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Abstract
Surface roughness represents a major component of rock discontinuity shear strength. To achieve comprehensive, accurate, 
and efficient estimates of in situ discontinuity roughness, the traditional contact measuring methods are being replaced 
by advanced remote-sensing technologies. Terrestrial laser scanner (TLS) is well suited for measuring large inaccessible 
discontinuities; however, inherent TLS range noise strongly influences the surface details and roughness estimation. The 
aim of this research is to establish an optimal wavelet-denoising procedure for the TLS data acquired with different scan-
ning configurations (range and incidence angle), and for rock discontinuities having different roughness characteristics and 
surface reflectivity. The conventional discrete wavelet transform and stationary wavelet transform in combination with four 
threshold selection methods are applied on TLS data in the direction of range measurements (range denoising) and in the 
direction perpendicular to the best-fit plane (surface denoising). The performance of the denoising procedures is assessed by 
comparing the range and surface-denoised TLS surfaces with reference surfaces acquired with the Advanced TOpometric 
Sensor. Comparative analyses of the roughness calculated according to the angular thresholding method (Grasselli, in Shear 
strength of rock joints based on quantified surface description, Ph.D. thesis. EPF Lausanne, Lausanne; Grasselli, Shear 
strength of rock joints based on quantified surface description, Ph.D. thesis, EPF Lausanne, Lausanne, 2001) indicate that 
all the denoising methods improve the roughness estimated from the TLS data appreciably; however, the level of improve-
ment depends intrinsically on geometrical characteristics of the rock surface and scanning configuration. Range denoising 
has been found to provide more reliable noise estimations.

Keywords Rock discontinuity roughness · Angular thresholding method · Terrestrial laser scanning · Image denoising
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1 Introduction

Surface roughness represents a significant component of 
discontinuity shear resistance and influences the overall 
deformation behaviour of jointed rock masses. Since surface 
roughness is scale- and direction-dependent (ISRM 1978), 
it is preferable to perform measurements in the anticipated 
shear direction and at the engineering scale of interest. 
Larger scale roughness features are referred to as “wavi-
ness” and represent surface irregularities with a wavelength 
greater than about 10 cm (Priest 1993). Smaller scale fea-
tures are referred to as “unevenness” and cover finer fea-
tures, which are superimposed on the waviness.

In the laboratory, roughness is traditionally measured on 
small rock samples (up to 50 cm length) using several meas-
uring methods such as a mechanical profilometer (ISRM 
1978), shadow profilometer (Maerz et al. 1990), laser pro-
filometer (e.g., Huang et al. 1992), or a structured light pro-
jection method using a stereo-topometric camera, such as the 
Advanced TOpometric Sensor—ATOS (e.g., Grasselli et al. 
2002). In situ discontinuity roughness is routinely estimated 
visually (using a catalogue of joint profiles), or measured 
using the traditional contact-based methods, e.g., compass 
and disc-clinometer method (Fecker and Rengers 1971), and 
linear mechanical profiling using a straight edge or contour 
gauge (Barton and Choubey 1977; Milne et al. 2009). The 
traditional in situ measurements provide analogue, discrete 
data that are restricted to an accessible area. In contrast, 
remote-sensing technologies such as photogrammetry and 
terrestrial laser scanning (TLS) allow the in situ acquisition 
of a large and remote surface in a short period of time (e.g., 
Poropat 2009). These methods are able to characterize the 
3D surface structure, which is represented as a dense and 
precise point cloud that can be used for surface roughness 
estimation at different scales and along any direction.

The traditional stereo-photogrammetry has been used 
for roughness measurements for nearly 30  years (Lee 
and Ahn 2004; Haneberg 2007; Baker et al. 2008). New 
developments in computer vision methods, in particular 
Structure from Motion (SfM) combined with dense image 
matching (Hartley and Zisserman 2003; Carrivick et al. 
2016), allow 3D reconstruction of a detailed surface from 
an array of unconstrained images. For SfM and dense 
image matching, the surface is preferably photographed at 
close range and from many different positions and orienta-
tions, which is not always possible in constrained terrain. 
Furthermore, reference points (visible on the acquired 
photos) need to be established and measured to define the 
linear scale, and setting the points can be time-consuming 
and precarious in rugged alpine terrain.

