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Abstract
A numerical study on the strain rate sensitivity of coarse-grained rock fracture under dynamic loading is presented. For 
this purpose, the embedded discontinuity finite element method is employed as a numerical tool. Moreover, a mesoscopic 
description of grain boundary-grain interior structure of rock is given. Thereby, the present approach is able to account for 
inter- and intragranular failure types of rock. The numerical simulations carried out here corroborate the conception that in 
direct tension the dynamic increase of tensile strength of rock is a real material property. Moreover, the simulations agree 
with the hypothesis that in uniaxial compression the dynamic increase of compressive strength is a structural effect due to 
lateral inertia. Finally, the numerical simulations of the dynamic Brazilian disc test suggest that structural effects also con-
tribute to the dynamic increase in the apparent indirect tensile strength.

Keywords Strain rate effects · Rock fracture · Coarse-grained rock · Finite elements · Embedded discontinuity

1 Introduction

Rocks are strongly strain rate sensitive materials, which 
makes their behavior under dynamic loading challenging 
from the geotechnical engineering point of view (Forquin 
2017; Li et al. 2017, 2018; Qian et al. 2009). When the strain 
rate increases, the strain rate sensitivity of rock is realized 
as an apparent increase in both tensile and compressive 
strengths accompanied with a transition from single crack-
to-multiple crack/fragmentation failure mode (Denoual 
and Hild 2000; Xia and Yao 2015; Zhang and Zhao 2014; 
Zhang et al. 1999). However, the micromechanisms behind 
the dynamic increase in strength of rock are still unclear and 
open to research (Forquin 2017).

In uniaxial tension at low strain rates, is rather easy to 
explain the specimen strength to be dictated by the larg-
est favorably oriented flaw, which grows at the expense of 
others, leading to a single macrocrack failure mode as illus-
trated in Fig. 1a (Ahrens and Rubin 1998). Upon increas-
ing loading rates, there is enough time for many flaws to 
grow and create zones of reduced stress around them, see 

Fig. 1a. Due to the limited crack propagation velocity (less 
than the speed of sound in the material), higher strain rates 
leads to higher tensile strengths and higher number of frag-
ments. Therefore, the micro-to-macroscale development 
of the cracking process requires a finite time, called incu-
bation time by Petrov and Morozov (1994). In unconfined 
compression, perhaps the most frequent explanation in the 
literature (see, e.g. Gary 2013) for the dynamic increase in 
rock strength is that the lateral inertia of the specimen acts 
as a confinement (through the Poisson effect) leading to the 
strain rate hardening (Fig. 1b). Idealistically, the specimen 
fails with a multiple axial splitting mode and the rock col-
umn-shaped fragments are forced to move laterally until they 
collapse or fly out (Fig. 1b). Therefore, higher loading rates 
create higher lateral inertia leading to higher peak stresses.

In this paper, the strain-rate effects of rock are numeri-
cally investigated. Two research hypotheses motivated by the 
discussion above are posed: (1) in uniaxial direct tension, the 
dynamic increase in strength is a genuine material (or micro-
structural) property, not a macrostructural effect. (2) In uni-
axial dynamic compression, the dynamic increase in strength 
is a structural effect boosted by the specimen length/width 
ratio. This can be tested by increasing the specimen width to 
length ratio in the numerical tests. Saksala (2018) answered 
these questions affirmatively in a numerical study. These 
results are included here for completeness sake.
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The dynamic testing methods for tensile strength include 
direct tension test, indirect tension tests based on the Brazilian 
disc test and the semicircular bending test, as well as the spalling 
test (Zhang and Zhao 2014). However, the experimental results 
are discrepant so that at a given strain rate, the Brazilian disc 
test gives higher strengths than the direct tension test. Due to the 
indirect nature of Brazilian disc test, it should be investigated 
whether the lateral inertia or some other structural effect contrib-
utes to the apparent increase in dynamic tensile strength in this 
test. Thus, the third hypothesis numerically tested in this paper is 
that (3) the dynamic increase in tensile strength in Brazilian disc 
test is (at least substantially contributed by) a structural effect.

