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Abstract
There is intrinsic difficulty in the investigation of the largest volume of rockfalls that is expected in an area, which lies in 
the small number of large events, in registrable times. The maximum credible rockfall size has been associated with the 
properties of the rock mass discontinuities, as they delimit detachable rock blocks, and in particular with the penetration of 
those discontinuities that comprise rockfall sliding planes. In highly fractured rock masses, the evaluation of the penetration 
remains an issue. A probabilistic methodology is proposed, to measure the penetration of potential sliding planes into the 
interior of a rocky slope. The main hypothesis of the method is that the sliding plane persistence is interrupted along its two 
directions, at the intersection with two lateral discontinuity sets, as the latter displaces the former. Due to the displacement, 
the sliding planes are formed by quasi-planes that contain a maximum number of spacings of the intersecting joints, hence 
their size is restricted. The methodology requires as an input the spacing of the intersecting joint sets. Its application to a 
granodiorite slope confirms that for the study site, there is a maximum volume of rockfalls, excluding the possibility of large 
stepped failures and rupture of rock bridges. The maximum calculated persistence for the two existing sliding planes in the 
study site is, respectively, 28.0 m and 48.5 m. The maximum calculated sliding plane surfaces are, accordingly, 282.5  m2 
and 289.3  m2. These results are compared against the observed scar dimensions at the study site, which have been retrieved 
alternatively, by processing a LiDAR point cloud. The results from the two alternative sources are similar, indicating that the 
methodology can be efficiently used to assess the sliding plane persistence and the expected maximum rockfall magnitude 
at the study site.
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1 Introduction

Rockfall risk assessment and mitigation require data for 
the magnitude of previously or potentially mobilized rock 
masses from a slope. The rockfall magnitude, expressing the 
total volume of the released mass or the area of the source, is 
necessary to estimate the destructive energy of an event. For 

fragmental rockfalls, the number and size of blocks depend 
on the initial rockfall volume with a subsequent effect on 
their intensity and run out (Corominas et al. 2017). The 
design of protection measures is usually implemented for 
the most likely expected scenarios and it entails a residual 
risk associated with big but rare rockfall events, for which 
full mitigation is not feasible (Corominas et al. 2005; Nicot 
et al. 2001). The rockfall size has additionally been used 
as a discriminating value to mark the transition from solid 
particle type downslope movement, for fragmental rock-
falls, to flow type propagation for rockfall avalanches, with 
a subsequent effect on the motion properties and propagation 
distance (Evans and Hungr 1993; Hungr 2001; Corominas 
et al. 2018). The evaluation of the expected rockfall magni-
tude with a focus on the biggest expected sizes is of major 
importance in the rockfall analysis.

De facto methods for assessing quantitatively the rock-
fall hazard using frequency–magnitude relation are based on 
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techniques that find application from statistical physics and 
complexity theory to natural hazards, with the prevalence 
of the Gutenberg–Richter power law. In the latter, the prob-
ability p(x) of an event of magnitude x or greater occurring is 
given by the equation p(x) ~ x–b, where b is a constant (Mala-
mud and Turcotte 2006; Malamud et al. 2006). The use of 
the Gutenberg–Richter power law for the expression of the 
rockfall magnitude–frequency relation has been applied to 
a variety of rocky slopes and geological settings, in numer-
ous and well-documented studies of natural slopes and rock 
cuts (Dussauge et al. 2003; Guzzetti et al. 2003). Power law 
relations have been indicated to fit well medium and large 
size landslides (Hungr et al. 1999).

For the occurrence of earthquakes, it is well-known that 
for large seismic moments the Gutenberg–Richter power law 
distribution has to be modified due to energy conservation 
and geometrical reasons (Sornette and Sornette 1999). This 
might take place in terms of a second power law for which a 
larger b value is applied beyond a cross-over magnitude, or 
based on either a “hard” or a “soft” magnitude cutoff using 
an exponential taper. Similarly, for rockfalls, the extrapo-
lation of the same power law as for smaller rockfall sizes 
has been questioned (Corominas and Moya 2008). For large 
magnitudes, deviations from the power law line have been 
registered, demonstrating a heavy tailed, exponential behav-
iour, calling into question the scale invariant character of the 
rockfall magnitude–frequency relation (Guthrie and Evans 
2004; Pelletier 1997). The characteristics of this heavy tailed 
behaviour have received minor attention for landslides and 
rockfalls compared to earthquakes (Tanyaş et al. 2019).