Terrestrial laser scanner has been successfully applied 
to in situ roughness measurements (Fardin et al. 2004; 

Renard et  al. 2006; Rahman et  al. 2006; Tesfamariam 
2007; Haneberg 2007; Candela et al. 2009; Khoshelham 
et al. 2011; Pollyea and Fairley 2011; Mills and Fotopou-
los 2013). While reasonable results have been obtained in 
quantifying waviness (Fardin et al. 2004), finer details of 
unevenness have been hindered by data precision and laser 
footprint size. The data precision mainly depends on the 
inherent random range error (noise), which results in an 
overestimation of surface roughness (e.g., Kulatilake et al. 
2006; Poropat 2009; Khoshelham et al. 2011). The chal-
lenge is to eliminate noise, but preserves surface details.

With TLS, noise has typically been removed by sur-
face interpolation techniques such as averaging the TLS 
range measurements (Schulz et al. 2008), orthogonal least 
squares (Fardin et al. 2004; Pollyea and Fairley 2011), 
the robust interpolation method RANSAC (Grasselli et al. 
2002), or Fast Radial Basis Function (Rahman et al. 2006; 
Tesfamariam 2007). The disadvantage of interpolation 
methods is that irregular rock surfaces are smoothed and 
some topographic details are lost. By reducing the spatial 
complexity of a 3D randomly scattered point cloud (i.e., 
gridding to a regular 2.5D mesh), a wider range of image 
processing algorithms can be applied. An overview of 
image denoising methods and further references can be 
found in (Buades et al. 2005; Smigiel et al. 2011; Zhang 
et al. 2014).

Wavelet-denoising methods, including the discrete 
wavelet transform (DWT) and the wavelet packet (WP), 
have been applied to profile measurements subjected to 
fractal-based roughness length analysis and have been 
found to provide better roughness estimates than if no 
denoising was performed (Khoshelham et al. 2011). An 
important advantage of DWT compared to the other 
denoising techniques is that the TLS noise level is cor-
rectly estimated from the raw data (Bitenc et al. 2015a). 
Prior research has focused on wavelet denoising in a direc-
tion perpendicular to the best-fit plane (hereafter referred 
to as surface denoising). However, denoising in the range 
direction (hereafter referred to as range denoising) is con-
sidered preferable, since noise mainly relates to range.

Despite prior research showing the applicability of TLS 
to quantifying roughness, thorough investigations con-
cerning the influence of noise and the choice of optimal 
denoising procedure under conditions of variable range, 
scanning direction (incidence angle), surface roughness, 
and reflectivity have been lacking. This contribution evalu-
ates TLS data acquired for four rock samples having dif-
ferent roughness and reflectivity characteristics, and at 
different scanning ranges and directions. Reference data 
were measured with ATOS and the roughness was calcu-
lated according to the angular threshold method (Grasselli 
2001). The objectives of this research are to:
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• investigate the influence of intrinsic TLS data noise on 
roughness (noise effect);

• evaluate TLS noise estimations derived from the data 
itself using DWT and stationary wavelet transform 
(SWT), in the range and surface roughness measuring 
directions;

• analyse the performance of eight denoising methods 
including DWT and SWT, in combination with four 
threshold selection methods that are applied in range and 
surface roughness measuring directions.

The success of wavelet-denoising procedures is evalu-
ated through a comparative analysis of reference ATOS and 
denoised TLS surfaces and their derived roughness values. 
The goal is to identify optimal TLS denoising procedures for 
different rock surfaces and scanning configurations.

2  Parameterizing Rock Discontinuity 
Roughness

Discontinuity surface roughness describes the local depar-
tures of the actual surface from planarity or any higher order 
reference surface. Roughness can have a prevailing influence 
on the shear strength, particularly in cases of low normal 
stress combined with unfilled discontinuities. However, the 
parameterization of roughness, to fully capture the influence 
of roughness on shear strength, remains a challenge; param-
eterization needs to consider that roughness is direction and 
scale dependent.