In order to investigate these three research questions, a 
constitutive description of rock capable to account for strain 
rate dependent mesofailure types, i.e. intra- and intergranular 
failures, should be employed. For this end, the rate dependent 
mesomechanical model based on multiple embedded discon-
tinuity finite elements presented by Saksala (2018) is chosen 
here as well. This model represents the mineral grains explic-
itly as Voronoi cells and grain boundaries by zones of elements 
with pre-embedded discontinuities. Moreover, the material 
failure, i.e. crack opening, is rate-dependent by viscosity. As 
mesoscopic approach by finite elements describing the grains 
and grain boundaries explicitly is taken, the numerical rock 
has to be coarse grained for computational feasibility reasons.

The paper is structured as follows. First, the numerical 
modelling theory is briefly described for the convenience of 
the reader. Then, the earlier results are summarized and the 
new simulations and analyses for the Brazilian disc test are 
presented. Finally, the concluding remarks close the paper.

2  Numerical Model

The rock fracture modelling principles as well as the grain 
structure description of the numerical rock are outlined in 
this section. The kinematics related to the embedded discon-
tinuity method are presented only from the finite element 

implementation point of view. For a more comprehensive 
discussion on the displacement discontinuity theory, the 
early works on the method by Oliver (1996), Simo and Oli-
ver (1994), Simo et al. (1993) are recommended. Moreo-
ver, further details can be found in earlier applications of 
the embedded discontinuity finite elements in rock fracture 
modelling, e.g. by Saksala (2015, 2016).

2.1  Rock Fracture Modelling

The embedded discontinuity method is an element based 
enriched finite element method suitable for modelling dis-
continuities, such as cracks. This method is particularly 
attractive as it can be formulated in the spirit of compu-
tational plasticity models (Mosler 2005; Radulovic et al. 
2011). Therefore, the computational efficiency of continuum 
methods is retained while a superior fracture description is 
gained. The advantage of this method over the widely used 
discrete element/particle methods is the computational effi-
ciency. However, the particle methods are naturally better 
suited for modelling severe fracturing and fragmentation.

The method describes crack initiation by embedding a 
displacement discontinuity in a finite element upon viola-
tion of, e.g. the Rankine criterion. Then, a cohesive law or a 
softening model that relates the traction to the displacement 
jump at the discontinuity models the opening of the real 
crack. In order to enhance the performance of the method in 
multiple crack description, an element with many intersect-
ing embedded discontinuities was developed (Mosler 2005). 
The linear three-node triangular element, known also as the 
constant strain triangle (CST) (see Fig. 3), is selected here. 
For this element embedded with three discontinuities, the 
finite element discretized displacement and strain fields are 
(Mosler 2005; Radulovic et al. 2011)

(1)
�(�) =

3∑
i=1

Ni(�)�
e
i
+

3∑
k=1

Mk
Γd
(�)�k

d
with Mk

Γd
(�) = Hk

Γd
(�) − �k(�)

Fig. 1  Schematics of rock frac-
ture mechanisms in quasi-static 
and dynamic uniaxial tension 
(a), and dynamic uniaxial com-
pression (b)
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where �k
d
 is the opening vector (displacement jump) for dis-

continuity k, and Ni and �e
i
 denote the regular shape func-

tions and nodal displacements, respectively. Moreover, Hk
Γd

 
and �k

Γd
 are the Heaviside function and the Dirac delta func-

tion. It has also been assumed that ∇�k
d
≡ 0 when arriving 

at strain in (2). This is the usual elementwise constant dis-
placement jump assumption. In addition, the peculiar 
decomposition using functions Mk

Γd
 in (1) is used because it 

simplifies the treatment of the essential boundary conditions 
by limiting the influence of �k

d
 to that element only. This is 

due to the fact that Mk
Γd

≡ 0 outside that element.
It is instructive to illustrate the displacement decomposi-

tion (1) and the related functions in 1D case. This is shown in 
Fig. 2 for a case of a single two-node bar element under ten-
sion. In the left, the functions involved in the decomposition 
are plotted. The decomposition consists of the regular nodal 

(2)

�(�) =

3∑
i=1

(
∇Ni ⊗ �

e
i

)

−

3∑
k=1

((
∇𝜑k(�)⊗ �

k
d

)sym
+ 𝛿k

Γd

(
�k ⊗ �

k
d

)sym)
,

displacement, ureg = N1u1 + N2u2, and the enhanced, discon-
tinuous part, �dMΓd

, the effect of which is restricted inside 
the element by function MΓd

 . It should be noticed that in 1D 
case, the selection of function ϕ is readily identifiable as the 
interpolation function of node 2, i.e. N2.

