energy 

release rate (ERR) equation
G,G∗  Energy release rate and its normalised 

form
GIc,G

∞
Ic
, I  Mode I critical ERR, its size-independent 

plateau value, and the analytical integra-
tion appearing in GIc

KI,K
∗
I
  Mode I stress intensity factor (SIF) and 

its normalised form (i.e. geometry factor)
KIc,K

∞
Ic
,K∗  Mode I fracture toughness, its size-inde-

pendent plateau value and their ratio K∗ 
defined as KIc∕K

∞
Ic

LFPZ,L
∗  Size of the fracture process zone and its 

normalised form L∗ defined as LFPZ∕a
m  Portion of the ligament of the semi-cir-

cular bend (SCB) specimen over which 
force equilibrium is maintained
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Mn, Ṁn  Constants designating ratios of nor-
malised crack parameters and their first 
derivatives, all with respect to A∗

1

ṀG, M̈G  Constants designating ratios of the 
derivatives of the normalised ERR

P,Pc  Applied load on the SCB specimen and 
its critical value

r, �  Polar coordinates of a point near the 
crack tip

R, t  Radius and thickness of the SCB 
specimen

R
∗
∞
,R∗  Normalised disk radius with and without 

the use of scale-independent fracture 
toughness K∞

Ic

S  Span length of bottom supports for the 
SCB specimen under symmetric three-
point bend loading

u, v  Displacement components along x and y 
directions

x, y  Cartesian coordinates of a point near the 
crack tip

�  Crack length ratio equal to a/R
�  Brittleness number in Bažant’s 

formulation
�1, �2  Constants used in the estimation of the 

experimental reference value for the true 
scale-independent fracture toughness

�, �  Shear modulus and Kolosov constant
Π,U  Potential and strain energies
�c, �t  Critical stress at failure and tensile 

strength
�p, �cl  Stresses perpendicular to the crack 

flanks, induced by three-point bend com-
pression and by closure stress

�x, �y, �xy  In-plane normal and shear stress compo-
nents in the crack coordinate system xy

1 Introduction

Growing industries and engineering applications including 
enhanced geothermal systems,  CO2 sequestration projects, 
waste-water injection procedures, oil and gas shale reser-
voirs as well as mining excavations all require knowledge on 
the process of fracture growth in rocks. Being subjected to a 
combination of mechanical, thermal and hydraulic loads, in 
addition to embodying inherent fractures of different sizes, 
rock masses are highly susceptible to fracture initiation and 
growth. With regard to the quasi-brittle nature of the rock-
like materials, their fracturing process is often classified as 
instantaneous with disastrous consequences such as induced-
seismicity, hence requiring precise monitoring.

Mode I fracture toughness, KIc , as an important property 
of rocks and other quasi-brittle materials, characterises the 
resistance of the material against crack propagation under 
static mode I loading condition. In the context of the lin-
ear elastic fracture mechanics (LEFM), the fracture growth 
commences when the mode I stress intensity factor (SIF) 
reaches KIc at a critical load. Among several standardised 
tests for the measurement of rock fracture toughness, the 
semi-circular bend (SCB) test has been popular and favour-
able, thanks to its simple sample preparation and testing 
procedure as well as the small amount of material required 
per specimen (Kuruppu et al. 2014). These advantages have 
attracted a lot of attention to perform SCB tests for rock frac-
ture toughness measurement (Chong et al. 1987; Lim et al. 
1994; Dai et al. 2010, 2013; Kuruppu et al. 2014; Kataoka 
et al. 2015; Chen et al. 2016; Ayatollahi et al. 2016; Wang 
et al. 2017; Wei et al. 2017b; Bahrami et al. 2020b; Nejati 
et al. 2020a; Obara et al. 2020).

An important subject when dealing with rock materials is 
the size effect phenomenon, where tests performed on small-
sized rock specimens often yield underestimated values of 
fracture toughness compared to the scale-independent frac-
ture toughness of the rock mass. Many research studies to 
date have investigated this size effect behaviour in the mode 
I fracture toughness of rock and concrete, using the single 
edge notch bend (SENB) test (Bažant 1984; Bažant and 
Pfeiffer 1987; Bažant et al. 1991; Bažant and Kazemi 1991; 
Karihaloo 1999; Cusatis and Schauffert 2009; Ayatollahi 
and Akbardoost 2012; Fakhimi and Tarokh 2013; Tarokh 
et al. 2017; Bhowmik and Ray 2019; Carloni et al. 2019) or 
the SCB test (Chong et al. 1987; Nath Singh and Sun 1990; 
Lim et al. 1994; Akbardoost et al. 2014; Wei et al. 2016a, 
2017b; Zhang et al. 2019; Nejati et al. 2020b). It is worth 
noting that this literature consists of experimental, numerical 
and theoretical approaches, among which the initial studies 
by Bažant and his co-workers truly stand out and lay the 
foundation for most of the later research activities in this 
field. The majority of the experimental size effect studies in 
the last four decades take account of only one certain type of 
rock or rock-like material with limited variations in the size 
of the specimens, and therefore may not evidently generalise 
their results to other kinds and sizes of rocks. Moreover, in 
the theoretical studies, the formulations are rather complex 
and usually depend on inputs from experiments, including 
curve fittings and empirical determination of size effect 
parameters. These shortcomings must be addressed thor-
oughly, which accordingly urges the need for more rigorous 
studies in this regard.

To bridge the gap, we herein present a combination of 
the results of an extensive experimental study as well as a 
novel theoretical model. The former is comprised of mode I 
fracture toughness and digital image correlation (DIC) tests 
on SCB samples made of three different rock types (from 
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sedimentary, metamorphic and igneous categories) with 
radii ranging from 25 to 300 mm. The latter, i.e. the theoreti-
cal model, is based on the strip-yield model and the energy 
release rate concept which, in hand with a comprehensive 
numerical analysis, provides an experiment-independent 
theory which correlates well with experimental findings. A 
correction (scaling) factor is then introduced for various geo-
metrical conditions in the SCB specimen, based on which 
one can estimate the true scale-independent mode I fracture 
toughness of the rock materials. Furthermore, a method to 
estimate the length of the fracture process zone (FPZ) with-
out performing experiments such as DIC is described. We 
point out that the theoretical model proposed in this study 
does not rely on any experimental-based curve-fitting param-
eter but only on the tensile strength �t of the rock type and 
the fracture toughness KIc at a specific sample size.

2  Experimental Study

2.1  Materials

Three distinct rock types are employed for this study, all 
of which were acquired from different mining sites in Iran. 
The first type, chosen from sedimentary rocks, is a lime-
stone excavated from Fars province. The second type, from 
the metamorphic category, is a white marble extracted from 
West Azerbaijan Province. Finally, the third type is an igne-
ous granitic rock also mined from West Azerbaijan Province. 
All these rock materials are initially extracted in the form 
of large blocks at the mines, followed by cutting into slabs 
with predefined thicknesses in a stone factory. We prepared 
Brazilian disk and SCB samples from slabs of 2 cm thick-
ness. Only the largest SCBs, i.e. with R = 300 mm, were 
extracted from slabs with 3 cm thickness. To reduce the 
potential influence of the heterogeneity and anisotropy, all 

the samples from each rock type were prepared from adja-
cent slabs in a single block and were tested in a predefined 
direction.

2.2  Brazilian Disk Test

To measure the tensile strength of the rock types, Brazilian 
disks (BDs) with the radius of R = 50 mm and the thick-
ness of t = 20 mm were prepared using the waterjet cutting 
method. For each rock type, four repetitions were consid-
ered, meaning that twelve BD samples were tested overall. 
Figure 1a pictures a BD specimen of limestone during the 
test. Circular jaws were used for the exertion of diametrical 
compressive force, and polymethylmethacrylate (PMMA) 
cushions with the same curvature to that of jaws were uti-
lised for smoother and better-distributed load transfer to 
the specimen. In fact, this configuration facilitates a proper 
execution of the BD test, in which fracturing initiates from a 
central zone, minimising the potential for failure of disks due 
to crack initiation near the loading points. Figure 1b–d show 
sample fractured BD specimens of the three rock materials. 
As is seen in these photographs, the limestone and granite 
samples show minimal/no damage at loading points, with 
minor eccentricity of fracture path observed in the granitic 
disk. For the marble specimen, however, the surfaces in con-
tact with loading cushions are more pronouncedly damaged 
as a result of rock fragmentation close to the critical load. 
This issue was only spotted to exist in the tested marble 
owing to its crystalline texture, for minimisation of which we 
employed PMMA flexible jaws. To further diminish unde-
sirable fractures at the loading area, one may use longer 
flexible jaws with more circumferential coverage, or alter-
natively, use less stiff wooden jaws.