Since the introduction of rock surface roughness into a 
shear strength criterion as an asperity angle (Patton 1966), 
a variety of rock surface roughness parameters have been 
developed. They are either 1D (profiles) or 2D (surfaces), 
and are based on empirical data (e.g., Patton 1966; Bar-
ton and Choubey 1977; Bandis et al. 1983; Grasselli 2001), 
statistical data (e.g. Myers 1962; Wu and Ali 1978; Krahn 
and Morgenstern 1979, Tse and Cruden 1979; Reeves 1985; 
Belem et al. 2000; Renard et al. 2006), or fractal analysis 
(e.g., Lee et al. 1990; Power and Tullis 1991; Huang et al. 
1992; Seidel and Haberfield 1995; Kulatilake et al. 2006; 
Baker et  al. 2008). Some parameters describe only the 
roughness amplitude, while others also include direction 
and/or scale dependence.

The empirical roughness parameter developed by 
Grasselli (2001), hereafter referred to as the Grasselli 
parameter (G), has been adopted in this research, since 
it quantifies the direction dependence of roughness, is 
applicable to rock surfaces, and is least sensitive to data 
noise (Bitenc et al. 2015c). The Grasselli parameter is 
based on an angular threshold concept and was initially 
developed to identify potential contact areas during direct 
shear testing of artificial tensile rock fractures. Studying 

the damaged areas after shear testing, it was found that 
only the parts of the surface that face the shear direction 
and are steeper than a threshold inclination provide shear 
resistance. Surface data are first transformed into the aver-
age discontinuity plane (or shear plane) coordinate sys-
tem and modelled with Delaunay triangulation. For each 
triangle, an apparent dip �∗ is calculated according to the 
specific analysis direction and the shear plane. The sum 
of triangulated areas that are steeper than a certain value 
of �∗ (denoted as A�∗ and referred to as the total potential 
contact area ratio) is plotted against �∗ (Fig. 1).

Based on curve fitting and regression analysis of A�∗ as 
a function of �∗ , G is calculated as follows:

where �∗max is the maximum apparent asperity angle of the 
surface in the shear (analysis) direction and C is the dimen-
sionless empirical fitting parameter calculated via non-linear 
least-squares regression. To account for surface anisotropy, 
the following correction has been proposed (Tatone and 
Grasselli 2009):

where A0 is the surface area defined by an apparent dip 
greater than 0°, normalized with respect to the total area of 
the surface. In the normal case that A0 equals 0.5, the rough-
ness matrix reduces to the simplified version in Eq. (1). The 
expression in Eq. (2) is used in this research to estimate the 
surface roughness.

(1)G =
�∗
max

C + 1
,

(2)G = 2A0

�*
max

C + 1
,

Fig. 1  Cumulative distribution of potential contact area ratio A�∗ as a 
function of the various threshold values of apparent dip �∗ (°) (Gras-
selli 2001)
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3  Denoising Laser Range Data Using 
Wavelets

Terrestrial laser scanner principles and limitations are enu-
merated below, along with the wavelet-denoising procedure.

3.1  Terrestrial Laser Scanning

Terrestrial laser scanner has a ranging and scanning unit for 
performing measurements. Range can be measured based on 
roundtrip time-of-flight (TOF scanner) or phase shift (phase 
scanner). Phase scanners are more precise (on the order of 
1 mm), but have a limited range of a few tens of metres. 
TOF scanners have a precision in the order of 3–5 mm and 
range of up to a few kilometres, and are commonly used for 
rock mass characterization. The scanning unit consists of a 
motor-driven head with rotating mirrors to spatially redirect 
the laser beams to cover large areas. With TLS, the posi-
tion and intensity of thousands of points can be recorded 
within a few seconds, at an angular resolution typically 
smaller than 0.01°. The point position is originally recorded 
in polar coordinates, which are, in real time, recalculated 
and stored as Cartesian coordinates. Intensity is a relative 
unit less number and is influenced mainly by the reflectance 
of the target surface and the laser scanning configuration 
(Wagner 2005).

In general, the ability for TLS to capture surface rough-
ness details depends on: the effective spatial resolution of 
TLS points and the error (noise) associated with the meas-
urements. The effective resolution depends on sampling 
interval and laser beam footprint size (Lichti and Jamtsho 
2006), and causes roughness underestimation (smoothing 
effect), while the presence of intrinsic TLS noise results in 
roughness overestimation (noise effect).

TLS point cloud errors arise from the following sources 
(Soudarissanane et  al. 2011): (1) range and scan angle 
errors; (2) the scanning configuration and the material reflec-
tivity; and (3) environmental conditions including lighting, 
humidity, and temperature. With systematic errors properly 
calibrated and removed, the remaining random error repre-
sents the measurement noise. Wujanz et al. (2017) showed 
that the range noise � can be jointly considered as a function 
of backscattered signal strength or intensity I and proposed a 

one-term power series model � = a × Ib , where the unknown 
parameters a and b are determined within least-squares 
regression.