There is intrinsic difficulty in the investigation of the larg-
est volume of rockfalls that is expected in an area, which lies 
in the small number of large events, in registrable times. 
Besides the large statistical uncertainties from which large 
events suffer, the problem of defining the tail of the rockfall 
frequency–magnitude distribution and of assessing potential 
outlier events remains an issue that few researchers have 
tackled so far (Brideau et al. 2009; Corominas et al. 2018).

The rockfall size has been associated with the properties 
of the rock mass discontinuities that bound blocks of intact 
rock mass, and define detachable rock masses, and in par-
ticular with their spacing (Palmstrom 2005; Lambert et al. 
2012; Ferrero et al. 2011). Elmouttie and Poropat (2012) 
used discontinuity fracture networks to study how variations 
of discontinuity spacing and orientation affect the block 
size. Kim et al. (2007) introduced the effect of disrupted 
discontinuities. Rosser et al. (2013), Royán et al. (2015), 
and Stock et al. (2012) argued that big rockfall events take 
place through progressive failure of the intact rock bridges 
in the rock mass. Therefore, instabilities are controlled by 
the length of alternative paths for joint propagation, through 
the intact rock, and the strength of the rock material (Ein-
stein et al. 1983). Intensively fractured rock masses, with 

small length rock bridges, are prone to produce numerous 
small size failures, leaving scars that might eventually lead 
to large continuous surfaces. Continuous surfaces are formed 
either as a result of isolated events, by coalescence, or in a 
single event (Mavrouli et al. 2015). On the opposite, when 
extended rock bridges are present, they increase the overall 
rock mass resistance and rockfall events are less frequent. 
However if the rock mass resistance is exceeded, large fail-
ures can be expected. Rock mass classifications like the Geo-
logical Strength Index (GSI) are based on the rock mass 
fracture degree (Palmström 2009). These studies provide a 
valuable input for the analysis of the rock block size, when 
the penetration of discontinuities in the rock mass is known. 
However, although the penetrability of discontinuities into 
the slope has been identified in several works as a key fac-
tor for the rockfall size (Corominas et al. 2017), there is a 
certain difficulty for its direct assessment. In selected cases, 
ground-penetrating radar or drilling methods have been used 
for this purpose (Deparis et al. 2011). Still, these methods 
are not applicable for extensive and highly fractured rock 
masses.

Slope topography as intersected by the main discontinuity 
sets, with given properties (dip, dip direction and spacing) is 
the primary geometrical constraint that marks an upper limit 
for the credible rockfall volume. Brideau et al. (2009) after 
field work and numerical analysis of four sites suggested that 
the geometry of the rock slope failures is strongly influenced 
by the presence and location of tectonic structures and they 
discussed the role of tectonic damage and brittle rock frac-
ture in the development of large slope failures. Corominas 
et al. (2018) argued that there exist geological constraints on 
the maximum size of failure, which is controlled by the frac-
ture pattern, for a slope in Andorra. In that study, mutually 
interrupting highly persistent joint sets prevent the forma-
tion of continuous sliding surfaces and large slope failures. 
As therein mentioned, the volume restriction can be over-
come, to some extent, either by coalescence of basal planes 
or through step-path failures involving the breakage of rock 
bridges, which in any case involve smaller volumes than in 
the case of fully persistent basal joints. While there is no evi-
dence of large broken rock bridges in that study area, small 
stepped path failures and breakage of short rock bridges of 
up to 20 cm have been observed on images obtained by heli-
copter flights and UAV-based close-range digital photogram-
metry. Corominas et al. (2018) argued that the observed step 
corresponds to the systematic displacement of a discontinu-
ity set by an intersecting posterior joint set, which moved 
across the former. Such displacements represent common 
tectonic effects leading to the genesis and evolution of cur-
rent fracture patterns.

The present work focuses on the same study site and 
builds upon the work of Corominas et al. (2018) and Mav-
rouli and Corominas (2017). It uses as a starting point the 
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afore-mentioned systematic tectonic displacement of the 
discontinuity sets to investigate the frequency and extent of 
their coalescence. The discontinuity sets correspond to the 
predominant rock sliding planes during the rockfall release. 
The aim of this study is to assess probabilistically the for-
mation of continuous and large sliding surfaces, and conse-
quently the potential for large volume failures, or the exist-
ing constraints. Given that the systematic assessment of the 
discontinuity penetration into the rocky slope is practically 
unfeasible, we alternatively propose a statistical method for 
evaluating the length and width of (un)interrupted sequences 
of discontinuity planes. The method uses data for the dis-
continuity properties that have been previously acquired by 
measurements on a LIDAR point cloud of the area (Santana 
et al. 2012).