The selection of ramp functions �k appearing in Mk
Γd

 in 2D 
case is as follows. For the multiple discontinuity case, �k = Nk , 
i.e. the ramp functions are identified with the interpolation 
functions of the opposite nodes (see Fig. 3). The crack normal 
thus reads �i = ∇Ni∕Ni . In the single discontinuity case with 
he normal, �d , parallel to the first principal (stress) direction, 
� is chosen according to.

This criterion gives ϕ with a gradient as parallel as pos-
sible to �d.

Following Radulovic et al. (2011), the weak, variational 
form of the traction continuity over the crack is enforced with 
the enhanced assumed strains concept. After some develop-
ments the details of which are not presented here, the weak 
(global) form of the traction balance reads:

(3)∇� = arg

⎛
⎜⎜⎝
max
k=1,2

����
k
i=1

∇Ni ⋅ �d
���

�
k
i=1

∇Ni

⎞
⎟⎟⎠
.

Fig. 2  Illustration of the displacement decomposition to regular and enhanced part and the corresponding functions in 1D case
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where Ae is the element area, and li
d
 denotes the discontinu-

ity length with �i as its normal. Due to the linearity of the 
CST element, the integrands in (4) are constant and, thus, it 
becomes the strong (local) traction balance, which projects 
the stress tensor, σ, on the crack normal:

where E is the elastic stiffness tensor, � i
�d

 is the traction vec-
tor, and ε is the strain tensor. The rock behavior is taken as 
linearly elastic before a discontinuity is introduced or the 
tensile strength of the pre-embedded discontinuities is 
reached.

As mentioned above, a model that relates the traction at the 
discontinuity to its opening to govern the softening process is 
needed. Here, a plasticity theory based model is employed for 
solving the crack opening vector and the traction update. This 
model consists of the following components (Saksala 2018):

(4)
1

Ae
∫

�e��
i
d

� ⋅ �id� −
1
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d
∫
�
i
d

�
i

�
i
d

d�d = 0 (i = 1, 2, 3),

(5)
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(6)
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i
�d
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||| −
(
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(
𝜅i, �̇�i

))
,

(7)qi = hi𝜅i + s�̇�i, hi = −g𝜎t exp
(
−g𝜅i

)
, g =

GIc

𝜎t
,

where �i are the loading functions having contributions 
from tension and shear components of the traction, �i is 
the tangent vector of a discontinuity, 𝜅i, �̇�iare the internal 
variable and its rate, and σt and s are the tensile limit stress 
and the (constant) viscosity of the material. Moreover, hi is 
the softening modulus defined by the exponential softening 
law. Parameter g, defined by the mode I fracture energy GIc, 
controls the amount of softening, and β is the shear retention 
factor. By (9), the viscoplastic multiplier �̇�i is identical to 
�̇�i . Finally, Eq. (10) are the consistency conditions, imply-
ing that viscosity is accommodated with the consistency 
approach by Wang et al. (1997).

The formal similarity of the model described in 
Eqs. (6)–(10) to plasticity models allows it to be solved 
with the computational plasticity techniques of stress 
return mapping. This means that the usual elastic predic-
tor-viscoplastic corrector split is applied. Accordingly, the 
trial elastic stress for each element in the mesh is first 
calculated based on the new total strain coming from the 

(8)�̇�
i
𝚪d

= −𝐄 ∶

3∑
k=1

(
∇Nk(𝐱)⊗ �̇�

k
d

)sym
⋅ 𝐧i,

(9)�̇�
i
d
= �̇�i

𝜕𝜙i

𝜕𝐭 i
𝚪d

, �̇�i = −�̇�i
𝜕𝜙i

𝜕qi
,

(10)�̇�i ⩾ 0, 𝜙i ⩽ 0, �̇�i𝜙i = 0 (i, j = 1, 2, 3),

Fig. 3  Schematic for the numer-
ical rock and fracture types
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global solution. Then, if any of the loading functions (6) 
is violated, a viscoplastic correction, i.e. the stress return 
mapping, is needed. During the stress return mapping, the 
trial stress, or actually a trial traction here, is iteratively 
returned on the corresponding loading surface or their 
intersection in case more than one criterion is violated. 
During the return mapping, the consistency recovering 
traction vector, crack opening displacements and internal 
variables are updated by Eqs. (7)–(9). For further details, 
see Saksala (2016) and Wang et al. (1997).

