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Abstract
Uniaxial compressive strength (UCS) is the most fundamental physico–mechanical parameter used for any rock mass clas-
sification in geotechnical and geological engineering. However, determining UCS is a very tough, expensive, time consuming 
and destructive method and requires experienced workers. On the other hand, P-wave velocity (VP) determination is cheap, 
precise, non-destructive and easy. There are many established relationships between UCS and VP but mostly are low in range 
or proposed for multiple rock types of different origin. In this paper, the correlation of UCS with VP has been assessed based 
on the rocks’ lithology. The methodology used in this analysis was centred on the previous studies database, lithology-based 
data disintegration and data integration to establish lithology based simple regression (SR) equations. A total of 37 previous 
studies databases were processed, and 12 characteristic regression equations have been determined based on the lithology. 
The lithological control was also determined using the principal component analysis (PCA), which categorised the data into 
diverse rock types. Artificial neural network (ANN) has been used as a robust predictive tool to estimate the UCS using the 
VP and rock type information.

Keywords Uniaxial compressive strength · P-wave velocity · Simple regression · Lithological control · Principal 
component analysis · Artificial Neural Network

1 Introduction

Uniaxial compressive strength (UCS) is the primary phys-
ico–mechanical parameter that is essentially required to 
assess the field conditions for any geotechnical or civil 
engineering constructions. Rock mass and other classifi-
cation systems such as rock mass rating (RMR) proposed 
by Bieniawski (1973), slope mass rating (SMR) offered by 
Romana (1985), Q-slope offered by Bar and Barton (2017) 
etc. which are being used in various geotechnical, geological 
and civil purposes, fundamentally requires UCS as a pri-
mary physico-mechanical parameter. However, standards 

proposed by the International Society of Rock Mechanics 
(ISRM) (1979) and the American Society of Testing and 
Materials (ASTM) (2000) are very tough, time-consuming, 
expensive and destructive. Therefore, estimating the UCS 
using various indirect tests has become popular. UCS has 
been correlated with physical parameters such as density, 
porosity etc. and physico-mechanical parameters such as 
point load strength index (PLSI), rebound number (NR), 
Brazilian tensile strength (BTS) and VP. In the present study, 
the correlation of UCS with the VP has been assessed based 
on the previous studies database. The VP depends on the 
density and elastic properties of the material. The stand-
ards suggested by ASTM (2002) and ISRM (1978) for the 
determination of VP is straightforward, easy, non-destructive, 
cheap and precise.

Many researchers have proposed a general regression 
for multiple types of rocks (Kahraman 2001; Karakus et al. 
2005; Sharma and Singh 2008; Kilic and Teymen 2008; 
Sarkar et al. 2012; Karakul and Ulusay 2013; Teymen and 
Menguc 2020 etc.), whereas some researchers have proposed 
regression equations for single rock types (Tugrul and Zarif 
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1999; Yasar and Erdogan 2004; Chary et al. 2006; Vascon-
celos et al. 2007; Minaeian and Ahangari 2011; Rahman 
et al. 2020 etc.). In this paper, an attempt has been made 
to propose a generalised regression equation based on the 
lithology and evaluate the statistical acceptance of regres-
sion equations proposed for particular rock types. A specific 
characteristic regression equation has been offered for each 
rock type (a total of 12) based on previous studies database.

Principal component analysis (PCA) and ANN are the 
most common unsupervised and supervised learning algo-
rithm in machine learning, respectively. ANN is a modern 
predictive tool that many researchers have used, while PCA 
has been generally used for data-processing and classifica-
tion or categorisation of the dataset. Sarkar et al. (2010) 
used ANN to predict the UCS and shear strength with three 
input parameters such as VP, PLSI, slake durability index 
(SDI) and density for four different rock types. Sharma 
et al. (2017) compared the accuracy of adaptive neuro-fuzzy 
inference system, multiple regression analysis and ANN to 
predict the UCS using three input parameters (density, VP 
and SDI). In this paper, PCA has been used to validate the 
lithological control on the estimation of UCS from the VP 
by categorising the database into 12 rock types, whereas 
ANN has been trained to predict the UCS from VP and rock 
type information using three different training function algo-
rithms and the regression fit obtained from simple regression 
analysis have been compared with each other.