After conducting the BD test, the peak load Pc cor-
responding to the fracturing of the disk was recorded by 
the universal testing machine whereby the indirect tensile 

Fig. 1  Measurement of indirect tensile strength using the Brazilian disk tests, with the loading configuration shown in a, and the final failure pat-
terns of b limestone, c marble and d granite
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strength is calculated from �t = 0.636Pc∕(2Rt) (Bieniawski 
and Hawkes 1978). The final measurements of the tensile 
strength are as follows: 5.42 ± 0.26 MPa for limestone, 
11.41 ± 0.42 MPa for marble and 9.50 ± 0.68 MPa for gran-
ite. Figure 2a visualises typical load-displacement curves 
obtained for different tested rock materials, emphasising the 
superiority of marble’s indirect tensile strength. Note that 
the non-linear behaviour in these curves is mainly attributed 
to the large non-linear deformation of the PMMA cushions.

It should be noticed that the BD test is an ISRM-sug-
gested method for the determination of indirect tensile 
strength. According to ASTM-International (2016), tests 
other than straight pull are categorised as indirect test meth-
ods, which are less difficult and more affordable to be per-
formed compared to direct experiments. Despite the advan-
tages of indirect tensile tests, they are referred to as methods 
which overestimate the tensile strength of rock materials. As 
a frequently used specimen in rock mechanics applications, 
BD has been reported to yield overestimations for tensile 
strength of about 10% for metamorphic, 20% for igneous and 
30% for sedimentary rocks, for practical applications (Per-
ras and Diederichs 2014). However, these empirical figures 
are not definitive and may vary from one rock material to 
another, therefore they should be used cautiously.

We also note that the tensile strength used in FPZ char-
acterization models may also in essence differ from the true 
tensile strength of rock measured via a direct method. This 
is because the rock material in the process zone is under 
a biaxial state of stress and not a uniaxial one. In fact, the 
stress component parallel to the crack, called T-stress, is 
negative for the SCB specimen configuration used in this 
study. Hence, the nature of the failures in the SCB and BD 
are in fact similar in the sense that a compressive stress is 

applied parallel to the failure plane. In this case, strength 
obtained from the BD test may be more representative of 
the failure in the FPZ rather than the true tensile strength 
obtained from direct tests.

2.3  Mode I Fracture Toughness Tests

Semi-circular bend test is a standard testing method, sug-
gested by the International Society for Rock Mechanics 
(ISRM), for the measurement of the mode I static fracture 
toughness of rock materials (Kuruppu et al. 2014). This test 
is conducted under the three-point bend loading configura-
tion, and features the following noticeable virtues: (a) usage 
of a small amount of core material; (b) requiring relatively 
simple machining process; and (c) suitability for both iso-
tropic and anisotropic rocks. Hence, the SCB specimen is 
regarded as a prospective candidate for the measurements 
of the mode I fracture toughness. Figure 3a illustrates a 3-D 
schematic view of the test configuration.

In this research, a total number of 93 SCB specimens 
were manufactured, with a large range of radii of R = 25 , 
50, 75, 100, 150, 200 and 300 mm, and taking account of 
at least four repetitions per size. The manufacturing pro-
cess involved water jet cutting to extract semi-circular disks 
from stone slabs as well as generating notches of length 
a∕R = 0.5 in the SCB samples. In order to maintain the per-
pendicularity of the cutting plane with respect to the front 
(test) plane, and to enhance surface-finishing quality espe-
cially at loading and support points, specimen thicknesses 
were kept at t = 2 cm for all the specimens with R = 25 to 
200 mm. The only exception was for the largest SCBs of 
radius R = 300 mm, which had the thickness t = 3 cm, to 
ensure the stability of specimens under three-point bend 
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Fig. 2  Typical load–displacement curves obtained from a Brazilian disk tests; b three-point bend fracture tests on specimens with R = 200 mm. 
Tensile strength and fracture toughness superiority of marble is evident
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compression. Note that fracture toughness of rock materials 
are reported to be independent of the specimen thickness in 
numerous experimental studies in the literature (Schmidt 
and Lutz 1979; Laqueche et al. 1986; Kobayashi et al. 1986; 
Nath Singh and Sun 1990; Haberfield and Johnston 1990; 
Lim et al. 1994; Khan and Al-Shayea 2000; Chang et al. 
2002). Given that our tested rocks have isotropic elastic-
ity response, the roller supports were placed symmetrically 
to apply pure mode I loading, with the span length ratio 
adjusted to S∕R = 0.6 (Bahrami et al. 2019; Sedighi et al. 
2020). It is noteworthy that asymmetrical support spans are 

required to impose mode I loading for SCB specimens made 
of anisotropic rocks (Nejati et al. 2019, 2020b).

After the preparation of the test samples, fracture tests 
were carried out using Santam STM-150 universal testing 
machine in the displacement-control mode with the cross-
head speed of 0.1 mm/min (see Fig. 3b). The fracturing pro-
cess of the tested rock samples was instantaneous and the 
load–displacement behaviour was linear up the peak load. 
Hence, the LEFM theory can be adopted securely to theo-
retically evaluate the size effects in this study. Figure 4a–c 
portray samples of fractured specimens for all sizes of the 

Fig. 3  a Schematic view of the 
SCB test configuration; b failure 
of an SCB sample of radius 
R = 300 mm in the universal 
testing machine while the 
digital image correlation (DIC) 
set-up is used to capture strain 
localisation at the notch tip
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Fig. 4  Samples of fractured specimens in all different sizes: a limestone, b marble, and c granite
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three rock types. As evidenced, the notch had almost always 
propagated in a self-similar manner as an inherent response 
of mode I fracture tests of isotropic materials.

In line with the ISRM-suggested method for the SCB 
test (Kuruppu et al. 2014), once the peak load Pc is meas-
ured (from the load-displacement curves for SCB fracture 
tests as in Fig. 2b), the fracture toughness is calculated from 
KIc = K∗

I
Pc

√
�a∕(2Rt) , where R and t represent the radius 

and thickness of the SCB specimen, and a is the length of 
the notch. Moreover, the geometry factor K∗

I
 is a numeri-

cally calculated dimensionless parameter, that depends on 
the specimen geometry and loading configuration, and is 
adopted from the results by Nejati et al. (2019, 2020b) for 
the isotropic case. Figure 5a presents the measured values of 
KIc against the SCB radius, R. It is observed that, within the 
entire size range, marble is the strongest material with the 
largest fracture toughness values, while limestone acquires 
the least values overall and seems to be rather weaker. Gran-
ite, on the other hand, appears to be moderately resistant to 
fracture growth with KIc values falling in between marble’s 
and limestone’s. Figure 2b illustrates these trends.

The general trend for all three types of rocks is that the 
fracture toughness values grow as the specimen radius 
increases (see Fig. 5a). This phenomenon, referred to as 
the size effect, occurs due to the formation of a relatively 
large fracture process zone in front of the crack tip. The 
FPZ region embodies a zone of highly localised deformation 
that occurs due to extensive micro-cracking processes. Since 
KIc is a measure valid only inside the K-dominant zone, the 
specimen dimensions (and subsequently K-zone) should be 
enlarged enough so that the FPZ fits inside the K-dominant 
region (Nejati et al. 2020b). A large FPZ may partially stay 
out of the K-dominant zone in small samples, whereby 

inducing size-dependent fracture toughness values (Wei 
et al. 2016b, 2017a, 2018a, b; Dutler et al. 2018). A clear 
illustration of this process is given in Nejati et al. (2020b). 
As our experiments suggest, even by enlarging the specimen 
radius to R = 200 − 300 mm, the fracture toughness values 
may not still experience a plateau, and a further increase is 
yet anticipated.

To have experimental reference values for the true scale-
independent fracture toughness of the rock materials, K∞

Ic
 , we 

perform a least squares analysis over the test data utilising an 
arbitrary exponential model: KIc = K∞

Ic

[
1 − �1 exp

(
−�2R

)]
 . 

Here, K∞
Ic

 , �1 and �2 are unknown parameters that are com-
puted by means of the least squares method with their values 
given in Fig. 5a. It should be noted that this exponential 
relation is an arbitrary choice among many possible alter-
natives which can model a gradually stabilising behaviour, 
whereby projecting a representative value for the true frac-
ture toughness. We also point out that this estimate for the 
scale-independent fracture toughness, K∞

Ic
 , will not be used 

in our theoretical model presented and employed in Sects. 3 
and 4. Alternative models also yield relatively similar values 
to the ones reported for K∞

Ic
.