2.2  Mesoscopic Description of Rock

Depending on loading conditions, rocks display both inter- 
and intragranular failure types (Mahabadi et  al. 2014). 
Therefore, these failure types should be accounted for in 
the numerical modeling aiming at realistic predictions. In 
this paper, the mesoscopic description by Saksala (2018) is 
employed. This approach describes the rock mesostructure 
as a cluster of grains represented by Voronoi cells meshed 
with the standard CST elements. The grain boundaries are 
modelled as narrow strips of elements with at least one node 
connected to an edge of a Voronoi cell representing a grain. 
Then, discontinuities are pre-embedded (inserted before the 
simulation) into the elements designated to belong to the 
grain boundaries, see Fig. 3. These pre-embedded disconti-
nuities govern the intergranular fracture type.

The intragranular failure is described by inserting new 
discontinuities (microcracks) during the analysis inside the 
grains (elements inside the Voronoi cells) according to the 
Rankine criterion, i.e. when the first principal stress exceeds 
the tensile strength, a crack is embedded inside an element. 
A single discontinuity governed by model (6)–(10) with i = 1 
is allowed per a grain-interior element.

2.3  Explicit Scheme for Solving the Equations 
of Motion

Since strain rate effects of rock are considered, the govern-
ing equations of motion are solved with an explicit time 
integrator. The explicit modified Euler method (Hahn 1991) 
is selected for time integration. According to this scheme, 
the system response is calculated as

where u is the global displacement vector, Δt denotes the 
time step, � ext

t
 is the global external force vector, � int,et  is the 

(11)

𝐌�̈�t + 𝐀
Nel
e=1

𝐟
int,e
t

(𝛔) = 𝐟
ext
t

with 𝐟
int,e
t

= ∫
𝛀

e

𝐁
T
e
𝛔d𝛀e,

(12)�̇�t+Δt = �̇�t + Δt�̈�t,

(13)𝐮t+Δt = 𝐮t + Δt�̇�t+Δt,

internal force vector for a finite element e, and Be is the 
operator mapping the element nodal displacements into 
the element strains. Moreover, A is the assembly opera-
tor assembling (summing) the element contributions into a 
global, system level objects, and, finally, M is the lumped 
mass matrix obtained by the row summing technique.

Now that the theory of the rock material modelling prin-
ciples is presented, the flow of the total simulation process 
is illustrated graphically for a convenience of the reader in 
Fig. 4. The simulation starts with the situation where the 
rock mesostructure is generated and the discontinuities are 
embedded in the grain boundary elements (Fig. 3).

The stress return mapping referred in the flow chart is 
the one described in Sect. 2.1. Moreover, the criterion to 
be checked for the grain interior element, i.e. σ1 > σt is the 
Rankine, i.e. the first principal stress, criterion.

3  Numerical Simulations

The hypotheses presented in Sect. 1 are numerically tested 
in this Section. As mentioned, the results presented earlier 
on uniaxial tension and compression in Saksala (2018) are 
included for completeness sake and further discussed here. 
Then, the new simulations on Brazilian disc test are pre-
sented and analyzed. A Matlab code was written for per-
forming the simulations.

Table 1 tabulates the material and model parameters used 
in the simulations if not otherwise stated. These values may 
not correspond to any real rock but are chosen for demon-
strative purposes only. The grain boundaries are assumed to 
be significantly less stiff and weaker than the grain interi-
ors. Moreover, the viscosity modulus given in Table 1 is, on 
one hand, small enough not to cause significant strain-rate 
hardening at the strain-rates tested. On the other hand, it is 
large enough to have a stabilizing effect on the simulations.

3.1  Uniaxial Compression and Tension Tests

Numerical uniaxial compression and tension tests were 
carried out in Saksala (2018) at different loading rates on 
samples with two different specimen length/diameter ratio. 
The average grain size of the numerical rock samples shown 
in Fig. 5a is 5–6 mm with the average element side length 
of 0.65 mm. The grain boundary zones are shown in red 
therein. At low strain-rate, the loading is applied as a con-
stant boundary velocity with an initial acceleration stage to 
diminish the elastic wave oscillations due to reflections at 
the boundaries of the numerical sample. However, at high 
strain-rates in tension, a linear initial velocity field of form 
vy(y) = 2v0y/h (with v0 = �̇�h/2) is imposed at each node in 
y-direction (see Fig. 5b). This setting prevents the stress 
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wave oscillations at the top and bottom edges as well as 
premature failures close to the edges.