2  Previous Studies

A plethora of research was conducted to estimate the UCS 
using the VP (Table 1). Tugrul and Zarif (1999) proposed a 
regression equation to predict the UCS using VP of 19 gra-
nitic rocks collected from different Turkey locations. Kahra-
man (2001) proposed a power correlation of UCS with the 
VP of 27 different rock types, including sandstones, carbon-
ates, tuffs etc., collected from different parts of Turkey. Yasar 
and Erdogan (2004) suggested a linear regression equation 
to predict the VP using UCS, which was used for vice versa. 
They used 13 samples of carbonate rocks collected from dif-
ferent parts of Turkey. Karakus et al. (2005) used 9 samples 
of carbonate and igneous rocks to propose a multivariate 
linear regression to predict the Poisson’s ratio and Young’s 
modulus from NR, VP and porosity. Sousa et al. (2005) sug-
gested a power correlation to estimate the UCS from VP of 9 
different granitic rocks procured from NE Portugal. Entwisle 
et al. (2005) suggested an exponential correlation equation 
to estimate the UCS from VP of 171 samples of Volcanites 
procured from the UK NIREX off-site core characterisa-
tion programme. Chary et al. (2006) used sandstone samples 
from two different coalfields, namely SCCL and NLC, where 
they suggested regression equations separately for SCCL 

and NLC, to predict the UCS from VP. Vasconcelos et al. 
(2007) used 19 samples to evaluate granites’ behaviour in 
dry and saturated conditions. Kilic and Teymen (2008) pro-
posed a power regression equation to predict the UCS of 19 
samples of 10 different rock types using the VP. Sharma and 
Singh (2008) suggested a common regression equation for 
49 samples of 6 different rock types collected from India’s 
different parts. Cobanoglu and Celik (2008) used cement 
mortar, limestone and sandstone core samples of different 
diameter and proposed a common correlation equation for 
all types of materials used based on sets of different diam-
eters. Moradian and Behnia (2009) used 64 samples of 
marlstone, sandstone, and limestone to produce a common 
correlation between the samples’ UCS and VP. In contrast, 
Diamantis et al. (2009) suggested a linear regression equa-
tion for 32 serpentinite rocks from Central Greece. Torok 
and Vasarhelyi (2010) used 40 travertine samples from Hun-
gary to study the influence of moisture and fabric on the 
rock’s physico-mechanical properties. They also suggested 
a power regression equation to predict the UCS from VP. 
The UCS and VP database of Sarkar et al. (2010) with 40 
samples of 4 rock types was also used in the study. Kurtu-
lus et al. (2010) investigated the mechanical and physical 
properties of andesite rocks of Gokceada Island near Turkey 
mainland. A power correlation was offered by Yagiz (2011) 
for 3 types of rocks including mica-schist, travertine and 
carbonate. Kurtulus et al. (2012) investigated the physical 
and mechanical properties of serpentinites from NW Tur-
key. They proposed a linear regression between UCS and VP 
along and across foliation planes with excellent R2 values. 
The regression for across foliation tests was included for 
the present study. Minaeian and Ahangari (2011) proposed 
a linear regression equation to estimate the UCS of weak 
conglomerates using VP. Sarkar et al. (2012) used 94 samples 
of 13 rock types from India and proposed a common cor-
relation for all rock types. Babacan et al. (2012) suggested 
a linear regression equation between UCS and VP for 15 
samples of limestone. Karakul and Ulusay (2013) studied 
the variation in the physico-mechanical properties at vary-
ing degree of saturation and suggested a correlation equa-
tion to predict the physico-mechanical parameters from VP. 
Azimian et al. (2013) studied 40 samples of marl from Iran 
and proposed a linear correlation between the UCS and VP. 
Mishra and Basu (2013) suggested separate regression equa-
tions for granite, chlorite-schist and sandstone because they 
could not find a common correlation for all rock types used. 
Beiki et al. (2013) used genetic programming to estimate the 
UCS and elastic modulus of various carbonate rocks using 
VP, porosity and density. Karaman and Kesimal (2015) cor-
related the NR with the UCS and VP of 46 rocks samples. 
Goh et al. (2014) investigated 77 Malaysian granite samples 
and suggested a power correlation between the UCS and 
VP. Mohamad et al. (2014) suggested a common correlation 
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equation for 3 types of rocks, including shale, old alluvium 
and iron pan. Goh et al. (2015) used 26 Malaysian schist 
samples and proposed a power correlation between UCS 
and VP. Jamshidi et al. (2015) studied the effect of diam-
eter size of the core specimen of 15 travertine rocks of Iran 
on the UCS and VP and suggested a relation for 5 different 

diameter size. For the present study, the relationship of UCS 
and  VP for dry rock samples and 54 mm diameter size was 
considered. Kurtulus et al. (2015) used 96 samples of 3 rock 
types from Turkey and proposed correlations between VP 
and different mechanical and physical properties. Selçuk and 
Nar (2016) used 42 samples of 8 rock types, and Kurtulus 

Table 1  Regression equations proposed by various researchers in previous studies

Sl No. References Equations Rock types Equation 
identifier

1 Tugrul and Zarif (1999) UCS = 35.54VP − 55 19 Granitic rock samples T1
2 Kahraman (2001) UCS = 9.95VP

1.21 27 Different rock samples T2
3 Yasar and Erdogan (2004) VP = 0.0317UCS + 2.0195 13 Samples of carbonate rock types T3
4 Karakus et al. (2005) No equation 9 samples of 4 different rocks T4
5 Sousa et al. (2005) UCS = 0.004VP