2  The Solà d´Andorra Study Site: 
Background and Data Collection

The study site is the slope above the urban area of Andorra 
la Vella and Santa Coloma (Fig. 1). It is a slope very active 
in rockfalls with an average frequency of events once every 2 
years (Corominas and Moya 2010). The predominant mate-
rial is highly fractured granite gneiss. Demographic pres-
sures and low availability of space for urban expansion have 
led to the extension of built areas to the lowest part of the 
slope, with a substantial risk for properties and people. High 
dissipative steel fences, with a capacity exceeding 5000 kJ, 
have been installed. After the installation of the protection 
barriers, Corominas et al. (2005) calculated the residual risk 
for blocks with a size larger than 10  m3. In 2008, a block of 
30  m3 overtopped the barrier and damaged a workshop. In 
2013, further blocks reached the nearby buildings (Mavrouli 
et al. 2017). Known rockfall volumes in the area reach up to 
300  m3 (Pica talus slope, 2003).

Santana et al. (2012) estimated the statistical frequency 
of historical rockfall volumes, assuming that the actual relief 

Fig. 1  (Left) the couloir of the Santa Coloma on the Solà d´Andorra; (right) four principal discontinuity sets that form the detachable blocks 
from the slope
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of the slope face has been shaped as a consequence of the 
release of rock masses. The main hypothesis of their work 
has been that the rockfall volume distribution corresponds to 
the missing mass from the existing scars. Through a stochas-
tic procedure, maximum rock blocks missing from the scars 
were indicated to be of a few thousands of cubic metres, 
with the maximum surface measured for a basal plane of 
rupture equal to 213  m2. In that work, the possibility of large 
step-path failures was not taken into consideration. No large 
rupture niches have been identified on the slope by the analy-
sis of high-resolution 3D topographic profiles (Corominas 
et al. 2018).

Mavrouli et al. (2015) assessed the volume of large poten-
tial instabilities through an approximate GIS-based meth-
odology, considering the interaction of the topographical 
surface with the discontinuity patterns serving as potential 
basal planes. They assumed cubic or parallelepiped rockfall 
shapes. Maximum volumes were indicated to be 50,000  m3 
and 25,000  m3, respectively. Corominas et al. (2018) used 
a high-resolution 3D model of the slope, acquired by UAV-
based images and close-range digital photogrammetry, and 
they delimited on the slope face big rock spurs up to 20,200 
 m3, with a sliding surface area of 3268  m2. They argued 
that, for that slope, there exist geological constraints to the 
maximum credible rockfall volume. They suggested that a 
random distribution of large rockslides and rock avalanches 
is not to be expected, as the disruption of the basal planes 
restricts the formation of very large detachable rock masses. 
Given the ample background of studies in the area, and the 
extensive field data collection along decades, this slope was 
selected to explore the effect of joint disruption on the for-
mation of large rockfalls, in quantitative terms.

Eight discontinuity sets have been identified via field 
data collection and scanlines, as well as by the process-
ing of a LiDAR obtained point cloud (Santana et al. 2012). 
Amongst them, the joint sets F3 (dip dir/dip: 157°/56°) and 
F5 (182°/47°) are basal sliding planes, which intersect with 
the two lateral cracks F1 (54°/59°) and F7 (141°/89°), as 
seen in Fig. 1. The lateral cracks are almost perpendicular 
to the former. Along their height, they include various spac-
ings of the basal planes. The predominant type of failure is 
plane failure along the basal planes F3 and F5. Lateral scar 
surfaces are mostly plane.

The present relief does not provide evidence of large step-
path failures, as remaining extended continuous surfaces 
cannot be observed. Only short steps corresponding to the 
breakage of intact rock bridges, smaller than 20 cm have 
been observed (Fig. 2), where the largest rockfall scars are. 
The formation of the V-shaped channel of Santa Coloma has 
been interpreted as the consequence of gradual and inde-
pendent rockfalls instead of a large event. This is supported 
by the fact that no evidence of historical large failure has 
been recorded or found by deposits in the narrow valley at 

the toe of the slope or in the Valira River, which crosses the 
valley (Corominas et al. 2018). A closer look of the discon-
tinuities and movement indices indicates that the joint sets 
F3 and F5 have been displaced by the joint sets F1 and F7. 
An example of joint displacement is shown in Fig. 3.