The simulation results for uniaxial tension test with 
Mesh1 at 1 s−1 and 10 s−1 are shown in Fig. 5c, d. The pre-
dicted failure mode, represented as localization bands of the 
sum of the norms of the displacement jump vectors (crack 
opening), is the experimental transversal splitting mode 
with a single crack at strain rate 1 s−1 and the correspond-
ing tensile strength is 3.2 MPa. This value is well below 
the 5 MPa given for grain interiors in Table 1 but close to 
the assumed grain boundary strength of 3.5 MPa. Thus, the 
crack path zigzags along the grain boundaries. At strain rate 
10 s−1, the predicted tensile strength is the same 3.2 MPa 
but there are more macrocracks, which fact reflects a more 
ductile stress–strain response. However, at this strain rate 
the experimental DIF ranges from 1.5 to 2 (Zhang and Zhao 

2014). Therefore, stronger rate dependency in the model is 
required to predict the correct tensile strength. Indeed, when 
the viscosity was increased from the value in Table 1 to 
s = 0.2 MPa s/m, the tensile strength is 5.2 MPa yielding 
DIF = 1.63, which is experimentally acceptable. However, 
the sample is fragmented, which is reflected in a somewhat 
overly ductile stress–strain response. In any case, these 
results demonstrate that the dynamic increase in strength of 
rock in direct tension is not a structural effect but a genuine 
material effect since a higher viscosity value was needed to 
predict the correct dynamic tensile strength.

Uniaxial compression tests are simulated at loading rates 
1, 10, and 30 s−1 on the specimens shown in Fig. 5a. The 
results are shown in Fig. 6.

The simulation results in Fig. 6a, b predict again that 
when the strain rate increases, the amount of macrocracks 
increase, which is the experimentally observed transition 
from single-to-multiple cracking. The realized failure mode 
is the commonly observed shear banding with long, slightly 
aligned macrocracks spanning the specimen axially. Unlike 
the tension test simulations, here the maximum compressive 
strength increases quite substantially for both meshes with 
the low value of viscosity. It can also be observed that as the 
strain rate increases, the amount of cracks seems to accumu-
late to the vertical edges of the numerical specimen, which 
is also an experimental observation (Zhang and Zhao 2014).

The dynamic increase factors (DIF) for both meshes are 
calculated in Table 2. As the increase factors for Mesh2 with 
L/D-ratio 1 are larger than those for Mesh1, a clear shape 
effect is attested. At the highest strain rate simulated here, 

Fig. 4  Flow of the solution process of rock fracture simulation

Table 1  Material and model data for numerical tests

Parameter and unit Grain interior value Grain 
boundaries 
value

E (GPa) 60 30
ν (–) 0.2 0.2
ρ (kg/m3) 2600 2600
σt (MPa) 5 3.5
GIc (N/m) 0.02 0.02
s (MPa s/m) 0.002 0.002
β (–) 1 1
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Fig. 5  Finite element meshes and grain boundary/interior structure 
for simulations: Mesh1 with 50 grains and 9965 elements, and Mesh2 
with 100 grains and 19,839 elements (a), boundary and initial condi-

tion for higher strain-rate simulations (b), the simulation results for 
tension tests with Mesh1: failure modes (c), and the average stress–
strain curves (d)

Fig. 6  Simulation results for compression tests: failure modes with Mesh1 (a), Mesh2 (b), and the average stress–strain curves (c)
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i.e. 30 s−1, the experimental DIFs are scattered between 1.3 
and 2.4 (Zhang and Zhao 2014). Therefore, the predicted 
values in Table 2 are within experimental bounds.

Figure 7a, b shows an example of grain interior cracks 
in tensile and compressive loadings, respectively. In ten-
sion, the orientation trend of the cracks is horizontal, and 
in compression it is vertical (the major principal direction 
in uniaxial compression) with some deviations caused by 

disturbances in the stress field due to cracking or grain 
boundary heterogeneities.