1.247 9 Granitic rocks T5
6 Entwisle et al. (2005) UCS = 0.78exp[0.88VP] 171 Samples of volcanic rock T6
7 Chary et al. (2006) UCS = 0.1564VP − 692.41 9 samples of NLC Sandstones T7

UCS = 0.0144VP − 24.856 23 samples of SCCL Sandstones T8
8 Vasconcelos et al. (2007) UCS = 0.0407VP − 36.31 19 samples of Granites T9
9 Kilic and Teymen (2008) UCS = 2.304VP

2.4315 19 samples of 10 rock types T10
10 Sharma and Singh (2008) UCS = 0.0642VP − 117.99 49 Samples in different rock types T11
11 Cobanoglu and Celik (2008) UCS = 56.71VP − 192.93 150 samples of different rock types T12
12 Moradian and Behnia (2009) UCS = 165.05exp[-4.452/VP] 64 Different rock samples T13
13 Diamantis et al. (2009) UCS = 0.11VP − 515.56 32 Samples of serpentinite rock T14
14 Toraok and Vasarhelyi (2010) UCS = 0.5474VP

3.1088 40 samples of Travertines T15
15 Sarkar et al. (2010) No equation 40 samples of 4 different rock types T16
16 Kurtulus et al. (2010) UCS = 0.1581VP − 643.2 12 samples of Andesite rocks T17
17 Yagiz (2011) UCS = 0.258VP

3.542 9 samples of mica schist, travertine and carbonates T18
18 Minaeian and Ahangari (2011) UCS = 0.005VP 70 samples of weak conglomerates T19
19 Kurtulus et al. (2012) UCS = 67.484VP − 245.11 20 samples of Serpentinite rocks T20
20 Sarkar et al. (2012) UCS = 0.039VP − 50 94 samples of 13 rock types T21
21 Babacan et al. (2012) UCS = 0.012VP − 5.955 15 limestone rock samples T22
22 Karakul and Ulusay (2013) UCS = 7.182VP

1.6 13 samples of different rock types T23
23 Azimian et al. (2013) UCS = 0.026VP − 20.207 40 samples of Marl T24
24 Mishra and Basu (2013) UCS = 0.087VP − 355.8 20 Granite samples T25

UCS = 0.358e0.8211x 20 Schist samples T26
UCS = 0.05VP − 126.4 20 Sandstone samples T27

25 Beiki et al. (2013) UCS = 3.7VP
2.3 72 different carbonate rocks T28

26 Karaman and Kesimal (2015) No equation 46 samples of Basalt, Dacite and limestone rocks T29
27 Goh et al. (2014) UCS = (2.55 ×  10–5) VP

1.7658 77 samples of Granite rocks T30
28 Mohamad et al. (2014) UCS = 0.032VP − 44.227 40 samples of 3 different rocks types T31
29 Goh et al. (2015) UCS = (3.4 ×  10–11) VP

3.3938 26 samples of Schist rocks T32
30 Jamshidi et al. (2015) UCS = 96.597 ln (VP) − 763.72 15 samples of Travertine rocks T33
31 Selçuk and Nar (2016) UCS = 22.189VP − 30.32 42 samples of 8 rock types T34
32 Kurtulus et al. (2015) UCS = (8 ×  10–6) VP

2 − 0.024VP + 31.92 96 samples of 3 type of rocks T35
33 Kurtulus et al. (2016) UCS = 0.018VP − 18.405 32 samples of Limestones T36
34 Awang et al. (2016) UCS = 0.0098VP + 6.7382 10 samples of Shale rocks T37
35 Nespereira et al. (2019) VP = 21.79UCS + 3464.61 13 samples of Serpentinite rocks T38
36 Teymen and Menguc (2020) UCS = 6.75VP

1.68 93 samples of different rock types T39
37 Rahman et al. (2020) UCS = 9.4824VP

1.6874 32 samples of Shales T40
UCS = 19.421VP − 26.221 39 samples of Sandstones T41
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et al. (2016) used 32 samples of limestone to suggest a cor-
relation equation between UCS and VP. Awang et al. (2016) 
also proposed a correlation between UCS and VP for shale 
rocks of Malaysia. Nespereira et al. (2019) used serpent-
inite rocks of NW Spain to propose a linear regression to 
predict the UCS from VP. Teymen and Menguc (2020) used 
93 samples of different rock types and suggested a com-
mon regression equation. Rahman et al. (2020) used Lower 
Gondwana sandstone and shale rocks and suggested separate 
regression equations for the 2 rock types, and recommended 
that each rock type follow a characteristic regression curve. 
The regression equations obtained by different researchers 
used in this study have been plotted and compared in Fig. 1, 
which is suggestive that there is no common and reliable 
regression equation that could be used for the prediction of 
UCS with the VP. Hence, the study becomes very significant 
and important. 