3  Probabilistic Assessment of Penetration 
of Basal Planes into the Slope

The methodology presented in this section aims at investi-
gating the persistence and penetration of basal sliding sur-
faces into the slope and consequently, the rockfall size con-
straints, in the study site. To evaluate how the displacement 
of the basal surfaces by the lateral joint sets affects their size 
in the two directions of length and width, the probability of 
the basal quasi-planes preserving or losing their continuity 
at each intersection with the lateral joints was calculated. 
From now on, with the term basal quasi-planes or quasi-
plane surfaces we refer to the coalesced surfaces, which can 
be, in principle, separated by small steps up to 20 cm as a 
result of displacement.

Figure 4 shows a general representation of a simplified 
rock mass fracture pattern with three discontinuity sets, the 
basal joint set A and the lateral joint sets B and C. The three-
dimensional rock mass is composed by columns i = {1…n}, 
in two directions, and bounded by the two vertical joint sets 
B and C. The columns contain k = {1…m} series of planes 

Fig. 2  Small rock bridge breakage (arrow) on the sliding plane
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Fig. 3  (Left) Quasi-plane scar surfaces formed by various spacings; (right) systematic displacement of the joints F3 (the latter marked in red) by 
the discontinuity set F7

Fig. 4  Rock mass profile with 
three discontinuity sets for 
the calculation of the prob-
ability mass function (PMF) of 
generating a continuous plane A 
containing i = 1…n spacings, in 
the direction of length or width. 
At their intersection with either 
B or C faults, the planes of set 
A are displaced at a distance dik. 
If dik < 20 cm. The successive 
sections of plane A form a sin-
gle continuous basal quasi-plane
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of the joint set A. The continuity of the sections of plane A 
is controlled at each intersection with the planes B or C. The 
spatial extension of the basal quasi-planes depends on the 
amount, as well as the length or width of the individual sec-
tions, between consecutive spacings of the joint sets B and 
C. By definition, the length is assumed to be along the slid-
ing direction and the width along the transversal. Through 
this process, the size of the surfaces of the set A can grow 
by merging i = {1…n} sections, if two criteria are fulfilled: 
(a) the surfaces are continuous and (b) the surfaces’ relative 
height permits sliding. Two consecutive sections are consid-
ered to be continuous in length or width, if the perpendicular 
distance between the two is lower than a given threshold. 
The establishment of this threshold can be made upon field 
observations as more extensively discussed in Sect. 4. To 
guarantee the role of the surfaces of set A as possible sliding 
surfaces, the second condition is translated into this: start-
ing from the exterior and moving towards the interior of the 
rock mass, the surfaces of set A grow only if the successive 
sections are progressively on a higher level than the former 
(Fig. 5). This constraint is applied only along the sliding 
direction, to eliminate quasi-planes with rock recesses that 
obstruct sliding.

The proposed procedure requires as an input a range of 
discrete spacing values for the joint sets A, B and C. It con-
sists of the three steps described in Sects. 3.1, 3.2 and 3.3.

3.1  Generation of the Rock Mass Sample

For a given slope, the generation of the rock mass according 
to Fig. 4, considering the intersection of the three discon-
tinuity sets A, B, and C takes place as following. Sample 

columns (sections corresponding to spacings of the inter-
secting joints) numbered i = {1…n}, of k = {1…m} joint 
series within each column are generated. Between the planes 
k = m-1 and k = m, there is random spacing of distance s, that 
takes values from the discrete spacing set S (s ϵ S) of A. The 
length of each section is random and takes values from the 
discrete spacing set C. Accordingly, the width takes val-
ues from the discrete spacing set B. The length or width of 
each column is independent from its neighbouring ones. The 
number of joint columns and series in the generated sample 
representing the rock mass should be sufficiently large to 
achieve convergence of the sample mean to the true values 
of the probabilities calculated according to Sect. 3.2, and 
thus stability of the results. Frey 2010 estimated the required 
sample size of Monte Carlo simulations using confidence 
intervals. Hahn 1972 and Oberle 2015 analysed the effect 
of Monte Carlo iterations and the accuracy or error in the 
estimation of the mean of the probability distribution for the 
quantity of interest, using the central limit theorem and the 
Wald confidence interval. They proposed the calculation of 
the sample size in function of the maximum percentage error 
of the mean, when the standard deviation of the probability 
distribution for the quantity of interest is known. As in the 
literature, as far as the authors know, there are no clear rec-
ommendations for the a priori calculation of the sample size 
when the probability distribution is not known; an empirical 
approach is followed for the selection of the sample size, 
with the objective to capture maximum joint set persistence, 
under the computing capacity limitations of Excel.