A comparison of the results in Fig. 5a reveals that the 
fracture toughness of the largest specimens of limestone, 
marble and granite are, respectively, 2.01, 1.41 and 1.49 
times greater than the ones of the smallest samples. A com-
parison between the smallest specimens and K∞

Ic
 also reveals 

even greater respective figures of 2.30, 1.45 and 1.58. This 
significant growth in the fracture toughness values implies 
a serious effect of size on the fracture toughness that must 
be taken into account in rock mechanics and engineering 
applications.

K
 Ic

=K
 Ic

×[1-
1

×exp(-
2

×R)]

(a) (b)

Fig. 5  a Variations of mode I fracture toughness ( K
Ic

 ) against the 
sample radius, and fitted curves to determine the stabilised value 
of fracture toughness ( K∞

Ic
 ); b the variations of the normalised 

mode I fracture toughness ( K
Ic
∕K∞

Ic
 ) against the normalised size 

( R∕(K∞
Ic
∕�

t
)2 ), showing a universal trend in the data
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The true (scale-independent) fracture toughness value K∞
Ic

 
for each rock type is then employed to normalise the fracture 
toughness experimental data, i.e. KIc∕K

∞
Ic

 , which is plotted 
versus the normalised disk radius in Fig. 5b. Presenting the 
data in a normalised manner shows that all the data points 
irrespective of the rock type follow a universal trend. This 
behaviour indicates that a proper size effect rule must in fact 
be material independent. It is noteworthy that if the experi-
mental data are normalised by the fracture toughness of the 
largest specimen rather than by K∞

Ic
 , again a universal, mate-

rial-independent pattern similar to that of Fig. 5b will be 
obtained. Also explicitly shown in Fig. 5b is that KIc values 
reach a plateau only at larger sizes than R∕(K∞

Ic
∕�t)

2 ≈ 10 . 
This finding seriously questions the validity of the mini-
mum size requirement recommended by the ISRM stand-
ard, which reads R ≥ (K∞

Ic
∕�t)

2 (Kuruppu et al. 2014). This 
insufficiency in the minimum size requirement for the SCB 
specimen has also been pointed out by previous research 
studies (Nath Singh and Sun 1990; Akbardoost et al. 2014; 
Wei et al. 2016a, 2017b; Nejati et al. 2020b), all of which 
urging either the usage of larger specimens or the introduc-
tion of correction factors.

2.4  DIC Results on the FPZ Length

We employed the DIC technique to measure the length of 
FPZ in the tested samples. To prepare the samples for DIC 
measurements, the surfaces of the samples were painted 
using a white spray, followed by creating a speckled pat-
tern using a black spray. To prevent the light reflection, 
matte black and white sprays were employed. The DIC 
set-up, shown in Fig. 3b, includes a Canon CMOS 600D 
camera with a mounted macro-lens EF 100 mm f/2.8 to 
capture images, and two 11-Watt LED lamps to provide 
an appropriate and stable illumination for the tests. The 
images corresponding to the undeformed state of the speci-
mens were captured at almost zero load, and images of the 
deformed samples were taken automatically with intervals 

of 5 seconds. The deformation states associated with 90% of 
peak load before fracturing were used to measure the FPZ 
length.

The Match ID software was used to perform correlation 
analyses between the reference image (at zero load) and the 
ones associated to the deformed states at different load lev-
els. The correlation analyses were conducted on a rectangu-
lar region of interest in front of the crack tip with the subset 
size of 55 × 55 pixels and the step size of 1 pixel. Also, the 
normalised sum of squared differences (NSSD) was used as 
the correlation criterion. More details about the DIC param-
eters can be found in Bahrami et al. (2020a). Figure 6a, b 
show samples of displacement and strain fields in front of 
the crack tip, that represent an area of high displacement 
gradients and strain concentrations. The formation of a semi-
elliptical-shaped FPZ shown in Fig. 6b agrees well with the 
FPZ shape reported in Dutler et al. (2018); Moazzami et al. 
(2020); Zhang et al. (2020). It is noteworthy that the strain 
field is a secondary output of the DIC measurements, that 
is derived from the gradients of the directly measured dis-
placements by means of numerical smoothing techniques 
(Pan et al. 2009). We therefore use the displacement field 
to evaluate the fracture process zone due to its higher accu-
racy compared to the strain field. Figure 6c demonstrates 
the variations of the horizontal displacement component u 
extracted along several parallel horizontal lines in front of 
the crack tip. As seen, a displacement jump exists along 
those lines situated adjacent to the crack tip. These jumps 
indicate highly localised deformation that are indications 
of the formation of the FPZ in that region. The jump in u 
decreases and finally vanishes at lines further away from the 
crack tip. The closest line from the crack tip within which no 
perceptible displacement jump is observed, indicates the end 
of FPZ, and the vertical distance between the crack tip and 
such line is measured as the length of the fracture process 
zone, i.e. LFPZ.

Figure 7a displays the variations of the FPZ length ver-
sus the specimen radius, for all three types of the rock 
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Fig. 6  Samples of a displacement and b strain fields obtained from the DIC measurements in front of the crack tip for the granitic rock type. c 
Schematic view of the method used for measuring the FPZ length based on the gradient of the displacement component u 
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materials. It should be noted that we did not carry out 
as many DIC tests as the fracture toughness tests, and 
thus smaller number of experimental data are available 
in this plot. The scatter of the test data may be attrib-
uted to the uncertainty of FPZ length measurement via 
the DIC technique. Despite fluctuations of LFPZ data for 
limestone that is the weakest rock among the three, the 
general trend of the data suggests a substantial growth 
in the FPZ length with specimen size. In the entire size 
range, granite almost always attains the biggest fracture 
process zones with values as high as of almost 18 mm for 
the biggest samples. Similar large fracture process zones 
in coarse-grained granite  have also been identified by pre-
vious experimental studies (Wei et al. 2018c; Dutler et al. 
2018). A comparison between the FPZ lengths of the larg-
est and smallest specimens shows ratios of 5.01, 4.15 and 
6.27 for limestone, marble and granite, respectively. These 
figures are indicative of the profound influence of sample 
size on the development of the FPZ. Small samples signifi-
cantly constrain the full development of the fracture pro-
cess zone, consider granite as an example with an average 
LFPZ = 2.8 mm for the SCB specimen of radius R = 25 mm. 
Ayatollahi and Aliha (2008) have confirmed FPZ length of 
3.2 mm for specimens with radius R = 37.5 mm, while Wei 
et al. (2017b) have obtained LFPZ = 2.8 mm for same-sized 
granite samples.

Similar to the normalisation procedure taken in Fig. 5b, 
we also present here the normalised values of the FPZ length 
LFPZ∕a against the normalised radius R∕(KIc∕�t)

2 in Fig. 7b. 
As seen, the normalisation fades away the highly scattered 
data especially for limestone, yielding a relatively smooth 
descending trend of the normalised FPZ length with sam-
ple size. The large range chosen for the vertical axis of this 

figure will be later helpful to demonstrate the curves for 
theoretical predictions.

3  Theoretical Study

This section presents a theoretical model that relates the frac-
ture toughness measured at a given size to its scale-independ-
ent value. To this end, we first develop a model to estimate the 
FPZ length at any given size of the SCB sample. This estimate 
is then used in a second model developed based on the energy 
release rate to derive a relation that governs the dependency of 
the fracture toughness on the sample size. In this section, we 
use the crack tip fields and the associated parameters presented 
in Appendix A.