3  Data Processing

3.1  Data Disintegration

The samples of different rock types used by various research-
ers in the previous studies were disintegrated on the basis of 
lithology irrespective of the proposed regression equation 
(Fig. 2). A total of 12 types of rocks have been identified 
using the previous studies database on the basis of lithol-
ogy. A general overall trend, including all the rock types, 

have been proposed with a good  R2 value of 0.5657 and an 
exponential equation as follows (Eq. 1).

Many authors such as Kahraman (2001), Sharma and 
Singh (2008), Sarkar et al. (2012) etc., used multiple rock 
types and suggested an ordinary regression equation. There-
fore, to propose a characteristic regression equation for a 
particular lithology, the method of data disintegration was 
used. For example, Kurtulus et al. (2015) used 96 samples of 
3 rock types, including 10 samples of Kızderbent volcanic, 
8 samples of Sopali arkose (T35-1), 36 samples of Korfez 
sandstone (T35-2), 20 samples of Derince sandstone (T35-
3) and 22 samples of Akveren limestone. These rock types 
were disintegrated from the study and grouped as per the 
lithology under the heading of Volcanite (T35), Sandstone 
(T35-1, T35-2, T35-3) or Carbonate (T35).

3.2  Data Integration

In this section, all the lithology grouped after data disinte-
gration has been analysed. The rock types shown in Fig. 3 
(Group I: sandstone, carbonate, volcanite and granite) 
include > 100 data points from the previous studies data-
base. These rocks have been well studied in the past and 
suggest a characteristic regression trend-line with excellent 
R2 values, while the rock types shown in Fig. 4 (Group II: 
shale, mica schist, ignimbrite and travertine) include < 100 

(1)UCS = 8.1469e0.4506VP .

Fig. 1  Previous studies regres-
sion equations between UCS 
and  VP
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data points from the previous studies databases. The previ-
ous studies databases integrated on the basis of lithology 
suggested characteristic regression trend lines with excellent 
R2 values. On the contrary, Group III rocks (conglomerate, 
slate/phyllite, chlorite schist and serpentinite) have not been 
well studied in the previous studies. These rocks belong to 
a grey area in the subject and are very difficult to prepare 
samples and test in the laboratory or field because of the 
presence of structural anisotropy. Hence, the rock types ana-
lysed and the regression proposed in Figs. 3 and 4 are more 
reliable and accurate than the group III rock types analysed 
in Fig. 5. Different lithology groups identified from data 
integration have been discussed below.  

3.2.1  Sandstone

A total of 14 previous studies database were used to obtain a 
characteristic regression equation for sandstone (Fig. 3a). An 
exponential curve has been proposed with a good  R2 value 
of 0.6627 (Eq. 2).

Many previous studies database regressions are paral-
lel or even overlapping with the proposed overall trend 
line. T11 and T21 have a similar regression line with a 
gradient much higher than the achieved overall trend line. 
T41, T35-3 and T13 are almost overlapping the overall 
trend-line. T39, T35-2 and T12 + T23 lie above the overall 
trend-line, which would predict a much higher value of 

(2)UCS = 5.3211e0.5745VP .

Fig. 2  Data disintegration of the databases proposed by various researchers in the previous studies based on lithology
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UCS for corresponding  VP values. T8 and T35-1 lie below 
the overall trend-line. T7 shows an extraordinary regres-
sion which suggests drastic changes in UCS prediction 
within a very small range of VP; hence the gradient of the 
regression is very steep.

3.2.2  Carbonate

The carbonates described in this section include limestone, 
marlstone, marble and dolomite rocks. The database used 
for carbonate rocks includes 15 previous studies (Fig. 3b). A 
power correlation equation (Eq. 2) has been suggested with a 
moderate  R2 value of 0.5613.

T24, T29 and T35 are similar but show a steeper gradient 
than the overall trend line. T2, T3, and T13 regressions agree 
with the proposed overall trend line with slight deviations. 
T16 shows a parallel regression to the overall trend line but 

(3)UCS = 12.027V1.1592

P
.

estimates much higher values of UCS for the corresponding 
VP values while T4 and T22 lie below the overall trend line, 
which predicts underestimated values of UCS with a gentle 
slope gradient. T12, T18and T39 have very steep regression 
trend line and does not agree with the overall trend line with 
steep gradient regression slopes.