3.2  Calculation of the Probability Mass Function 
(PMF) of a Continuous Quasi‑Plane Surface 
Being Composed by i = {1…n} Sections Along 
a Direction

First, the vertical distances yik of all the generated planes 
with i = {1…n} and k = {1…m} from a common reference 
plane are calculated. The reference plane intersects the joint 
set A at the point O (0, 0). This permits the identification of 
the minimum distance dik between each joint of the column 
i and the joints of the column i + 1. The afore-mentioned 
criteria, (a) guarantying continuity and (b) permitting slid-
ing, are then applied to assess the amount of spacings in the 
sampled rock mass, which form basal quasi-plane surfaces, 
along each direction. The criterion (b) is applied only for 
the sliding direction.

The probability mass function (PMF) of a plane being 
constituted by i = {1…n} consecutive spacings along the 
sliding direction is calculated using Eq. (1):

(1)Ps(i) = NAs(i)∕m, for i = {1, 2… n}
Fig. 5  Example of compliance and non-compliance of consecutive 
spacings with criterion (b) for the formation of basal quasi-planes 
on height increase of successive spacings towards the interior of the 
slope. Height increase complies with the criterion (b), while height 
decrease does not
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where NAs(i) is the number of series (spacings) of the rock 
mass fulfilling the criteria (a) and (b) for i successive spac-
ings, m is the total number of series k in the first column, 
along length.

Along the transversal direction, the respective probability 
is calculated using Eq. (2):

where NAt(i) is the number of series (spacings) of the rock 
mass fulfilling criterion (a) for i successive spacings, m is 
the total number of series k in the first column, along width.

The PMF is highly dependent on the spacing of the joint 
set A. When this is smaller (denser), then the probability of 
having more extensive A surfaces increases.

3.3  Calculation of the Total Length, Width, and Area 
of the Basal Quasi‑Plane Surfaces

The length and width of each section are determined by the 
spacing of the intersecting and displacing joints B and C. 
The total length LA and width  WA of a continuous quasi-
plane surface are given by Eqs. (3) and (4):

where LA is the total length of quasi-plane, along the slid-
ing direction, WA is the total width of quasi-plane, along the 
transversal direction, sB and sC are the spacing s ϵ S of the 
intersecting set B or C, respectively.

Random samples of LA and WA are generated through 
a Monte Carlo simulation, applying Eqs. (3) and (4), for i 
being a variable following the PMF calculated in Sect. 3.2. 
The sB and  sC take random values from the spacing sets B 
and C.

Last, random samples of the area of the quasi-plane sur-
faces AA are generated through a Monte Carlo simulation, 
using Eq. (5). For the sake of simplicity, rectangular basal 
areas are assumed.

where AA is the total area of basal quasi-plane for the set A.

4  Dimensions of Quasi‑Plane Basal Surfaces 
in the Study Site

The procedure of Sect. 3 was applied to the study site, to 
assess the continuity of the basal planes that belong to the 
joint sets F3 and F5, and are intersected and displaced by 

(2)Pt(i) = NAt(i)∕m, for i = {1, 2… n}

(3)LA =
∑

i

sC

(4)WA =
∑

i

sB

(5)AA = LA × WA

the joint sets F1 and F7. For the planes F3, the sliding direc-
tion and length are parallel to the direction of F1. Its width 
is parallel to F7. Vice versa, for the plane F5, the sliding 
direction and length are parallel to the F7 and its width is 
parallel to the F1 (Fig. 4). In the study area, the intersecting 
joints are almost perpendicular to the basal planes, forming 
parallelepipeds.

The sliding surfaces present certain undulation and 
roughness (Santana et al. 2012). As a result, neighbouring 
sections may lay at a different height either because the dis-
continuity surface is undulated or because they belong to 
different parallel planes of the same discontinuity set. The 
undulation of the discontinuity surfaces at the study site has 
usually amplitudes less than 10 cm and exceptionally up to 
few decimetres. On the other hand, the minimum observed 
spacing in the field and with TLS images is 10 cm. For val-
ues between 10 and 25 cm, there exists some overlapping 
between undulation and spacing, thus we selected a thresh-
old of 20 cm, to distinguish between spacing and undulation. 
This means that two contiguous parallel surfaces of the same 
discontinuity set, which are separated less than 20 cm will 
be considered to be in the same quasi-plane. Therefore, the 
value of 20 cm was selected as the threshold for the applica-
tion of the criterion (a), on the continuity between succes-
sive sections. The criterion (b) was checked just along the 
sliding direction for F3 and F5. Spacing data were extracted 
from the LiDAR point cloud. For this, a representative sam-
ple of planes was identified for each joint set and the per-
pendicular distance between adjacent planes was measured 
using the software  Rhinoceros®. The spacing distributions 
for each joint set are shown in Fig. 6.