3.1  A Model for FPZ Length

Let us consider the FPZ as a cohesive zone ahead of the crack 
tip as shown in Fig. 8. Employing the superposition princi-
ple, one may write the force equilibrium along a segment 
of the ligament, starting from the crack tip and extending to 
m × (R − a − LFPZ) along the notch bisector of the SCB speci-
men (see Fig. 8a):

where t is the specimen thickness, �p is the stress induced 
by the load P when no closure stress exists, i.e. case (b) in 
Fig. 8, and �cl is the stress induced by the closure stress 
applied at the FPZ, i.e. case (c) in Fig. 8. We consider the 
force equilibrium in Eq. (1) being satisfied over half of the 
ligament, i.e. m = 0.5 , which is a reasonable choice for 

(1)∫
m×(R−a−LFPZ)

0

(
�p(x) + �cl(x)

)
t dx = 0 ,

(a) (b)

Fig. 7  Experimental results of FPZ length ( L
FPZ

 ) obtained from the DIC measurements: a the variations of the raw data on the FPZ length L
FPZ

 
versus the disk radius R; b the variations of the normalised FPZ lengths ( L

FPZ
∕a ) versus the normalised size ( R∕(K

Ic
∕�

t
)2)
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preserving adequate distance away from the load-point stress 
concentration area. Inserting the first five terms of the stress 
expression for �y from Eq. (16) into Eq. (1) and evaluating at 
� = 0◦ yields Eq. (2a), that readily simplifies to Eq. (2b) as 

 
Note that the even terms of the stress field ( n = 2, 4, ... in 

Eq. (16)) vanish along the crack bisector. Eq. (2b) satisfies 
the force equilibrium along half of the ligament at any load 
level P. As the load increases, a larger FPZ is developed to 
satisfy the force equilibrium. This is because the closure 
stress is limited to the tensile strength of the material, and a 
compensation for the additional forces applied by P has to 
be associated with an extension of the FPZ. At the onset of 
the fracture propagation, the FPZ can no longer extend (no 
more potential for the energy dissipation within the FPZ), 
and therefore, the violation of the static equilibrium leads 
to the fracture growth. It should be noted that the crack 
length equals aeff = a + LFPZ in Eq. (2). We refer to the crack 
parameters as Ãn in the case associated to Fig 8b and Ãn,cl 
in the case associated to Fig. 8c. The respective normalised 
forms are also referred to as Ã∗

n
 and Ã∗

n,cl
 , that are determined 

numerically as elaborated in Appendix A, and are related to 
Ãn and Ãn,cl as 

(2a)∫
m×(R−a−LFPZ)

0

�
Ã1 + Ã1,cl√

x
+ 3 × (Ã3 + Ã3,cl)

√
x

+5 × (Ã5 + Ã5,cl)x
√
x
�
dx = 0 ,

(2b)
(Ã1 + Ã1,cl) + (Ã3 + Ã3,cl) ×

(
m × (R − a − LFPZ)

)

+ (Ã5 + Ã5,cl) ×
(
m × (R − a − LFPZ)

)2

= 0 ,

Here, �t is the tensile strength (we assume that stress 
is limited to �t in the FPZ) and � = P∕(2Rt) . We employ 
two different models to characterise the distribution of 
cohesive stresses over the fracture process zone: uni-
form and linear traction models. The former is first 
introduced by Barenblatt (1959) and Dugdale (1960), 
and the latter is originally put forward by Labuz et al. 
(1985), both of which founded upon the singular crack 
tip stress field. Substituting Eqs. (3a) and (3b) into 
Eq. (2b), while ignoring the higher order terms of �cl , 
i.e. Ã3,cl = Ã5,cl = 0 (refer to Appendix A.3 for details), 
delivers the strip-yield model at the incipience of the 
crack growth

(3a)

Ãn = Ã∗
n
𝜎 a

1−
n

2

eff
with Ã∗

n

(
𝛼 +

LFPZ

R

)

=A∗
n
(𝛼) +

dA∗
n
(𝛼)

d𝛼

LFPZ

R

=A∗
n
+ 𝛼A∗

n

� LFPZ

a
and 𝛼 = a∕R ,

(3b)

Ãn,cl = − Ã∗
n,cl

𝜎t a a
−

n

2

eff
,

Ã∗
n,cl

=

⎧
⎪⎨⎪⎩

�
Ã∗
n,cl

�
ut

uniform traction model�
Ã∗
n,cl

�
lt

linear traction model
.

(4)

�
A∗
1
𝜎c
√
aeff

�
1 + 𝛼

A∗
1

�

A∗
1

LFPZ

a

�
− Ã∗

1,cl

𝜎t√
aeff

a

�

+

�
A∗
3
+ 𝛼A∗

3

� LFPZ

a

�
𝜎c√
aeff

�
m ×

�
R − a − LFPZ

��

+

�
A∗
5
+ 𝛼A∗

5

� LFPZ

a

�
𝜎c

aeff
√
aeff

�
m ×

�
R − a − LFPZ

��2

= 0 ,

R

P

S S

=

P

+
a
LFPZ

a
LFPZ

a
LFPZσcl

(a) (b) (c)

x

σcl

Fig. 8  Schematics of a cohesive zone model represented by a closure stress, and the use of the superposition principle to simplify it
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where dividing the entire expression into A∗
1
�c
√
aeff and 

using the effective crack length aeff = a + LFPZ yields

Recalling that A∗
1
�c

√
a = A1c = KIc∕

√
2� and defining the 

following coefficients 

 Eq. (5) finally reads

Equation (7) depicts the strip-yield model developed for the 
SCB specimen by considering higher-order parameters of 
the crack tip stress field, and is in fact an extension of Dug-
dale’s strip-yield model for plastic zone (Dugdale 1960). By 
specifying a valid range for the parameter R∗

∞
 (as in Fig. 5b), 

there will remain only two unknowns, namely L∗ and K∗ . In 
the next section, we develop a second equation based on the 
energy release rate concept which in hand with Eq. (7) can 
determine the two unknowns.

3.2  A Model for the Fracture Toughness

Let us consider the energy release rate (ERR) due to crack 
extension, defined as the amount of potential energy, Π , 
released per unit area of crack extension (Anderson 2017):

(5)

⎡
⎢⎢⎢⎣

�
1 + 𝛼

A∗
1

�

A∗
1

LFPZ

a

�
− Ã∗

1,cl

√
R𝛼

A∗
1
𝜎c

√
a

𝜎t

a

a + LFPZ

⎤
⎥⎥⎥⎦

+

�
A∗
3

A∗
1

+ 𝛼
A∗
3

�

A∗
1

LFPZ

a

��
m ×

�
1

𝛼

a

a + LFPZ
− 1

��

+

�
A∗
5

A∗
1

+ 𝛼
A∗
5

�

A∗
1

LFPZ

a

��
m ×

�
1

𝛼

a

a + LFPZ
− 1

��2

= 0 .

(6a)
A∗
1

�∕A∗
1
= Ṁ1, A∗

3
∕A∗

1
= M3, A∗

3

�∕A∗
1
= Ṁ3,

A∗
5
∕A∗

1
=M5, A∗

5

�∕A∗
1
= Ṁ5 ,

(6b)
R

∗
∞
=R∕(K∞

Ic
∕�t)

2,

K
∗ =KIc∕K

∞
Ic
, L

∗ = LFPZ∕a ,

(7)

⎡⎢⎢⎢⎣

�
1 + 𝛼Ṁ1L

∗
�
− Ã∗

1,cl

�
2𝜋𝛼R∗

∞

K
∗

1

1 + L
∗

⎤
⎥⎥⎥⎦

+
�
M3 + 𝛼Ṁ3L

∗
��

m ×
�
1

𝛼

1

1 + L
∗ − 1

��

+
�
M5 + 𝛼Ṁ5L

∗
��

m ×
�
1

𝛼

1

1 + L
∗ − 1

��2

= 0 .

d
d d

d d
d

d
d

(8)

Here, A is the crack face area and U is the elastic strain 
energy. Note that a decrease in the potential energy Π is 
associated to an equivalent increase in the strain energy U in 
a system that is subjected to a fixed load during crack propa-
gation (Anderson 2017). This increase in the strain energy is 
due to the additional work put into the system by the fixed 
load. In the present problem, the incremental crack growth 
can be considered equivalent to the length of the fracture 
process zone, i.e. Δa = LFPZ , and ΔU can be formulated as:

 where the opening displacement v (Fig. 9a) and the normal 
stress �y (Fig. 9b) should be acquired through Eqs. (16) and 
(17). It must be noted that the strain energy U characterised 
by Eq. (9) is in fact associated to the formation of the FPZ 
essentially prior to fracture growth, that includes only a por-
tion of fracturing energy dissipation. This is followed by a 
complete de-cohesioning of the material and the creation of 
new fracture surfaces that complete the energy dissipation 
due to fracturing. Therefore, the energy release rate calcu-
lated in Eq. (9) may underestimate the actual fracture  energy 
of the material. It is also noteworthy that the crack length 
is equal to aeff in the analysis of displacements in Fig. 9a, 
which means that crack parameters must be named as Ãn , 
with even terms vanishing along the crack flanks. The ERR 
in pure mode I can, therefore, be formed as

(9)

ΔU =∫
r=LFPZ

r=0

dU(r) =∫
LFPZ

0

1

2
Py

(
v+(r) − v−(r)

)