3.2.3  Volcanite

Volcanites are rocks that have solidified on the surface of the 
Earth. Rocks included in this section for analysis are dacite, 
andesite, basalt, rhyolite etc. A total of 10 previous studies 
database were used to suggest a characteristic regression equa-
tion for volcanites (Fig. 3c). For volcanites, two overall regres-
sion trend-lines have been suggested based on the inclusion of 
the T6 database. As the database is very large (database extrac-
tion problems due to overlapping data points), it has a greater 
influence on the proposed trend-line. The regression trend line 
without the T6 database (trend-A) shows an excellent R2 value 

Fig. 3  Lithology based regression equations on predicting UCS from VP obtained by integration of data published in previous studies; a sand-
stone, b carbonate, c volcanite, d plutonic rocks
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of 0.7683 (Eq. 4), while the overall trend with the T6 database 
(trend-B) shows a very small R2 value of 0.4954 (Eq. 5).

T29, T34 and T39 regression trend-lines agree with the 
overall trend-line (trend-A and trend-B). The T17 trend-line 
do not agree with the overall trend but lies within the field 
of the overall database. T11 and T21 databases lie parallel 
to the proposed overall regressions but predict higher values 
of UCS for the corresponding VP values.

3.2.4  Plutonic Rocks

In Fig. 3d, all the previous studies database were observed 
to follow the proposed characteristic regression curve. The 
plutonic rock group mainly includes granites with other plu-
tonic rocks of the T39 database such as diorite, granodiorite, 
gabbro, syenite etc. A total of 6 previous studies database 
were used to propose a characteristic power regression equa-
tion (Eq. 6) with an excellent R2 value of 0.8103.

(4)UCS = 12.241e0.4611VP ,

(5)UCS = 11.536e0.4245VP .

T1, T9, T30 and T39 database agrees with overall regres-
sion trend-line. In contrast, the T25 database lies in the gen-
eral field of the overall trend-line. It depicts a steeper gradient 
regression slope that might underestimate or overestimate the 
UCS for granites with lower or higher VP, respectively. The T5 
database trend-line is parallel to the overall trend but predicts 
higher UCS values for the corresponding VP values.

3.2.5  Shale

A power regression equation (Eq. 7) was proposed with an 
impeccable R2 value of 0.8195. Out of 5 previous studies 
databases used for this rock group, 4 of the databases were 
observed to follow the general trend (Fig. 4a).

The regression proposed by the database of T11 and T21 
has a linear trend that predicts underestimated UCS values 
for higher VP values if used beyond the proposed range. T31 
and T40 have a polynomial and exponential regression trend, 
respectively, which agrees with the overall regression trend 

(6)UCS = 5.0952V1.8671

P
.

(7)UCS = 4.9977V2.1718

P
.

Fig. 4  Lithology based regression equations on predicting UCS from VP obtained by integration of data published in previous studies; a shale, b 
mica schist, c ignimbrite, d travertine
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for shale rocks. T37 does not agree with the overall trend-line 
and estimates lower values of UCS for the corresponding VP 
values with a gentler regression slope.

3.2.6  Mica Schist

Only 4 previous studies databases were used to propose the 
overall regression equation (Fig. 4b). An exponential curve 
has been suggested with an excellent R2 value of 0.7946 
(Eq. 8).

T11 and T16 databases extend for a very low range of 
VP and overlap each other. T32 database suggests a power 
regression trend-line that agrees with the overall regression, 
whereas T18 database regression predicts lower values of 
UCS for corresponding VP values.

3.2.7  Ignimbrite

A total of 4 previous studies database were used to propose 
a characteristic regression equation for ignimbrite and tuff 
rocks (Fig. 4c). A linear regression equation (Eq. 9) with a 
good R2 value of 0.5927 was suggested.

(8)UCS = 4.2616e0.6487VP .

T10, T23 and T39 databases lie parallel to the overall 
regression trend-line. T34 database suggested a trend-line 
with a gentler gradient than the overall trend-line. Therefore, 
predicting UCS using the T34 regression trend-line would 
give underestimated results for higher values of VP.

3.2.8  Travertine

A total of 5 previous studies databases have been included, 
in which the majority of the data was incorporated from T15 
and T33 databases. T15 database suggested a power regres-
sion that is parallel and close to the overall regression trend. 
T33 database suggested a linear regression that extends for 
the lower range of values and shows a slightly lower gradi-
ent, while the T18 database offers a linear regression with a 
higher slope than the overall trend of the proposed regres-
sion. Other studies (T10 and T39) have a very small data-
base but lie in the field of the suggested regression. A power 
regression equation (Eq. 10) with an excellent R2 value of 
0.7568 was obtained for the overall database (Fig. 4d).

(9)UCS = 17.073VP − 18.165.

Fig. 5  Lithology based regression equations on predicting UCS from VP obtained by integration of data published in previous studies; a con-
glomerate, b slate/phyllite, c chlorite schist, d serpentinite
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3.2.9  Conglomerate

Only T19 previous study database could be found to obtain 
the characteristic regression equation. A linear correlation 
equation (Eq. 11) was obtained with an excellent R2 value 
of 0.9027 (Fig. 5a).