3.2  Wavelet Denoising

The wavelet transform (WT) is an extension of the classical 
Fourier transform. The WT basis functions (mother wave-
lets) exist in space, frequency, and amplitude, are irregu-
lar and asymmetric, and have limited duration. This makes 
the WT particularly suitable for natural rock surfaces that 
typically contain finite, non-periodic, and/or non-stationary 
signals that are characterized by discontinuities and sharp 
peaks. Scaling and shifting are central concepts of the WT. 
Scaling refers to the process of stretching or shrinking the 
wavelet in space, thus changing the frequency. Shifting a 
wavelet refers to delaying or advancing the onset of the 
wavelet along the length of the signal. The input signal is 
transformed into the space–frequency domain, where the 
particular unwanted or unneeded space or frequency com-
ponents can be removed. The discrete wavelet transform 
(DWT) was developed to enable unique signal reconstruc-
tion using orthogonal wavelets and has, therefore, been 
widely applied for denoising and compression (Donoho 
1995). The DWT has been adopted in this research.

The main steps of wavelet denoising involve multi-level 
signal decomposition, thresholding of detail coefficients, 
and signal reconstruction (Fig. 2). The signal is first decom-
posed (filtered) into several levels (j = 1,…,N) of approxi-
mation coefficients, cAj, and detail coefficients, cDj. This 
is performed using a DWT, a mother wavelet (filter), and 
N decomposition levels. An example of two-level DWT 
is shown in Fig. 3. Approximation and detail components 
contain low- and high-frequency contents, respectively. 
Next, an appropriate threshold value is calculated and cDj 
values below the threshold are discarded, because they are 
assumed to represent only noise. The cDj values above the 
threshold can be reduced, depending on the chosen threshold 
mode. The thresholding is intended to suppress the noise and 
preserve the original surface. Finally, the surface is recon-
structed using the original cAN of the last level N and the 
modified cDj from levels 1 to N (j = 1,…,N).

Fig. 2  Main steps of wavelet 
denoising
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In this research, two DWT methods are tested; the con-
ventional decimated DWT (e.g. Daubechies 1992; Donoho 
1995) and its undecimated version, referred to as the station-
ary wavelet transform, or SWT (Coifman and Donoho 1995). 
Advantages of SWT are that it is shift invariant, provides 
more precise information regarding frequency localization, 
enables direct correlation of the space scale to the original 
data, reduces the edge effect (Coifman and Donoho 1995; 
Buades et al. 2004), and shows superior performance for 
image denoising (Gyaourova et al. 2002; Starck et al. 2004). 
For denoising 3D rock surfaces, 2D DWT and 2D SWT are 
used, where the input signal is a 2.5D grid (an image).

The threshold value (T) is a key to successful wavelet 
denoising, and is, in general, calculated as follows:

where � is the standard deviation of the noise and T0 is the 
threshold chosen according to one of the threshold selec-
tion methods. In the work presented herein, the local fixed-
form universal (Donoho and Johnstone 1995) and the global 
penalised (Birgé and Massart 1997) threshold selection 
methods are tested. The local fixed-form universal threshold 
is used most commonly if the signal-to-noise ratio is small. 
The global-penalised threshold is a variant of the fixed-form 
and includes an adjustable (sparsity) parameter. A higher 

(3)T = � × T0,

sparsity parameter returns a higher threshold, resulting in 
more coefficients being eliminated and a sparser (smoother) 
signal representation. In this research, the default sparsity 
parameter values for penalised low, penalised medium, and 
penalised high thresholds were tested. The noise level � is 
estimated as a robust standard deviation of first-level detail 
coefficients cD1 (Donoho and Johnstone 1995) and is defined 
as �e:

4  Experiments and Results

The experiments described below were conducted to evalu-
ate the effect of TLS noise on rock surface roughness and 
to analyse TLS noise details. The experiments were also 
designed to investigate optimal wavelet-denoising proce-
dures in relation to: (1) threshold selection method (fixed 
form or penalised); (2) wavelet transform (DWT or SWT); 
and (3) denoising direction (range or surface denoising). 
Comparative analyses of noisy and denoised TLS data, and 
ATOS data based on the Grasselli parameter values were 
performed for different scanning configurations, and rock 
reflectivity and roughness characteristics.