=∫
LFPZ

0

1

2
�y(r)

||�=0
(r=x)

(
v(r)|| �=�

(r=LFPZ−x)

−v(r)|| �=−�
(r=LFPZ−x)

)
dx ,

Crack

a LFPZ

+

v (x)

-
v (x)

x

y

(a)

Crack x

y

a LFPZ

σ (x)
y

(b)

Fig. 9  Application of the energy release rate concept: a crack faces 
opening displacement; b the closure stress applied along the FPZ to 
hold the crack faces closed
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where Ê = E and Ê = E∕(1 − 𝜈2) are for plane-stress 
and plane-strain conditions, respectively. Implementing 
An = A∗

n
� a1−n∕2 in line with Eqs. (3a) and (6) and collecting 

A∗
1
�
√
a = KI∕

√
2� gives the critical ERR as the following 

analytically integrable expression:

 with I, as a function of L∗ , representing the integral expres-
sion. For a fairly large specimen, i.e. mathematically of 
infinite size, the critical ERR is obtained by the limit of 
Eq. (11), as given in Eq. (12a), and the ratio GIc∕G

∞
Ic

 is there-
after achieved as in Eq. (12b): 

On the other hand, according to Bažant and Kazemi 
(1991), the brittleness number introduced in Eq. (13a) can be 
employed to define the ratio GIc∕G

∞
Ic

 as in Eq. (13b): 

(10)

GI =
1

LFPZ ∫
LFPZ

0

�
A1√
x
+ 3A3

√
x + 5A5x

√
x

�

�
4

Ê

√
LFPZ − x

�
Ã1 − Ã3

�
LFPZ − x

�

+Ã5

�
LFPZ − x

�2��
dx ,

(11)

GIc =
2

𝜋

KIc
2

ÊL∗ ∫
L
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⎜⎜⎜⎝

1�
x
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+ 3M3

�
x

a
+ 5M5

x
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�
x
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�√

1 + L
∗ −
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� L
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x
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1 + L
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+
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M5 + 𝛼Ṁ5L

∗
�

�
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�2

�
1 + L

∗
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1 + L
∗
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�
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�
x

a

�
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KIc
2

Ê
I
�
L
∗
�
,

(12a)G
∞
Ic
= lim

R→∞
(a→∞)

GIc =
K∞
Ic

2

Ê
,

(12b)
GIc

G
∞
Ic

= I
KIc

2

K∞
Ic

2
= IK∗2 .

(13a)� =
G
∗
(
� +

LFPZ

R

)

LFPZ

R
G
∗�
(
� +

LFPZ

R

) − 1 ,

where ṀG = G
∗�∕G∗ , M̈G = G

∗��∕G∗� , and G∗(�) is the normal-
ised form of the energy release rate, i.e. G = G

∗P2∕(4ÊRt2) , 
which is computable via the finite element method (FEM) as 
explained in Appendix A. Eventually, by equating Eqs. (12b) 
and (13b), one may obtain the ratio of the measured fracture 
toughness to the true scale-independent fracture toughness, 
K

∗ , as a function of the normalised FPZ length L∗:

Using Eqs. (7) and (14) together, it is now feasible to solve 
for L∗ and K∗ simultaneously, over a desired range of R∗

∞
 . 

Using Eq. (6b), we also define R∗ = R
∗
∞
∕K∗2 = R∕(KIc∕�t)

2 
as a dimensionless size measure that is next used to plot 
figures.

4  Comparison of Theory and Experiment

Figure 10 compares the experimental data on the FPZ length 
and fracture toughness with the theoretical predictions 
described in Sect. 3. Figure 10a shows the variations of the 
normalised FPZ length, L∗ = LFPZ∕a , with respect to the 
normalised size, R∗ = R∕(KIc∕�t)

2 . It is seen that the test 
data are rather enveloped by the theoretical curves obtained 
from the strip-yield model with two variation types namely 
uniform and linear traction models. Indeed, the linear trac-
tion model (i.e. dashed cyan curve) can be interpreted as 
somewhat the upper bound of the test data for the normalised 
FPZ length, while the uniform traction model (i.e. solid pink 
curve) acts as the lower bound of the experimental data. 
According to this figure, with the increase in the normalised 
disk radius R∗ , the normalised FPZ length L∗ decreases dra-
matically, reaching relatively stabilised values of 0.06 and 
0.03 for respectively linear and uniform traction models at 
R

∗ = 19.

(13b)

GIc

G
∞
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𝛽
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An interesting remark regarding Fig. 10a is that it can 
be used to estimate the FPZ length in the SCB specimen 
with a∕R = 0.5 and S∕R = 0.6 without performing any actual 
DIC measurements. Given that the tensile strength �t of the 
rock type is known from the Brazilian disk test, and KIc is 
also measured at a specific size of the SCB sample, one 
can simply evaluate the position along the horizontal axis 
( R∗ = R∕(KIc∕�t)

2 ). Intersecting a vertical line from that 
particular position with the theoretical curves would then 
reveal two bounds for the estimates of LFPZ∕a , whereby 
allowing to have an estimation of the FPZ length using the 
value of a∕R = 0.5.

To plot the theoretical curves in Fig. 10b, we first employ 
K

∗ from Eq. (14) and use it within Eq. (7), allowing the deter-
mination of L∗ over a given range of R∗

∞
 . The respective L∗ 

values are then inserted into Eq. (14) to calculate the corre-
sponding K∗ values for our employed R∗

∞
 range. As illustrated, 

the results of the two closure stress models are plotted again, 
based on which, the uniform traction model seems to have a 
superior correlation with the experimental findings. It is seen 
that by growing the normalised disk radius R∗

∞
 , estimations 

of the normalised fracture toughness K∗ ascend remarkably, 
reaching the values of 0.94 and 0.87 at R∗

∞
= 19 for uniform 

and linear traction models, respectively. It is noteworthy that 
the novel theory we introduced and utilised in this article is 
thoroughly independent of the experimental results, and its 
good agreement with the test data indicates the accuracy and 
efficiency of the theory put forward.

5  Introduction of a Correction Factor

To obtain practical size effect curves to estimate the true scale-
independent fracture toughness values, it is required to have 
the horizontal axis in terms of R∗ = R∕(KIc∕�t)

2 as opposed 
to R∗

∞
= R∕(K∞

Ic
∕�t)

2 used in Fig. 10b. This is because K∞
Ic

 is 
an unknown parameter that is to be determined. To achieve this 
aim, the theoretical data for L∗ = LFPZ∕a presented in Fig. 10a 
are to be used in Eq. (14) which outputs K∗ = KIc∕K

∞
Ic

 over 
the range R∗.

The uniform and linear traction models have unique predic-
tions for the normalised fracture toughness, i.e. K∗

ut
 and K∗

lt
 . Let 

us now introduce a correction factor named Ck as a coefficient 
to compensate for the underestimation of fracture toughness 
in small-sized specimens, and define it as the inverse of the 
average of K∗

ut
 and K∗

lt
:

Figure 11 gives the variations of the correction factor Ck 
with the normalised size for a large range of SCB configura-
tions, i.e. � = a∕R = 0.35 − 0.6 and S∕R = 0.6, 0.8 . On the 
selection of the appropriate correction factor and obtaining 
the true scale-independent fracture toughness for a particular 
rock type, the following steps should be taken: 

1. Measure the tensile strength ( �t ) from the Brazilian disk 
test or similar approaches.

(15)Ck = 2∕(K∗
ut
+K

∗
lt
) = K∞

Ic
∕KIc .

(a) (b)

Fig. 10  Comparison of the SCB test experimental data with the theoretical predictions ( � = a∕R = 0.5 , S∕R = 0.6 ): a the variations of the nor-
malised FPZ length with the normalised SCB size; b the variations of the normalised mode I fracture toughness with the normalised SCB size
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2. Conduct SCB tests at a specific size (R) and configura-
tion (a/R, S/R) to measure KIc associated to that size.

3. Extract the correction factor Ck from Fig.  11 at 
R

∗ = R∕(KIc∕�t)
2 based on the test configuration 

a/R, S/R.
4. Estimate the true scale-independent fracture toughness 

from K∞
Ic

= Ck × KIc.