3.2.10  Slate and Phyllite

A linear regression equation (Eq. 12) with an impeccable 
R2 value of 0.9949 was obtained (Fig. 5b). Only 2 previous 
studies databases (T11 and T16) were incorporated to pro-
pose the characteristic regression equation.

3.2.11  Chlorite Schist

Only the T26 database could be found to propose an expo-
nential regression equation (Eq. 13) with a below-average 
R2 value of 0.5184 (Fig. 5c).

3.2.12  Serpentinite

T14 and T20 database proposed linear regression equations 
with excellent R2 values of 0.81 and 0.92 for serpentinite 

(10)UCS = 0.402V3.25

P
.

(11)UCS = 4.6139VP + 1.0563.

(12)UCS = 18.866VP − 32.023.

(13)UCS = 0.3583e0.8211VP .

rocks of Greece and Turkey, respectively. T38 database sug-
gested a linear regression with a poor R2 value of 0.29 to 
predict UCS from VP for serpentinite rocks of Spain. The 
database from previous studies does not agree with each 
other. Hence, an unreliable exponential regression equa-
tion (Eq. 14) was obtained with a poor R2 value of 0.1583 
(Fig. 5d).

4  Results and Discussion

4.1  Simple Regression Analysis and Validation

In this paper, a simple bivariate regression analysis has been 
performed, and the best fit curve was evaluated to be lin-
ear (y = mx + c ), power (y = mxc ) or exponential (y = mex ). 
Where x is the independent variable, y is the dependent 
variable, and c is constant. The best-fit regression equation 
and R2 values of the obtained 12 rock types under analysis 
have been shown in Table 2. The statistical credibility of the 
obtained regression equations was also analysed using the 
Student’s t test (Eq. 15).

The t test is a statistical tool to differentiate between the 
means of two populations. The test was conducted for each 
regression equation with a confidence interval (CI) of 0.95, 
significance level (�) of 0.05 (CI + � = 1.0), degree of free-
dom (n−2), where n is the number of samples and  R2 is 

(14)UCS = 10.914e0.3378VP .

(15)
������
R
√
n − 2√

1 − R2

������
≥ t�

∕2
.

Table 2  Statistical parameters 
and regression equations to 
predict UCS from VP obtained 
for 12 rock types under study

Sl No. Rock type No. of data 
points

Regression equation R2 value t
T

t
C

1 Sandstone 225 UCS = 5.3211e0.5745VP 0.6627 1.9707 20.9316
2 Carbonate 234 UCS = 12.027V1.1592

P
0.5613 1.9702 17.2289

3 Volcanite
 Trend-A 121 UCS = 12.241e0.4611VP 0.7683 1.9801 19.8644
 Trend-B 253 UCS = 11.536e0.4245VP 0.4954 1.9695 15.6979

4 Plutonic rocks 161 UCS = 5.0952V1.8671

P
0.8103 1.9750 26.0608

5 Shale 86 UCS = 4.9977V2.1718

P
0.8195 1.9886 19.5288

6 Mica schist 46 UCS = 4.2616 e0.6487VP 0.7946 2.0154 13.0467
7 Ignimbrite 25 UCS = 17.073V

P
 − 18.165 0.5927 2.0687 5.7853

8 Travertine 70 UCS = 0.402V3.25

P
0.7568 1.9955 14.5467

9 Conglomerate 70 UCS = 4.6139V
P
 + 1.0562 0.9027 1.9955 25.1171

10 Slate and phyllite 18 UCS = 18.866V
P
 − 32.023 0.9949 2.1199 55.8682

11 Chlorite schist 20 UCS = 0.3583e0.8211VP 0.5184 2.1009 4.4018
12 Serpentinite 71 UCS = 10.914e0.3378VP 0.1583 1.9949 3.6024
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the coefficient of determination. The regression is accepted 
when the alternate hypothesis 

(
H1

)
 is accepted, and the null 

hypothesis 
(
H0

)
 is rejected. The H1 is accepted and H0 is 

rejected when the calculated t value 
(
tC
)
 is greater than the 

tabulated t value 
(
tT
)
.

In Fig. 6, all the regression equations obtained from the 
database-disintegration and -integration methodology of 
the previous studies have been compared and analysed. It 
was surprising that shale rocks show the steepest trend-line 
gradient while conglomerate has the lowest trend-line slope 
as compared to other rock types. The sandstone regression 
has an intermediate slope between shale and conglomerate. 
Among these rocks, it was striking to see that the shale rocks 
which are composed of clay-sized particles, have the highest 
gradient, sandstone which is constituted of sand-sized par-
ticles, have intermediate gradient and conglomerate, which 
are composed of gravel-sized particles, shows the lowest 
gradient of the regression slope. Similarly, in igneous rocks, 
the volcanite rocks composed of fine-grained crystals have a 
higher regression gradient than the regression of the coarse-
grained plutonic rocks.