4.1  Data Acquisition

The four rock samples comprising the experimental data set 
are shown in Fig. 4, along with the reference direction for 
calculating the Grasselli parameter.

Each sample was fixed on the wooden board equipped 
with four 10 cm square TLS black–white targets on top of 
which a 7 mm circular ATOS black–white target was pasted 
(see Fig. 5, right). The board with samples and targets was 
simultaneously scanned with the terrestrial laser scanner 
Riegl VZ400 and the optical 3D coordinate measuring sen-
sor GOM ATOS I (Fig. 5). The key technical specifications 
of these sensors are summarized in Table 1. The principles 
of terrestrial laser scanner and 3D optical scanner are, in 
more detail, explained in, e.g., (Pfeifer and Briese 2007) 

(4)�e = median(||cD1
|
|)∕0.6745.

Fig. 3  Two-level (N = 2) discrete wavelet transform (DWT) decompo-
sition of a signal using high-pass (HP) and low-pass (LP) filters

Fig. 4  Rock samples 20 × 30 cm in plan dimensions mounted to a wooden board. The reference (zero) analysis direction for calculating the Gras-
selli parameter is indicated in the left
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and (Hong et al. 2006), respectively. The black–white targets 
included on the sample mounting board were needed to co-
register the TLS and ATOS data in postprocessing. High-
precision TLS target centers were measured in the point 
cloud by applying an algorithm based on image matching 
(Kregar et al. 2013) and ATOS target centers were identified 
automatically with built-in software.

For each sample, the TLS scans were acquired at 10 m 
intervals in the range of 10–60 m. For each range position, 
scans were performed perpendicular and obliquely to the 
mean rock plane (exception of an oblique scan that was not 
performed at the 60 m range, because of the low point reso-
lution), resulting in 11 data sets. For the oblique orienta-
tions, the mean sample plane was rotated about a vertical 
axis and the angle between the plane normal and the TLS 
line of sight was between 25° and 47°. Table 2 summarizes 
the scanning configurations and is consistent with terminol-
ogy presented in data graphs.

The scanning resolution on the rock surface ranged from 
approximately 0.2–2 mm. For a filtered 3D point cloud, 

Cartesian (XS, YS, ZS) and polar (Φ, Θ, R) coordinates along 
with raw intensity values were exported in the scanner coor-
dinate system.

ATOS data were acquired at a range of approximately 
0.7 m in an indoor laboratory environment. Changing the 
position of sensor head with respect to the rock sample, 
shadow zones were eliminated, and a full and detailed 3D 
surface model was acquired. 3D images were automatically 
merged into a single point cloud with the help of the cir-
cular black and white targets (diameter 7 mm) sticked on 
the rock surface (see Fig. 4, basalt and clay stone samples). 
The ATOS high point density was reduced to the TLS point 
density of approximately 1 point/mm2 using the subsample 
tool in CloudCompare (2018) to eliminate the influence of 
data resolution on roughness comparisons.

4.2  Data Processing

The overall workflow involved in wavelet denoising of TLS 
data and performing a comparative analysis of Grasselli 

Fig. 5  The Riegl VZ400 
(left), GOM ATOS I (middle) 
measurement set-ups and the 
10 cm squared TLS black–white 
target with 7 mm circular ATOS 
black–white target pasted in the 
centre (right)

Table 1  Specifications of Riegl 
VZ400 and GOM ATOS I 
sensors

Riegl VZ400 GOM ATOS I

Measurement range 1.5–500 m (at 80% reflectivity) 0.65–1 m
Precision/accuracy 3 mm/5 mm 0.007–0.07 mm/unknown
Spot or pixel size 6.5 mm beam aperture

+ 0.3 mrad beam divergence
0.04–1.00 mm

Point spacing Min. vertical and horizontal angular 
scanning step is 0.0024°

0.04–1.0 mm

Measurement rate (points/s) 42 k (long-range mode) or
122 k (high-speed mode)

1000 k

Measuring FOV or area 360° × 100° 30 × 40 mm–1000 × 800 mm

Table 2  Summary of 11 TLS scanning configurations; 6 distances from 10 to 60 m and two scanning directions, perpendicular (Per) and oblique 
(Obl)

Scanning configuration 1 2 3 4 5 6 7 8 9 10 11

Range (m) 10 20 30 40 50 60
Scan. direction Per Obl Per Obl Per Obl Per Obl Per Obl Per
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roughness parameters is depicted in Fig. 6 and enumerated 
below. The processing was performed in Matlab.