Following the steps of Sects. 3.1, 3.2, and 3.3, ten sample 
columns (sections) with 50,000 series each were generated, 
in an excel environment. The high number of 50,000 simu-
lations was chosen after trials, to guarantee the stability of 
the calculations.

Median and standard deviation values of the randomly 
sampled spacings were compared with measured spacings 
to test their representativeness. The median value error was 
0 and the maximum standard deviation error was 4%.

The vertical distance (height) of each respective joint 
from the reference point O (0,0) was then extracted. The 
height variation within a joint was not considered, hence 
equal height for both joint ends was assumed. Eventually, the 
minimum vertical distance between the closest joint ends of 
successive columns was calculated.

For both joint sets F3 and F5, following the steps of 
Sect. 3.2, the probabilities Ps(i) and Pt(i) of a given num-
ber of spacings i along the sliding and the transversal 
direction were obtained from Eqs. (1) and (2). The cal-
culated probabilities for the 50,000 random samples were 
afterwards proportionally downscaled to the number of the 
observed F3 and F5 surfaces that were identified on the 
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LiDAR point cloud. These are 4760 for F3 and 3920 for 
F5. The results are shown in Table 1. Table 1 also sum-
marizes the proportional to the observed scars number of 
planes, N, that are expected to contain i spacings along 
the sliding and transversal direction. N3s(i) and N5s(i) are, 
accordingly, the number of planes along the sliding and 
N3t(i) and N5t(i) along the transversal direction, for the 
two joint sets.

The calculated probabilities, downscaled to the observed 
scar number, indicated, for the F3, a maximum number of 

spacings i equal to 5 along the length and 6 along the width. 
For the F5, the numbers are 6 and 9.

To proceed with the steps of Sect. 3.3, for the F3 basal 
planes, it was considered that the length and width of each 
quasi-plane surface depend on the number and size of 
spacings of F7 and F1 and vice versa for the basal planes 
F5. To calculate statistically the total length and width, 
 LA and  WA, of the continuous quasi-plane surfaces, ran-
dom samples of lengths and widths were created. Equa-
tions (6)–(9) were adapted from Eqs. (3) and (4), for the 
two basal planes. Equations (10) and (11) for the area cal-
culation were also adapted from Eq. (5).
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Fig. 6  Spacing distributions based on the data of Santana et al. (2012)

Table 1  Probabilities Ps(i) and 
Pt(i) of an F3 or an F5 quasi-
plane surface containing exactly 
i spacings, and N number of 
quasi-planes with i spacings, 
for the 4760 and 3920 observed 
planes of F3 and F5

s, sliding direction, t, transversal direction

i (F3) Ps(i) (F3) Pt(i) (F5) Ps(i) (F5) Pt(i) NF3s (i) NF3t(i) NF5s(i) NF5t(i)

1 0.89456 0.79370 0.74955 0.55930 4258 3778 2939 2193
2 0.09410 0.16513 0.18669 0.24509 448 786 731 961
3 0.01008 0.03319 0.04820 0.10814 48 158 189 423
4 0.00105 0.00630 0.01173 0.04897 5 30 46 192
5 0.00021 0.00147 0.00281 0.02193 1 7 11 86
6 – 0.00021 0.00102 0.00944 – 1 4 37
7 – – – 0.00408 – – – 16
8 – – – 0.00153 – – – 6
9 – – – 0.00153 – – – 6
10 – – – – – – – –
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where LF3 is the total length of quasi-plane, along the 
sliding direction, for the set F3. LF5 is the total length of 
quasi-plane, along the sliding direction, for the set F5. WF3 is 
the total width of quasi-plane, along the transversal direc-
tion, for the set F3. WF5 is the total width of quasi-plane, 
along the transversal direction, for the set F5. sF1 and sF3 are 
the spacing of the intersecting set F1 or F3, respectively. AF3 
and AF5 are the total area of the basal quasi-plane for the set 
F3 or F5, respectively.