Carbonate rocks show an intermediate gradient of the 
regression slope. Travertine rocks regression have a very 
steep gradient comparable to that of volcanite rock regres-
sion, but travertine rocks are confined to the high VP region 
and estimated lower values of UCS than volcanite rock 
regression for corresponding VP values. Ignimbrites, mica 
schist and sandstone have a similar regression gradient, 
but the ignimbrites extend for very small VP values while 

mica-schist extends to very high VP values. The slate/phyllite 
regression line extends for intermediate values of VP with a 
slope gradient similar to that of sandstone and serpentinite. 
The chlorite schist and serpentinite rocks regressions have 
a similar gradient, but serpentinite regression yields higher 
UCS values at lower VP values.

4.2  Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is the most commonly 
used unsupervised learning algorithm in machine learning. It is 
a linear transformation method that transforms n-dimensional 
space to another space with a reduced number of dimensions 
with minimal loss of information. This technique processes 
high-dimensional data and uses the dependencies between the 
variables to represent it in a more amenable and low-dimen-
sional form. In this paper, a classification approach has been 
used to identify the regressions to predict the UCS from the 
VP on the basis of lithology (Fig. 7). Here, PCA has been par-
ticularly used as a classification tool and not as a predictive 
tool. In a similar manner, Mahmoudi et al. (2020) used PCA 
to study the spread rate of COVID-19 in different countries 
and compared them.

The PCA projects the multi-dimensional data onto an 
orthogonal coordinate system so that the variability is maxi-
mum along with the first component (PC1) axis. A data matrix 
is first defined as follows (Eq. 16).

Fig. 6  Lithology-based regres-
sions for different rock types
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where ��⃗di is the row vector which consists of m values from 
the ith observation. To generate a modified data matrix X 
with data vectors ��⃗dl′ , where l = 1, 2,… , n and column-wise 
zero mean, we first subtract the 1 × m vector �⃗𝜇 containing the 
mean of each column of XD from each of the rows of XD for 
transformation to the principal components. The PCA builds 
an orthogonal set of vectors ���⃗wk with k = 1, 2,… ,m in such a 
way that ���⃗w1 maximises the variance of the data vector pro-
jections t(1)

l
= ��⃗dl

� ⋅ ���⃗w1 . The obtained data vector projection 
is called the first principal component scores. Similarly, the 
second principal component (PC2) is projected orthogonally 
to the ���⃗w1 in the m − 1 dimensional subspace and so on. This 
operation is equivalent to maximising

Subject to ��⃗wT ��⃗w = 1. Introducing Lagrange multipliers and 
varying with respect to ��⃗w yields

where �i is the eigenvalue that quantify the variance of the 
corresponding scores. For the present study,  VP has been 

(16)XD =

⎛
⎜⎜⎜⎜⎝

���⃗d1
���⃗d2
⋮

���⃗dn

⎞
⎟⎟⎟⎟⎠
,

(17)
n∑
l=1

(
��⃗dl

�
⋅ ��⃗w

)2

= ��⃗wTXTX��⃗w

(18)XTX���⃗wi = 𝜆i���⃗wi,

considered as the PC1 and UCS as the PC2. The two-dimen-
sional (m) scatter plot has been reduced or transformed into 
an m − 1 dimension plot. Hence, the dimensionality of the 
dataset has been reduced while the variance was maximised, 
as shown in Fig. 7.

4.3  Artificial Neural Network (ANN)

ANN is an artificial soft computing technology that has been 
extensively used in recent years. It offers a highly accurate 
predictive or modelling tool that mimics the function of a 
biological brain. It has information processing features such 
as non-linearity, noise tolerance, parallelism and learning-
generalisation, which makes it better than other predictive 
methods. For the present study, the Neural Fitting App of 
 MATLAB© was used. The structure of an ANN consists of 
a three-layer system (input-hidden-output) called the multi-
layer perceptron model (Fig. 8). All three in-built training 
functions were used and compared with each other. Lev-
enberg–Marquardt (LM) algorithm (trainlm) is a typically 
fast algorithm that requires more memory and less time to 
compute; Bayesian regularization (BR) algorithm (trainbr) 
generally is a slow processing algorithm that requires less 
memory but more time but can result in a good generali-
sation of some noisy and challenging dataset. In compari-
son, the scaled conjugate gradient (SCG) algorithm (train-
scg) requires less memory, and the training automatically 
stops when the generalisation stops improving. These three 

Fig. 7  PCA analysis to classify 
the rocks based on lithology
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training functions were used to train the ANN model with 
three hidden layers (logarithmic sigmoid transfer function), 
 VP and rock-type as input layers and UCS as a target/output 
layer (tangent sigmoid transfer function). The network was 
trained for each rock type with its corresponding database. 
The best validation performance and regressions for differ-
ent training functions of ANN have been shown in Fig. 9.