Wavelet denoising in 2D is an image processing tech-
nique requiring a full matrix (an image). Therefore, a 
range image was constructed from randomly scattered TLS 
points (Φ, Θ, R) as follows:

1. In the ΦΘ-plane, a rectangle including the rock sur-
face to be denoised plus a surrounding buffer zone was 
defined. The buffer zone is necessary to prevent edge 
artefacts from contaminating the results of rock surface 
denoising.

2. Within the rectangle, a regular grid was created with 
an angular spacing equal to 1 mm at the corresponding 

Fig. 6  Data processing work-
flow for wavelet denoising of 
TLS data and performing a 
comparative analysis of Gras-
selli roughness parameters
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scanning range. The grid point spacing of 1 mm was 
selected to be equal to or larger than the scanning inter-
val for most of the TLS data sets. Creating a regular grid 
assured uniform point density among the TLS data sets.

3. For each grid point, the range value was interpolated 
using the Nearest-Neighbour (NN) method.

In 2D wavelet denoising, range image was decomposed 
with the two wavelet transform variants, DWT and SWT, 
applying the most general and widely used Daubechies wave-
let db3. The number of decomposition levels was determined 
according to the range image size and was set to 3. The DWT 
and SWT detail coefficients were then thresholded with the 
local fixed form and three global-penalised thresholds, penal-
ised high, medium, and low, respectively. All thresholds were 
applied in the hard mode, following the previous findings that 
hard thresholding is more suitable for rock surface roughness 
estimation than soft thresholding (Khoshelham et al. 2011; 
Bitenc et al. 2015a). This denoising process resulted in a new 
set of range-denoised (R-den) images.

For surface reconstruction, only the grid points, which have 
an original TLS point closer than the defined angular spacing, 
were used. These subsets of grid points are referred to as valid 
grid points. For surface denoising, and roughness estimation 
and comparison, polar coordinates of valid grid points were 
transformed to Cartesian coordinates. These transformed TLS 
point clouds and the ATOS point cloud were then co-registered 
in a common coordinate system. It was defined by the targets 
on the wooden board and it is referred to as the mean plane 
coordinate system.

A surface image was created analogous to range image con-
struction, except a rectangular area was defined in the mean 
plane. Following the wavelet-denoising procedure for range 
image, the surface-denoised (Z-den) images are obtained. To 
preserve point distribution in the mean plane, the denoised 
Z-values were linearly interpolated from Z-den images, result-
ing in the Z-den point cloud.

Noisy, R-den, Z-den, and ATOS point clouds within an 
identical rectangular area, which was defined in the mean 
plane coordinate system and is referred to as the common area, 
were used for roughness comparisons. The Grasselli parameter 
(G) was calculated for 72 analysis directions (βi, i = 1,…,72) 
spanning 5° increments. The resulting Grasselli parameters 
are denoted as Gn for the noisy data set, Gr for R-den and Gz 
for Z-den data sets, and GATOS for the ATOS data set. The 
accuracy of roughness estimates for noisy and denoised TLS 
surfaces GTLS was judged by comparing GTLS to GATOS, and 
calculating a mean relative difference across all the analysis 
directions. This measure is referred to as the Grasselli param-
eter estimation error and is expressed as follows:

(5)error (%) =
1

72

72∑

i=1

(
GTLS,�i − GATOS,�i

GATOS,�i

× 100

)

.

4.3  Results and Discussion

Details regarding rock surface representations, TLS noise 
effects, noise estimation, and optimal denoising procedure 
for rock discontinuity roughness estimation are summarized 
below.