For a/R and S/R values different from the ones presented 
in Fig. 11, it is suggested that either interpolation should 
be performed, or, the correction factor should be found by 
running a similar analysis to the present work. Moreover, it 
is advisable to perform toughness experiments on SCB sam-
ples with a low a/R ratio. This is in view of the fact that the 
scale factor Ck experiences higher gradients in small values 
of R∗ as a/R rises. As an instance, by considering a constant 
normalised radius such as R∗ = 7 , it is clearly shown in 
Fig. 11 that the green curves pertaining to a∕R = 0.35 attain 
the lowest gradients, thus offering less uncertainty in the 

procedure of true fracture toughness estimation. In addition, 
lower ratios of a/R are more preferable since they provide 
correction factors for wider ranges of R∗ . This is particularly 
helpful for small R∗ values, where the linear traction model 
fails to find a solution for L∗ , and thus the correction factor, 
Ck = 2∕(K∗

ut
+K

∗
lt
) , fails to yield a value. As a remedy, one 

can establish a scale factor solely based on the uniform trac-
tion model, i.e. Ck = 1∕K∗

ut
 , which is responsive even in very 

low R∗ values. However, as shown in Fig. 10b, uniform trac-
tion correlates well only with the results of big specimens, 
yet the small specimens yield results that agree well with the 
average of the uniform and linear traction models.

To benchmark the applicability and effectiveness of the 
proposed correction factors, in Table 1 we compare the the-
oretical estimates for the size-independent fracture tough-
ness (obtained via applying the correction factor) with their 
experimental counterparts estimated by the least squares 
method in Fig. 5a. For each rock type, three laboratory-sized 
SCBs with radii R = 50, 75 and 100 mm, that are common 

(a) (b)

Fig. 11  The variations of the fracture toughness correction factor C
k
= 2∕(K∗

ut
+K

∗
lt
) for the semi-circular bend test: a S∕R = 0.6 ; b S∕R = 0.8

Table 1  Application of the correction factors given in Fig. 11 to estimate the scale-independent fracture toughness of the tested rocks

Rock material �
t
 ( MPa) R ( mm) K

Ic
 ( MPa.

√
m) R

∗ =
R(

K
Ic

�
t

)2

C
k

K
∞
Ic,th

 
( MPa.

√
m)

K
∞
Ic,ex

 
( MPa.

√
m) Err (%) =

|||K∞
Ic,ex

− K
∞
Ic,th

|||
K

∞
Ic,ex

× 100

Limestone 5.42 50 0.67 3.30 − − 1.27 −
75 0.66 5.12 1.77 1.16 8.66
100 0.74 5.30 1.70 1.27 0.00

Marble 11.41 50 1.11 5.25 1.72 1.91 1.57 21.66
75 1.26 6.13 1.52 1.91 21.66
100 1.36 7.00 1.41 1.93 22.93

Granite 9.50 50 0.95 5.02 1.81 1.72 1.36 26.47
75 1.03 6.32 1.49 1.54 13.24
100 1.05 8.11 1.33 1.40 2.94
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sizes of cores used for laboratory experiments, are selected, 
and the dimensionless parameter R∗ is calculated accord-
ingly. Since our experiments were performed with a∕R = 0.5 
and S∕R = 0.6 , the red solid curve from Fig. 11a is to be uti-
lised to calculate the correction factor Ck at each particular 
R

∗ . Next, the theoretical scale-independent fracture tough-
ness K∞

Ic,th
 is estimated, and finally, the relative error with 

respect to the experimental estimate of K∞
Ic,ex

 is given.
As evident in limestone’s and granite’s data, the larger 

the specimen size, the better the theoretical results match 
the experimental ones. Due to the high gradients of the cor-
rection factor curves in small sizes, any uncertainty or error 
in the fracture toughness or tensile strength measurement 
can cause a higher uncertainty and error in the correction 
factor. Therefore, it is suggested that experiments be con-
ducted on specimens as large as possible to minimise such 
an error propagation when predicting the true fracture tough-
ness. The relatively high steady errors associated to marble’s 
data are mainly in view of the fact that these experimental 
points correlate well with the uniform traction model but not 
with the linear traction model (refer to Fig. 10b). Since our 
correction factor is defined as the inverse average of these 
two models, i.e. Ck = 2∕(K∗

ut
+K

∗
lt
) , this unsuitability of the 

estimations of the linear traction model reflects in the final 
speculations for K∞

Ic
 . Also noteworthy is that the relatively 

high errors in Table 1 mostly correspond with small speci-
mens which may also suffer from minor dimensioning errors 
in specimen manufacturing and test execution. Notwith-
standing, even in the worst case, the mentioned errors are 
yet no more than 27% which are quite comparable with the 
experimental scatter of this work, especially for small sam-
ples. Moreover, the experimental value for size-independent 
mode I fracture toughness K∞

Ic,ex
 is only an estimation. The 

errors might be decreased when K∞
Ic,ex

 is actually measured 

by conducting tests on larger specimens and/or increasing 
the number of test repetitions.

6  Conclusions

The main findings of this paper are as follows:

• The results of a total of 93 SCB fracture toughness tests 
on three different rock materials with sample radii rang-
ing from R = 25 to 300 mm show a significant depend-
ence of the mode I fracture toughness on the sample size. 
The values of both fracture toughness and the FPZ length 
(measured via DIC technique) grow drastically as the 
disk radius increases. In the most critical cases, the FPZ 
length and fracture toughness values associated with the 
largest and smallest specimens were 6.27 and 2.01 times 
different, respectively, that indicates a severe size effect 
behaviour.

• The presented novel theoretical model accurately pre-
dicts the size-dependence of the FPZ length and fracture 
toughness. The proposed theory is totally independent 
of the rock type, and does not include any experimental 
curve fittings, thus distinguishing it from the available 
research work in the literature.

• The ISRM-suggested minimum size requirement for 
the SCB test does not guarantee a stabilised fracture 
toughness, and is therefore misleading. Our suggested 
scale-dependent correction factors are, however, able to 
accurately adjust the fracture toughness measurements 
obtained from laboratory-sized SCB specimens in order 
to provide a scale-independent fracture toughness value. 
These scale-dependent factors depend on the test con-
figuration of the SCB test, while they are independent of 
the type of rock material.

Fig. 12  a Stresses and strains 
applied at a material element 
close to the crack tip; b typical 
FE mesh used for the numerical 
modelling of the SCB specimen

x,u
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Appendix A. Numerical Calculation of Crack 
Parameters

A.1. Crack Tip Fields Under Mode I Loading

The series solution of the stress and displacement fields 
around a crack in an isotropic medium subjected to pure 
mode I loading is given by (Williams 1957; Ayatollahi and 
Nejati 2011) 

 where (r, �) are the polar coordinates with respect to the 
crack tip (see Fig. 12a), An are the mode I crack coefficients, 
� = E∕(2(1 + �)) is the shear modulus, and the Kolosov con-
stant � is equal to 3 − 4� for plane-strain and (3 − �)∕(1 + �) 
for plane-stress conditions, respectively.

A.2. Crack Parameters in an SCB Sample Subjected 
to Three‑point Bend

To determine crack tip coefficients ( An ), we first modelled 
the SCB specimen in the finite element package Abaqus, 
where eight-noded plane stress quadratic quadrilateral ele-
ments of type CPS8 discretise the solution domain (see 
Fig. 12b). We then applied the finite element over-determin-
istic (FEOD) method (Ayatollahi and Nejati 2011; Ayatollahi 
et al. 2020). This method makes use of the displacements 
of a large number of finite element nodal points around the 
crack tip to form an over-determined system of equations, 

(16)
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and compute the coefficients of the crack tip fields in a least 
squares manner. After determining An from the FEOD analy-
sis, and the energy release rate G from the FE analysis, Eq. 
(18, 19) was used to calculate the normalised parameters 
A∗
1
 , A∗

3
 , A∗

5
 and G∗ that are listed in Table 2 for the two span 

ratios of S∕R = 0.6, 0.8 . We note that the terms containing 
the coefficients A2 and A4 are zero along the notch bisec-
tor and therefore are not reported here. Also, note that the 
parameters An and G are dependent only on geometry and 

loading configuration, and have no dependency on material 
properties. 