4.4  Comparative Analysis

The results obtained from the regression and ANN model 
assessed on the basis of lithology were compared in the 
scatter plot for the measured and estimated UCS shown in 
Fig. 10. To analyse the predictive capacity of the model, the 
measured and estimated UCS values were drawn according 
to the x:y line (1:1). All the plots for different rock types 
were observed to show data points close to the x:y line 
(except for schist and serpentinite rocks), indicating that the 
proposed regression and ANN models on the basis of lithol-
ogy are statistically acceptable.

The developed ANN models from different training func-
tions were able to predict the UCS for different rock types 
very efficiently. The efficiency of the predictive ANN mod-
els was assessed by comparing the calculated Chi-squared 
( �2 ) values for the SR and the ANN models (Table 3). The 
Chi-squared values have been calculated using Eq. 19 as 
follows.

where O is the observed value, and E is the estimated value 
for the ith sample, and k is the total number of samples. The 
above equation was used to quantify the difference between 
the observed and estimated values using simple regression 
(O-SR) and different ANN models (O-BR, O-LM, and 
O-SCG). Note that the equation was not used for hypothesis 
testing. Depending on the lowest �2 value, the ANN model 
was chosen to be plotted in the 1:1 plot for that particu-
lar rock. The BR-ANN model was selected for carbonate, 

(19)�2
=

∑k

i=1

(
Oi − Ei

)2
Ei

,

Fig. 8  A general ANN structure 
for the present study
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Fig. 9  Showing the best validation performance and regression plot for different ANN models
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volcanite, plutonic rocks, shale, mica schist and chlorite 
schist. Similarly, LM-ANN model was selected for sand-
stone, ignimbrite, travertine and slate/phyllite rocks, while 
the SCG-ANN model was selected for conglomerate and 
serpentinite rocks.

5  Conclusion

This study was aimed to establish a characteristic regression 
equation between UCS and VP for 12 rock types identified 
from the previous studies. It was observed that there was no 
general regression equation that could be used to predict the 
UCS from VP with high precision for multiple rock types. 
Hence, a separate characteristic regression equation was pro-
posed for each rock type under study. It was observed that 
each rock type has its own characteristic regression curve, 
which could be used to predict the UCS from VP easily and 
precisely. Shale, sandstone and conglomerate exhibit char-
acteristic regression curves, which could be attributed to 

the constituent grain-size particles. Similarly, the regression 
curve of plutonic rocks, which are coarse-grained rocks, pre-
dict lower values of UCS than volcanite, which are fine-
grained rocks for corresponding values of VP. Therefore, it 
must be concluded that a common regression equation can-
not be used to predict the UCS from VP for multiple rock 
types.

The regression equations for four rock types in group I, 
namely, sandstone, carbonate. volcanite, and plutonic rocks 
have been rigorously studied, while rocks of group II such 
as shale, mica schist ignimbrite and travertine exhibit char-
acteristic regressions but require more study. The group III 
rocks (conglomerate, slate/phyllite, chlorite schist and ser-
pentinite) have not been studied well in the past because of 
sample preparation and testing constraints due to structural 
anisotropy.

The lithological control for the studied relationship in this 
paper has also been validated using PCA, which validated 
the relationship based on the rock type. The proposed regres-
sion equations for 12 rock types have been statistically tested 
using the x:y (1:1) scatter plots and Student’s t test, where 
the H0 was rejected and H1 was accepted in all the cases. 
The ANN models generated using three different training 
function algorithms (BR, LM and SCG) have been compared 
with each other and the simple regression curves using the 
�2 method. The BR algorithm was able to generalise the 
dataset better than LM and SCG algorithms.

Fig. 10  Plots of estimated versus measured values for different rock 
types including simple regression and best ANN model; a sandstone, 
b carbonate, c volcanite, d plutonic rocks, e shale, f mica schist, g 
ignimbrite, h travertine, i conglomerate, j slate and phyllite, k chlorite 
schist and l serpentinite

◂

Table 3  Chi-squared values for 
different predictive models

Sl No. Rock type No. of data 
points

χ2 values

O-SR O-LM O-BR O-SCG

1 Sandstone 225 1719.50 1839.60 2120.35 1950.62
2 Carbonate 234 2469.97 2740.06 2274.36 3086.14
3 Volcanite 121 677.55 2305.80 1450.48 1983.17
4 Plutonic rocks 161 1468.22 2164.87 1332.44 1686.13
5 Shale 86 132.11 517.97 178.82 440.57
6 Mica schist 46 371.87 887.93 304.81 522.49
7 Ignimbrite 25 77.97 72.19 509.43 83.14
8 Travertine 70 155.45 290.80 492.28 389.92
9 Conglomerate 70 18.72 1580.22 888.68 790.74
10 Slate and phyllite 18 2.71 41.71 301.44 129.76
11 Chlorite schist 20 74.27 342.17 132.68 137.91
12 Serpentinite 71 744.22 763.36 757.72 752.09
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