It is assumed that each quasi-plane contains a number of 
fixed spacings  sF1 and  sF7, although in reality each quasi-
plane might contain different spacings. As over the slope 
there are homogeneous areas, with denser or sparser spacing, 
the variability of the spacings within each quasi-plane can 
be considered low and a fixed value can be assumed. For the 
generation of random samples for the quasi-plane length and 
width, the number of spacings i follow the PMF of Table 1.

(6)LF3 =
∑

i

sF7

(7)WF3 =
∑

i

sF1

(8)LF5 =
∑

i

sF1

(9)WF5 =
∑

i

sF7

(10)AF3 = LF3 × WF3

(11)AF5 = LF5 ×WF5

The results of the median and maximum dimensions, 
and standard deviations, are shown in Table 2. As a vali-
dation, the results from the application of this procedure 
were compared with the dimensions of the planes F3 and 
F5, on the actual relief, representing historical rockfall 
scars. Their real dimensions were observed and meas-
ured on the LiDAR point cloud. They are summarized in 
Table 2.

The maximum calculated length, width and area from 
the probabilistic simulations are for the F3: 28.0  m, 
48.5 m, and 282.5  m2, which closely approximate the 
respective values of 27.1 m, 32 m and 236  m2, measured 
with LiDAR by Santana et al. (2012). For the F5, the dif-
ferences are slightly higher, with the calculated dimen-
sions larger than the observed. The former was found to 
be 48.5 m, 50.4 m, and 289.3  m2 in comparison with the 
latter which was 14.7 m, 19.5 m and 144  m2. The calcu-
lated and observed median and standard deviation values 
for the length and width are similar. The exception is the 
median and standard deviation of the areas, which have a 
difference of one order of magnitude between the calcu-
lated and observed surfaces.

The theoretical maximum values were also calculated, 
applying Eqs. (6)–(8) for the maximum identified number 
of spacings i and their size (Table 3). Given the sufficiently 
large number of samples in this step (100,000) the calculated 
maximum from the simulations is equal to the calculated 
theoretical maximum, for the lengths and widths. However, 
the maximum areas from the simulations are one order of 
magnitude less than the theoretical. This is due to the ran-
dom combinations of widths and lengths, which despite the 
large number of generated samples do not reproduce the 
theoretical maximum areas. Considering the sample size, the 
statistical probability of the latter is less than  10–5.

Table 2  Observed and expected 
basal plane dimensions

LF3 WF3 AF3 LF5 WF5 AF5

m m m2 m m m2

Observed median 1.0 1.1 0.7 0.7 0.8 0.7
Calculated median 1.1 2.1 2.2 2.0 1.4 11.6
Observed standard deviation 1.5 1.8 10.3 0.9 1.2 6.0
Calculated standard deviation 1.1 2.6 5.6 2.8 2.4 2.8
Observed max 27.1 32.0 236.0 14.7 19.5 144.0
Calculated max from simulations 28.0 48.5 282.5 48.5 50.4 289.3
Calculated theoretical max 28.0 48.5 1539.1 48.5 50.4 2446.4

Table 3  Assessment of 
maximum theoretical basal 
plane dimensions

LF3 WF3 AF3 LF5 WF5 AF5

Max number of spacings i in a direction 5 6 – 6 9 –
Max spacing s along a direction (m) 5.6 8.09 – 8.09 5.6 –
Max basal plane dimensions (m or  m2) 28.0 48.5 1359.1 48.5 50.4 2446.4
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5  Discussion

Table 2 shows that for the set F3, the calculated dimen-
sions of the generated basal surfaces areas are very simi-
lar to those observed with the LiDAR. This confirms the 
hypothesis argued by Corominas et al. (2018), that the 
presence of the F1 and F7 restricts the extent of the F3 
sliding surfaces and bounds the size of the slope fail-
ures. Additionally, as the calculated maximum rock block 
dimensions fit the size of the maximum observed scars, 
it is implied that the principal hypothesis of the calcula-
tions performed here is certain and that the displacement 
of the basal planes F3 is the principal cause of rockfall size 
restriction in the study site.

Nevertheless, for the set F5, the calculated length, width 
as well as areas present larger differences compared to the 
observed. The size of the calculated areas, despite being 
of the same order of magnitude, is almost double of the 
observed. This suggests that slightly larger failures than 
the historical ones are possible, still in the order of few 
hundreds of square metres.

The differences of order of magnitude in the median 
and standard deviation of the areas between the calculated 
and observed surfaces imply that their size distribution is 
not the same. This is attributed to the polygon shape of 
the real surfaces, instead of the rectangular form assumed 
in this process.