(18)An = A∗
n

P

2Rt
a
1−

n

2 , n = 1, 3, 5 ,

Table 2  Normalised crack 
parameters A∗

n
(�) and 

normalised ERR G∗(�) for 
different S/R values as sixth 
order polynomial functions 
of crack length to disk radius 
( � = a∕R)

S/R A
∗
n
,G

∗
Fitted functions: d

6
�6 + d

5
�5 + d

4
�4 + d

3
�3 + d

2
�2 + d

1
� + d

0

d
6

d
5

d
4

d
3

d
2

d
1

d
0

0.6 A
∗
1

0.00 0.00 149.38 −238.78 155.55 −43.63 6.68
A
∗
3

0.00 −1971.79 4207.13 −3638.35 1562.49 −334.43 28.01
A
∗
5

−7408.00 19684.21 −21772.10 12763.92 −4176.87 722.77 −51.62

G
∗ 0.00 46994.87 −101081.12 87554.52 −37609.01 8021.72 −670.73

0.8 A
∗
1

0.00 0.00 198.63 −315.21 203.31 −56.22 8.89
A
∗
3

0.00 −2677.64 5697.85 −4912.81 2102.37 −449.82 37.81
A
∗
5

−10168.89 27040.21 −29944.53 17578.91 −5757.14 995.48 −71.02

G
∗ 0.00 85284.10 −183212.31 158584.48 −68078.03 14527.81 −1214.38

Table 3  The curve-fitting parameters for the normalised coefficient 
A
∗
1,cl

(x∕a, �) for the case where concentrated forces are applied at the 
distance x from the crack tip, on the crack faces of the SCB specimen

� = a∕R A
∗
1,cl

= d
0
+ d

1
ln(
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) + d

2
ln(

x
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)2 + d

3
ln(

x
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)3

d
0

d
1

d
2

d
3

0.3 1.1587 0.2499 0.0990 −0.0110

0.35 1.3963 0.3898 0.1334 −0.0078

0.4 1.6931 0.5722 0.1803 −0.0032

0.45 2.0676 0.8117 0.2443 0.0032
0.5 2.5382 1.1118 0.3212 0.0102
0.55 3.1571 1.5267 0.4351 0.0218
0.6 3.9834 2.0915 0.5904 0.0373
0.65 5.1263 2.8886 0.8117 0.0595
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A.3. Crack Tip Parameters in a SCB Sample Subjected 
to a Crack Closure Stress

To determine the crack parameters for the case where 
closure stress is applied along the FPZ, one should first 
perform FE analyses for the case schematically shown 
in Fig. 13a. Therein, a pair of concentrated loads P are 
applied normal to the crack flanks at a distance x from the 
crack tip, in an SCB specimen with the crack length a. The 
exertion of a pair of concentrated forces on the crack flanks 
invalidates the crack tip series solution in Eq. (16) that is 
the basis of the FEOD method for determining the crack 
parameters. Due to the invalidity of the crack tip asymp-
totic solution in such a case, we may ignore the computa-
tion of higher order parameters A3,cl and A5,cl , and imple-
ment only A1,cl to characterise the effect of the closure 
stress. We use the directly calculated KI,cl from the domain 
integral method (that is not disturbed by load application 
on the crack flanks), and determine A1,cl = KI,cl∕

√
2� . The 

normalised form of the first coefficient of the crack tip 
asymptotic field, A∗

1,cl
 , is then calculated from

After performing numerous FE analyses for different values 
of � = a∕R , and for each case varying the non-dimensional 
parameter x/a, we define a two-variable function A∗

1,cl
(x∕a, �) 

which is represented by a third-order logarithmic expression 
given in Table 3. Noteworthy is that A⋆

1,cl
 is independent of 

elastic properties of the material.
Having A∗

1,cl
 determined for the case of concentrated 

forces, one can perform integration to obtain solutions for 
the cases where uniform or linear closure stresses are applied 
to the crack flanks. For the case of uniform closure stress 

(19)G = G
∗ P2

4ÊRt2
.

(20)A1,cl = A∗
1,cl

P

t
√
a
,

shown in Fig. 13b (Barenblatt 1959; Dugdale 1960), we con-
sider a crack length of aeff = a + LFPZ , and relate the load P 
to the closure stress through P = −�tt dx in Eq. (20), deriv-
ing the crack parameter Ã1,cl as

By employing the chain rule for derivation, one may expand 
Eq. (21) as

which with the aid of Table 3 can be transformed into

while designating the normalised FPZ length as L∗ = LFPZ∕a . 
For the linear traction model illustrated in Fig. 13c (Labuz 
et  al. 1985), we define P = −�t

[
1 − (x∕a)∕L∗)

]
t dx in 

Eq. (20) and finally reach
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Ã1,cl = −
𝜎t√
aeff

a∫
L
∗

0

�
A∗
1,cl

�
x

a
, 𝛼
�

+

�
−

�
d1 + 2d2 ln

�
x

a

�
+ 3d3 ln

�
x

a

�2
�

+𝛼
A∗
1,cl

�
x

a
, 𝛼 + 0.05

�
− A∗

1,cl

�
x

a
, 𝛼 − 0.05

�

0.1

⎞⎟⎟⎟⎠
L
∗

⎞⎟⎟⎟⎠
d
�
x

a

�

= −
�
Ã∗
1,cl

�
ut

𝜎t√
aeff

a .

a

R

P
x

(a)

a
LFPZ

σ
t

x

(b)

a
LFPZ x

σ ×(1-x/L )
t FPZ

(c)

Fig. 13  Illustration of how crack tip parameters are obtained for the case where a closure stress is applied on the crack flanks. a A pair of con-
centrated load applied at a distance x from the crack tip; b uniform traction model; c linear traction model
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To summarise our findings here, we may write

which has been used in Eq. (3b).
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Ã∗
1,cl

�
lt

linear traction model
,

Ayatollahi M, Aliha M (2008) On the use of Brazilian disc specimen 
for calculating mixed mode I–II fracture toughness of rock materi-
als. Eng Fract Mech 75(16):4631–4641

Ayatollahi MR, Nejati M (2011) An over-deterministic method for cal-
culation of coefficients of crack tip asymptotic field from finite 
element analysis. Fatigue Fract Eng Mater Struct 34(3):159–176

Ayatollahi MR, Mahdavi E, Alborzi MJ, Obara Y (2016) Stress inten-
sity factors of semi-circular bend specimens with straight-through 
and Chevron Notches. Rock Mech Rock Eng 49(4):1161–1172

Ayatollahi MR, Nejati M, Ghouli S (2020) The finite element over-
deterministic method to calculate the coefficients of crack 
tip asymptotic fields in anisotropic planes. Eng Fract Mech 
231:106982

Bahrami B, Ayatollahi MR, Sedighi I, Yazid Yahya M (2019) An 
insight into mode II fracture toughness testing using SCB speci-
men. Fatigue Fract Eng Mater Struct 42(9):1991–1999

Bahrami B, Ayatollahi MR, Mirzaei AM, Yahya MY (2020b) Sup-
port type influence on rock fracture toughness measurement 
using semi-circular bending specimen. Rock Mech Rock Eng 
53(5):2175–2183

Bahrami B, Ayatollahi M, Torabi A (2020a) Application of digital 
image correlation method for determination of mixed mode stress 
intensity factors in sharp notches. Opt Lasers Eng 4 (May 2019), 
105830

Barenblatt G (1959) The formation of equilibrium cracks during brittle 
fracture. General ideas and hypotheses. Axially-symmetric cracks. 
J Appl Math Mech 23(3):622–636

Bažant ZP, Pfeiffer PA (1987) Detremination of fracture energy by size 
effect and brittlemess number. ACI Materials Journal 463–480

Bažant ZP (1984) Size Effect in Blunt Fracture: Concrete, Rock. Metal. 
J Eng Mech 110(4):518–535

Bažant ZP, Kazemi MT (1991) Size dependence of concrete fracture 
energy determined by RILEM work-of-fracture method. Int J Fract 
51:121–138

Bažant Z, Gettu R, Kazemi M (1991) Identification of nonlinear 
fracture properties from size effect tests and structural analysis 
based on geometry-dependent R-curves. Int J Rock Mech Min Sci 
Geomech Abstr 28(1):43–51

Bhowmik S, Ray S (2019) An experimental approach for characteriza-
tion of fracture process zone in concrete. Engineering Fracture 
Mechanics 211(February):401–419

Bieniawski ZT, Hawkes I (1978) Suggested methods for determin-
ing tensile strength of rock materials. Int J Rock Mech Min Sci 
Geomech Abstr 15(6):124

Carloni C, Cusatis G, Salviato M, Le J-L, Hoover CG, Bažant ZP 
(2019) Critical comparison of the boundary effect model with 
cohesive crack model and size effect law. Eng Fract Mech 
215(February):193–210

Chang S-H, Lee C-I, Jeon S (2002) Measurement of rock fracture 
toughness under modes I and II and mixed-mode conditions by 
using disc-type specimens. Eng Geol 66(1–2):79–97

Chen R, Li K, Xia K, Lin Y, Yao W, Lu F (2016) Dynamic Frac-
ture Properties of Rocks Subjected to Static Pre-load Using 
Notched Semi-circular Bend Method. Rock Mech Rock Eng 
49(10):3865–3872