Finally, the transversal (x) and axial (y) stress distribu-
tions in Mesh2 at the peak stress are shown in Fig. 7c. The 
stress component distributions are severely heterogeneous 
due to the grain-boundary heterogeneity and the cracking. 
Moreover, compressive stresses can be observed at the grain 
boundaries in the distribution of σx, especially in the center 
area of the specimen. As the magnitude of these stresses 
increased upon increasing loading rate, their presence is the 
reason for the damage (in the sense of stronger crack open-
ing) accumulation on the specimen vertical edges in Fig. 6. 
As this effect was stronger in higher strain rates and with 
wider specimen (smaller L/D-ratio), a specimen shape effect 
is clearly present.

3.2  Brazilian Disc Test Simulations

The hypothesis of structural effects (lateral inertia) contribu-
tion in the indirect tensile strength dynamic Brazilian disc 
(BD) test is numerically tested here. The schematic of the 
computational model is shown in Fig. 8.

Table 2  Predicted dynamic compressive strengths

Strain rate  (s−1) Comp. strength (MPa) DIF

Mesh1
 1 44.7 1
 10 56.5 1.26
 30 76.7 1.72

Mesh2
 1 43.9 1
 10 59.9 1.36
 30 92.6 2.1

Fig. 7  Example of grain interior cracks in the end of tension (a), and compression (b) test simulation, and the stress components at the peak 
stress (~ 93 MPa) in compression test simulation at 30 s−1 with Mesh2 (c)
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In this modelling approach, the compressive stress pulse 
is accounted for as a pre-defined stress function σi(t). The 
bars (with cross-sectional area Ab in Fig. 8) of the split Hop-
kinson pressure bar device are meshed with two-node bar 
elements and the mesomechanical description of rock is 
applied to the Brazilian disc sample of rock. Finally, kin-
ematic contact conditions are imposed between the bars and 
the disc. During the analysis of the impact problem, the con-
tact forces P1 and P2 are solved using the method described 
in Saksala (2010).

The tensile stress at the center of the disc is

where F is the force compressing the disc with dimensions 
t = 25 mm (thickness) and d = 40 mm (diameter). In the pre-
sent setting where the sample is placed between the bars, 
the simple average of P1 and P2 is used for F. Both bars 
in the model have length and diameter of 1500 mm and 
22 mm, respectively. The stress pulse simulating the com-
pressive wave is defined as σi(t) = Apsin(ωt) with Ap being 
the amplitude and ω = 2π/T. In the simulations, the pulse 
length T = 160 µs is used throughout, but the amplitude is 
varied to obtain different strain rates.

The model data given in Table 1 are used in the simu-
lations. First, a reference case simulation is carried out at 
strain rate 0.1 s−1. The boundary conditions similar to those 
used in the uniaxial compression test are applied here as 
well. The simulation results are shown in Fig. 9.

The low rate BD test simulation predicts the correct axial 
splitting failure (see Fig. 9c). The major splitting crack has 
a slightly inclined trend spanning the specimen from the 
left side of the upper contact area to right side of the lower 
support area. This is due to the polygonal (22-gon) geometry 
of the numerical disc. This geometry results in flattening, 
which should actually be taken into account in calculating 
the indirect tensile strength with Eq. (14). However, the 

(14)�T = 2F∕�td,

flattening here is equivalent to the loading angle 2α = 16°, 
which yields a correction factor of 0.9744 (Wang et al. 
2004).

The indirect tensile strength corresponding to the maxi-
mum force in Fig. 9d is σT = 3.86 MPa (with the flattening 
correction), which is 20% higher than the predicted direct 
tensile strength. It should be taken into account that the mes-
ostructural details are not identical in the numerical sam-
ples. However, the results are comparable since the grain 
and element sizes are of the same order (the average grain 
size is 5–6 mm end the average element side length is about 
0.65 mm) in all of the simulations. Moreover, the experi-
mental indirect tensile strengths are systematically, and in an 
increasing manner upon increasing rate, larger than the direct 
ones starting from strain rate 0.1 s−1 (Zhang and Zhao 2014).

Next, higher strain rates are applied using the model 
described in Fig. 8 with the numerical sample in Fig. 9a. 
Amplitudes Ap = 25 MPa and 50 MPa of the compressive 
stress wave are used. The results are shown in Fig. 10.