The effect of the criterion (b) (requirement for sliding of 
progressively higher spacings as moving from the exterior 
towards the interior of the slope) was evaluated, compar-
ing the number of spacings and the maximum expected 
length of the F3 and F5 quasi-plane surfaces, first apply-
ing the criterion and then without applying it. For the set 
F3, the application of this criterion leads to a difference 
of just one spacing, while for the F5 the effect is stronger 
and involves three spacings. In general, as expected for the 
calculated surfaces, the widths, where the restriction of 
the criterion (b) is not applied, are longer than the lengths, 
where the criterion (b) is applied. All the same, this is 
valid for the observed basal planes, which implies that 
there is indeed a negative effect of the downward steps for 
the extent of the basal planes, in particular for the F5 set.

Considering the afore-mentioned restrictions in the 
extent of the rockfall basal planes, and assuming that each 
quasi-plane surface corresponds to at least one event, the 
maximum rockfall volume is restricted. The exceedance 
of this maximum could occur in the event of substantial 
breakage of intact rock bridges or in the event of the crea-
tion of an extensive stepped path failure surface. In both 
cases, various quasi-plane surfaces would merge into a 
larger basal plane. However, as afore-mentioned there is 
no field evidence supporting the occurrence of large slope 

failures (larger than 100,000  m3) in the Solà d’ Andorra, at 
least during the last 10.000 years (Corominas et al. 2018). 
Similarly, the breakage of substantial rock bridges cannot 
be evidenced by field observations, suggesting that for the 
given geological structure, the intact rock resistance is suf-
ficiently high to prevent extended bridge failures. Besides, 
the intensely fractured, nevertheless prominently stepped, 
rock pattern favours the separate detachment of rock 
masses from the individual quasi-plane surfaces, rather 
than their merging into a massive simultaneous rock mobi-
lization. Nonetheless, further studies, beyond the work 
presented here, are required to assess the credibility of a 
large rockfall scenario due to progressive bridge failure, 
incorporating the mechanical properties of the fractured 
rock mass into the analysis of slope stability.

6  Conclusions

The proposed probabilistic procedure for the calculation 
of the size of the basal quasi-planes, constituting sliding 
surfaces for the rockfall detachment, provides coherent 
results with the size of the observed scars on the slope in 
terms of order of magnitude. The advantage of the devel-
oped approach is that, using as a starting point the displace-
ment of the basal planes by the lateral intersecting joints, it 
effectively indicated the extent of penetration of the basal 
planes into the rock mass, overcoming the difficulties for 
its assessment.

In the study site, it has been argued that the presence of 
the F1 and F7 joint sets restricts the extent of the F3 and F5 
sliding surfaces, bounding the size of the potential slope 
failures (Corominas et al. 2018). The results of this work 
bring additional evidence for this restriction, with quan-
titative information for the expected penetration and size 
of the basal planes. They indicate that the maximum joint 
penetration of the set F3 is 28.0 m and 48.5 m, accordingly 
in the sliding and transversal direction. For the set F5, the 
maximum joint penetration is 48.5 m and 50.4 m. The proba-
bilistic simulation indicated basal areas of 282.5  m2, for the 
F3, and 289.3  m2, for the F5. This is one order of magnitude 
lower than the maximum theoretical areas (1539.1  m2 and 
2446.4  m2), which were assessed considering the maximum 
number and size of spacings. However, considering the sam-
ple size, the statistical probability of the latter is lower than 
1 × 10–5.

The application of the proposed procedure for the calcu-
lation of the penetration of the basal planes into the slope, 
was based on the random generation of spacings of the basal 
planes with respect to a reference point O (0,0), provided 
that no detailed data for the displacement of the basal planes 
by the intersecting joints existed. In that respect, the real 
displacement has not been integrated into the model. This 
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is a limitation to be improved if possible, after systematic 
collection of data, through field observations or using remote 
sensing methods (e.g. UAV-based high resolution image 
processing). Given that the methodology is sensitive to the 
selection of the threshold to be applied for the continuity cri-
terion (a), and as a future step, close field observations of the 
rock surface steps and detailed stability analysis, to provide 
an insight into the breakage of bridges, are suggested for a 
more systematic evaluation of it.

As a further development, the proposed methodology 
could set the basis for assessing maximum rockfall volume, 
using as a starting point the area of the sliding planes. In 
that case, the calculation of the probability distribution of 
the heights, which is related to the location of the respective 
quasi-place surface along yik (Fig. 4), would be additionally 
required.
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