Chong KP, Kuruppu MD, Kuszmaul JS (1987) Fracture toughness 
determination of layered materials. Eng Fract Mech 28(1):43–54

Cusatis G, Schauffert EA (2009) Cohesive crack analysis of size effect. 
Eng Fract Mech 76(14):2163–2173

Dai F, Chen R, Xia K (2010) A semi-circular bend technique for deter-
mining dynamic fracture toughness. Exp Mech 50(6):783–791

Dai F, Xia K, Zuo JP, Zhang R, Xu NW (2013) Static and dynamic 
flexural strength anisotropy of barre granite. Rock Mech Rock 
Eng 46(6):1589–1602

Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys 
Solids 8(2):100–104

Technology Zurich.

http://creativecommons.org/licenses/by/4.0/


4058 S. Ghouli et al.

1 3

Dutler N, Nejati M, Valley B, Amann F, Molinari G (2018) On the link 
between fracture toughness, tensile strength, and fracture process 
zone in anisotropic rocks. Eng Fract Mech 201(July):56–79

Fakhimi A, Tarokh A (2013) Process zone and size effect in fracture 
testing of rock. Int J Rock Mech Min Sci 60:95–102

Haberfield CM, Johnston IW (1990) Determination of the fracture 
toughness of a saturated soft rock. Can Geotech J 27:276–284

Karihaloo BL (1999) Size effect in shallow and deep notched quasi-
brittle structures. Fracture Scaling, vol 95. Springer, Netherlands, 
Dordrecht, pp 379–390

Kataoka M, Obara Y, Kuruppu M (2015) Estimation of fracture tough-
ness of anisotropic rocks by semi-circular bend (SCB) tests under 
water vapor pressure. Rock Mech Rock Eng 48(4):1353–1367

Khan K, Al-Shayea NA (2000) Effect of Specimen Geometry and 
Testing Method on Mixed Mode I-II Fracture Toughness of a 
Limestone Rock from Saudi Arabia. Rock Mech Rock Eng 
33(3):179–206

Kobayashi R, Matsuki K, Otsuka, N (1986) Size effect in the fracture 
toughness of Ogino tuff. Int J Rock Mech Min Sci Geomech Abstr 
23 (I), 13–18

Kuruppu MD, Obara Y, Ayatollahi MR, Chong KP, Funatsu T (2014) 
ISRM-suggested method for determining the mode I static fracture 
toughness using semi-circular bend specimen. Rock Mech Rock 
Eng 47(1):267–274

Labuz J, Shah S, Dowding C (1985) Experimental analysis of crack 
propagation in granite. Int J Rock Mech Min Sci Geomech Abstr 
22(2):85–98

Laqueche H, Rousseau A, Valentin G (1986) Crack propagation under 
mode I and II loading in slate schist. Int J Rock Mech Min Sci 
Geomech Abstr 23(5):347–354

Lim I, Johnston I, Choi S, Boland J (1994) Fracture testing of a soft 
rock with semi-circular specimens under three-point bend-
ing. Part 1–mode I. Int J Rock Mech Min Sci Geomech Abstr 
31(3):185–197

Moazzami M, Ayatollahi M, Akhavan-Safar A (2020) Assessment of 
the fracture process zone in rocks using digital image correlation 
technique: The role of mode-mixity, size, geometry and material. 
Int J Damage Mech 29(4):646–666

Nath Singh R, Sun G (1990) A numerical and experimental investiga-
tion for determining fracture toughness of Welsh limestone. Min 
Sci Technol 10(1):61–70

Nejati M, Aminzadeh A, Saar MO, Driesner T (2019) Modified semi-
circular bend test to determine the fracture toughness of aniso-
tropic rocks. Eng Fract Mech 213(February):153–171

Nejati M, Aminzadeh A, Amann F, Saar MO, Driesner T (2020a) Mode 
I fracture growth in anisotropic rocks: Theory and experiment. Int 
J Solids Struct 195:74–90

Nejati M, Ghouli S, Ayatollahi MR (2020b) Crack tip asymptotic field 
and K-dominant region for anisotropic semi-circular bend speci-
men. Theoret Appl Fract Mech 109:102640

Obara Y, Nakamura K, Yoshioka S, Sainoki A, Kasai A (2020) Crack 
Front Geometry and Stress Intensity Factor of Semi-circular Bend 
Specimens with Straight Through and Chevron Notches. Rock 
Mech Rock Eng 53(2):723–738

Pan B, Qian K, Xie H, Asundi A (2009) Two-dimensional digital image 
correlation for in-plane displacement and strain measurement: a 
review. Meas Sci Technol 20(6):062001

Perras MA, Diederichs MS (2014) A Review of the Tensile Strength 
of Rock: Concepts and Testing. Geotech Geol Eng 32(2):525–546

Schmidt RA, Lutz TJ (1979) KIc and JIc of Westerly Granite-Effects 
of Thickness and In-Plane Dimensions. ASTM International 
166–182

Sedighi I, Ayatollahi MR, Bahrami B (2020) A statistical approach 
on the support type effect on mode I fracture toughness deter-
mined using semi-circular bend (SCB) specimen. Eng Fract Mech 
226:106891

Tarokh A, Makhnenko RY, Fakhimi A, Labuz JF (2017) Scaling of the 
fracture process zone in rock. Int J Fract 204(2):191–204

Wang H, Zhao F, Huang Z, Yao Y, Yuan G (2017) Experimen-
tal study of mode-I fracture toughness for layered shale based 
on two ISRM-suggested methods. Rock Mech Rock Eng 
50(7):1933–1939

Wei M, Dai F, Xu N, Zhao T, Xia K (2016a) Experimental and numer-
ical study on the fracture process zone and fracture toughness 
determination for ISRM-suggested semi-circular bend rock speci-
men. Eng Fract Mech 154:43–56

Wei M-D, Dai F, Xu N-W, Zhao T (2016b) Stress intensity factors 
and fracture process zones of ISRM-suggested chevron notched 
specimens for mode I fracture toughness testing of rocks. Eng 
Fract Mech 168:174–189

Wei M-D, Dai F, Xu N-W, Liu Y, Zhao T (2017a) Fracture prediction 
of rocks under mode I and mode II loading using the generalized 
maximum tangential strain criterion. Eng Fract Mech 186:21–38

Wei M-D, Dai F, Xu N-W, Zhao T, Liu Y (2017b) An experimental 
and theoretical assessment of semi-circular bend specimens with 
chevron and straight-through notches for mode I fracture tough-
ness testing of rocks. Int J Rock Mech Min Sci 99(January):28–38

Wei M, Dai F, Xu N, Zhao T (2018a) Experimental and numerical 
investigation of cracked chevron notched Brazilian disc specimen 
for fracture toughness testing of rock. Fatigue Fract Eng Mater 
Struct 41(1):197–211

Wei M-D, Dai F, Liu Y, Xu N-W, Zhao T (2018b) An experimental 
and theoretical comparison of CCNBD and CCNSCB specimens 
for determining mode I fracture toughness of rocks. Fatigue Fract 
Eng Mater Struct 41(5):1002–1018

Wei M-D, Dai F, Liu Y, Xu N-W, Zhao T (2018c) An experimental 
and theoretical comparison of CCNBD and CCNSCB specimens 
for determining mode I fracture toughness of rocks. Fatigue Fract 
Eng Mater Struct 41(5):1002–1018

Williams ML (1957) On the stress distribution at the base of a station-
ary crack. J Appl Mech 24:109–114

Zhang S, Wang L, Gao M (2019) Experimental Investigation of the 
Size Effect of the Mode I Static Fracture Toughness of Limestone. 
Adv Civil Eng 2019:1–11

Zhang S, Wang H, Li X, Zhang X, An D, Yu B (2020) Experimental 
study on development characteristics and size effect of rock frac-
ture process zone. Eng Fract Mech (July), 107377

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	Introduction of a Scaling Factor for Fracture Toughness Measurement of Rocks Using the Semi-circular Bend Test
	Abstract
	1 Introduction
	2 Experimental Study
	2.1 Materials
	2.2 Brazilian Disk Test
	2.3 Mode I Fracture Toughness Tests
	2.4 DIC Results on the FPZ Length

	3 Theoretical Study
	3.1 A Model for FPZ Length
	3.2 A Model for the Fracture Toughness

	4 Comparison of Theory and Experiment
	5 Introduction of a Correction Factor
	6 Conclusions
	Acknowledgements 
	References