At higher loading rates, the details of the predicted gen-
eral axial splitting failure mode change from a single major 
crack mode to the multiple cracking mode, as attested in 
Fig. 10a, b. At the highest rate, corresponding to amplitude 
50 MPa, even some radial cracks are generated. The stress 
rates in these simulations were 76 GPa/s and 143 GPa/s cor-
responding to the strain rates 1.5 s−1 and 2.8 s−1, respec-
tively. The dynamic equilibrium, i.e. P1 = P2, was fairly 
well achieved in these simulations. Therefore, Eq. (14) can 
be used to calculate the indirect dynamic tensile strengths, 
which were 4.6 MPa and 6.5 MPa at the lower and higher 
stress rate, respectively. These give, when referenced to 
the low strain rate simulation above, DIFs of 1.2 and 1.7 
respectively. These values are slightly lower than the typi-
cal experimental DIFs, which are ~ 1.5 and ~ 2.0 at these 
strain (stress) rates (Zhang and Zhao 2014). In any case, the 
predicted DIFs are definitely not negligible and indicate a 

Fig. 8  Dynamic Brazilian disc test model
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contribution of a structural effect (note that the viscosity of 
the model had a low value in these simulations).

4  Concluding Remarks

A numerical study on the loading rate sensitivity of 
coarse-grained rock under direct and indirect tension as 
well as under uniaxial compression was carried out. The 
chosen mesomechanical approach can account for both 
the inter- and intragranular failure types of rock. The 
numerical simulations demonstrated in general that this 
method predicts some of the important features, such as 
failure modes and DIFs, of rock behavior under dynamic 
loading. Therefore, as the present model has predictive 
capabilities, some credibility could be bestowed on the 
numerical confirmations of the particular hypotheses 
tested here.

Namely, it seems that the dynamic increase in the 
apparent strength of rock under direct tension is a real 
material (or at least microstructural) effect. In contrast, 
the dynamic increase of rock under uniaxial compression 
seems to be a structural property. Finally, structural effects 
probably contribute to the dynamic increase in indirect 
tensile strength as it is measured in the Brazilian disc test. 
However, the structural effects are weaker in the BD test 
than in the uniaxial compression test so that the mate-
rial effects contribute to the indirect tensile strength. This 
presence of the structural effect could be proposed as an 
explanation to the discrepancy in the experimental results, 
which consistently attest higher DIFs for the rock under 
indirect than direct dynamic tension. Strictly speaking, 
these results are valid for the coarse-grained numerical 

Fig. 9  BD test at strain rate 0.1 s−1: the mesh with 10,662 elements (a), grain boundary/interior structure (b), final failure mode (c), and the 
force–time curve (d)



3239On the Strain Rate Sensitivity of Coarse-Grained Rock: A Mesoscopic Numerical Study  

1 3

rock specimen. Therefore, more investigations are needed 
to bring them to bear on other rock types.

Acknowledgements Academy of Finland is gratefully acknowledged 
for funding this research (Grant number 298345).

Compliance with Ethical Standards 

Conflict of interest I declare that I do not have any conflict of interests.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

Ahrens TJ, Rubin AM (1998) Impact-induced tensional failure in 
rock. J Geophys Res Planets 98:1185–1203

Denoual C, Hild F (2000) A damage model for the dynamic frag-
mentation of brittle solids. Comput Method Appl Mech Eng 
183:247–258

Forquin P (2017) Brittle materials at high-loading rates: an open area 
of research. Philos Trans R Soc A 375:20160436

Gary G (2013) Structural effects in dynamic testing of brittle mate-
rials. In: Zhao J, Li J (eds) Rock dynamics and applications—
state of the art. Proceedings of the first international conference 
on rock dynamics and applications (RocDyn-1, Lausanne, Swit-
zerland, 6–8 June 2013. Taylor and Francis Group (CRC Press/
Balkema), London, pp 415–421

Hahn GD (1991) A modified Euler method for dynamical analyses. 
Int J Numer Methods Eng 32:943–955

Li X, Gong F, Tao M, Dong L, Du K, Ma C, Zhou Z, Yin T (2017) 
Failure mechanism and coupled static-dynamic loading theory 
in deep hard rock mining: a review. J Rock Mech Geotech Eng 
9:767–782

Li CC, Li X, Zhang ZX (eds) (2018) Rock dynamics and applica-
tions, vol 3. Proceedings of the 3rd international conference on 
rock dynamics and applications (RocDyn-3, June 26–27, 2018, 
Trondheim, Norway). CRC Press, London