4.3.1  Rock Surface Representations

For visual impressions of the rock samples, Fig. 7 shows the 
triangulated ATOS surfaces (Fig. 7a–d) and representative 
examples of noisy (Fig. 7e–h) and range-denoised (Fig. 7i–l) 
TLS surfaces. Noisy surfaces represent TLS data acquired 
at a range of 30 m in the perpendicular direction, and the 
range-denoised surfaces were obtained using the SWT with 
penalised high threshold, R-den SWTph. The differences of 
ATOS surface and TLS noisy (dZnoisy) and denoised sur-
faces (dZR-den), are shown in Fig. 7, m–p and r–u, respec-
tively. Values of dZnoisy are larger in areas of fast changing 
morphology, due to the lower resolution of TLS data. High 
dZnoisy values appear randomly across the area of sample 
0936 and are probably due to variations in surface reflectiv-
ity. The pattern of dZR-den values corresponds to the pat-
tern of dZnoisy. In addition, in case of sample 0727, higher 
dZR-den values can be observed along surface discontinui-
ties (ridges), which indicate that wavelet denoising smoothes 
sharp edges. Medians and robust standard deviations (robust 
STD) of height differences for the 11 scanning configura-
tions are presented in Table 3.

Negative median height differences indicate systematic 
co-registration errors, which result from uncertainties of 
TLS target centre estimation (Kregar et al. 2013), but do 
not influence surface roughness values. The robust STD of 
dZnoisy values is an indicator of TLS noise level, and attenu-
ates after range denoising is performed.

4.3.2  TLS Noise Effect on the Grasselli Parameter

The Grasselli parameter was computed for reference ATOS 
data (GATOS) to obtain insight to the sample roughness 
characteristics, and to facilitate roughness comparisons. 
Figure 8 depicts the direction-dependent GATOS for the four 
rock surfaces, and Table 4 summarizes the common area 
size, and median robust STD values of GATOS for all analysis 
directions. Sample 1309 is the roughest, with the median 
value almost three times higher than the smoothest sam-
ple 0727. Sample 1309 also has the least variability with 
analysis direction as indicated by the low robust STD. The 
robust STD for sample 0936 shows the highest roughness 
anisotropy.

GATOS values were compared to Gn to study the effect 
of TLS noise on roughness. As shown in Fig. 9, the Gras-
selli parameter is systematically overestimated for all four 
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Fig. 7  Rock sample surface representations: a–d ATOS surfaces, e–h 
representative TLS noisy surfaces, i–l range-denoised TLS surfaces 
using SWT with penalised high threshold, R-den SWTph, m–p sur-

face differences dZnoisy (ATOS—noisy surface), and r–u surface dif-
ferences dZR-den (ATOS—R-den SWTph)

Table 3  Height differences (median ± robust STD in millimetres) of ATOS and TLS noisy surfaces (dZnoisy), and range-denoised surfaces using 
SWT with penalised high threshold (dZR-den), for the 11 scanning configurations (Scan. Conf.) and the 4 rock samples