Mahabadi OK, Tatone BSA, Grasselli G (2014) Influence of micro-
scale heterogeneity and microstructure on the tensile behavior of 
crystalline rocks. J Geophys Res E Solid Earth 119:5324–5341

Fig. 10  Dynamic BD test: final failure mode with Ap = 25 MPa (a), with Ap = 50 MPa (b), and the contact force–time curves with Ap = 25 MPa 
(c) with Ap = 50 MPa (d)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


3240 T. Saksala 

1 3

Mosler J (2005) On advanced solution strategies to overcome locking 
effects in strong discontinuity approaches. Int J Numer Methods 
Eng 63:1313–1341

Oliver J (1996) Modelling strong discontinuities in solid mechanics 
via strain softening constitutive equations. Parts 1: fundamen-
tals. Int J Numer Methods Eng 39:3575–3600

Petrov YV, Morozov NF (1994) On the modeling of fracture of brittle 
solids. J Appl Mech 61:710–712

Qian Q, Qi C, Wang M (2009) Dynamic strength of rocks and physi-
cal nature of rock strength. J Rock Mech Geotech Eng 1:1–10

Radulovic R, Bruhns OT, Mosler J (2011) Effective 3D failure 
simulations by combining the advantages of embedded strong 
discontinuity approaches and classical interface elements. Eng 
Fract Mech 78:2470–2485

Saksala T (2010) Damage-viscoplastic consistency model with a par-
abolic cap for rocks with brittle and ductile behavior under low-
velocity impact loading. Int J Numer Anal Methods Geomech 
34:1041–1062

Saksala T (2015) Rate dependent embedded discontinuity approach 
incorporating heterogeneity for numerical modelling of rock 
fracture. Rock Mech Rock Eng 48:1605–1622

Saksala T (2016) Modelling of dynamic rock fracture process with a 
rate-dependent combined continuum damage-embedded discon-
tinuity model incorporating microstructure. Rock Mech Rock 
Eng 49:3947–3962

Saksala T (2018) Numerical study on the strain-rate sensitivity of 
rock: meso-mechanical approach. In: Li CC, Li X, Zhang Z 
(eds) Rock dynamics and applications, vol 3. Proceedings of the 
3rd international conference on rock dynamics and applications 

(RocDyn-3, June 26–27, 2018, Trondheim, Norway). CRC 
Press, London, pp 195–200

Simo JC, Oliver J, Armero F (1993) An analysis of strong disconti-
nuities induced by strain-softening in rate-independent inelastic 
solids. Comput Mech 12:277–296

Simo JC, Oliver J (1994) A new approach to the analysis and simula-
tion of strain softening in solids. In: Bazant ZP et al (eds) Frac-
ture and damage in quasi-brittle structures. E. and F.N. Spon, 
London, pp 25–39

Wang WM, Sluys LJ, De Borst R (1997) Viscoplasticity for instabili-
ties due to strain softening and strain-rate softening. Int J Numer 
Methods Eng 40:3839–3864

Wang QZ, Jia XM, Kou SQ, Zhang ZX, Lindqvist P-A (2004) The 
flattened Brazilian disc specimen used for testing elastic modu-
lus, tensile strength and fracture toughness of brittle rocks: ana-
lytical and numerical results. Int J Rock Mech Min 41:245–253

Xia K, Yao W (2015) Dynamic rock tests using split Hopkinson 
(Kolsky) bar system—a review. J Rock Mech Geotech Eng 
7:27–59

Zhang QB, Zhao J (2014) A review of dynamic experimental tech-
niques and mechanical behaviour of rock materials. Rock Mech 
Rock Eng 47:1411–1478

Zhang ZX, Kou SQ, Yu J, Yu Y, Jiang LG, Lindqvist P-A (1999) 
Effects of loading rate on rock fracture. Int J Rock Mech Min 
36:597–611

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	On the Strain Rate Sensitivity of Coarse-Grained Rock: A Mesoscopic Numerical Study
	Abstract
	1 Introduction
	2 Numerical Model
	2.1 Rock Fracture Modelling
	2.2 Mesoscopic Description of Rock
	2.3 Explicit Scheme for Solving the Equations of Motion

	3 Numerical Simulations
	3.1 Uniaxial Compression and Tension Tests
	3.2 Brazilian Disc Test Simulations

	4 Concluding Remarks
	Acknowledgements 
	References