Scan. conf. Sample 0727 Sample 0934 Sample 0936 Sample 1309

dZnoisy dZR-den dZnoisy dZR-den dZnoisy dZR-den dZnoisy dZR-den

1 − 5.3 ± 1.0 − 5.3 ± 0.4 − 4.7 ± 1.2 − 4.7 ± 0.7 − 1.6 ± 1.5 − 1.6 ± 1.0 − 1.7 ± 1.5 − 1.7 ± 1.0
2 − 4.3 ± 0.9 − 4.4 ± 0.5 − 3.9 ± 1.0 − 3.9 ± 0.6 − 1.6 ± 1.4 − 1.6 ± 1.0 − 1.2 ± 1.2 − 1.2 ± 0.9
3 − 5.0 ± 1.0 − 5.0 ± 0.4 − 4.2 ± 1.5 − 4.3 ± 1.3 − 1.7 ± 1.5 − 1.8 ± 1.2 − 2.0 ± 1.4 − 2.0 ± 1.1
4 − 3.8 ± 0.9 − 3.9 ± 0.6 − 4.2 ± 1.1 − 4.2 ± 0.8 − 0.7 ± 1.3 − 0.8 ± 1.1 − 1.5 ± 1.3 − 1.5 ± 1.0
5 − 4.8 ± 1.2 − 4.9 ± 0.4 − 4.5 ± 1.1 − 4.5 ± 0.6 − 1.4 ± 1.4 − 1.5 ± 1.1 − 1.6 ± 1.5 − 1.6 ± 1.2
6 − 3.8 ± 1.1 − 3.8 ± 0.6 − 3.6 ± 1.2 − 3.6 ± 0.8 − 1.1 ± 1.4 − 1.1 ± 1.2 − 1.1 ± 1.4 − 1.2 ± 1.2
7 − 3.8 ± 1.5 − 3.8 ± 0.5 − 3.6 ± 1.3 − 3.6 ± 0.7 − 1.4 ± 1.4 − 1.4 ± 1.1 − 1.9 ± 1.7 − 1.9 ± 1.4
8 − 2.3 ± 1.4 − 2.4 ± 0.6 − 2.0 ± 1.5 − 2.0 ± 1.0 − 0.4 ± 1.4 − 0.4 ± 1.3 − 1.6 ± 1.6 − 1.6 ± 1.4
9 − 2.9 ± 1.8 − 3.0 ± 0.5 − 2.4 ± 1.7 − 2.4 ± 0.9 − 1.2 ± 1.6 − 1.1 ± 1.3 − 1.4 ± 1.8 − 1.4 ± 1.5
10 − 2.8 ± 1.7 − 2.9 ± 0.8 − 2.2 ± 1.7 − 2.2 ± 1.0 − 0.5 ± 1.6 − 0.5 ± 1.3 − 1.9 ± 1.9 − 1.8 ± 1.7
11 − 2.9 ± 2.3 − 3.1 ± 0.8 − 2.8 ± 2.1 − 2.9 ± 1.2 − 1.9 ± 1.8 − 1.9 ± 1.5 − 1.3 ± 2.1 − 1.3 ± 1.7
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samples. The darkest and smoothest sample 0727 is most 
severely influenced by the noise, while the bright and 
roughest sample 1309 is least influenced. The noise effect 
for sample 0727 increases with range, but this is not the 
case for sample 1309. The errors for samples 0727 and 
1309 range from approximately 550–850% and 105–130%, 
respectively. For samples 0727, 0934, and 0936, the surface 
appears smoother when scanned in oblique directions (even 
configuration numbers).

For smoother surfaces (samples 0727 and 0934), the 
noise effect increases with increasing range. However, for 
rougher surfaces (sample 0936 and 1309), the noise effect is 
balanced with the smoothing effect caused by the laser beam 
footprint size, which increases with scanning range and inci-
dence angle. The lower noise effect for surfaces scanned in 
oblique directions is a consequence of projecting the noise 
onto the mean plane.

4.3.3  Noise Estimation

The noise ( �e ) was estimated using Eq. (4), where first-level 
detail coefficients were obtained from DWT and SWT trans-
forms of range and surface images. The dependence of �e 
on recorded intensity is for all data sets and decomposition 
combinations, as depicted in Fig. 10, together with the fitted 
curve of the one-term power-series (Wujanz et al. 2017) and 
the root-mean-square error (RMSE) as a measure of good-
ness of fit. Figure 10a, b shows these results for range and 
surface images, respectively.

These data show that σe is inversely proportional to the 
mean intensity, that σe using SWT is slightly higher than 
for DWT, and the σe values calculated from range images 
are less disperse and have smaller RMSE than for surface 
images.

These results suggest that the dependence of noise on 
scanning configuration and surface reflectivity can be jointly 
explained by the TLS measurements of intensity. Highly 
reflective limestone (sample 1309) and schist (sample 0936) 
entail higher intensity values and lower σe compared to dark 
basalt (sample 0727) and clay stone (sample 0934), which 
absorb laser light causing lower intensity values and, conse-
quently, higher σe. However, the strong reflection of sample 
0936 scanned at 10 m range in the perpendicular direction 
results in higher σe.

Figure 11 shows the σe dependence on the scanning con-
figuration estimated using SWT (DWT estimates are similar 
and, therefore, excluded). The zig-zag pattern of σe calcu-
lated for surface images (Z-den) shows that oblique scans 
have lower σe than perpendicular scans. The σe calculated 
for range images (R-den) tends to increase with the range 
and incidence angle. Exceptions are the high σe for sam-
ple 0936 (configuration 8), and the low σe for sample 1309 
(configuration 11). Possible reasons for the 0936 anomaly 
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Fig. 8  Direction-dependent reference ATOS Grasselli parameter 
GATOS for the four rock samples

Table 4  The common area size, and the median and robust STD of 
reference ATOS Grasselli parameters (GATOS) calculated for 72 analy-
sis directions

Sample Common area (mm) Median ± robust 
STD GATOS (°)

0727 203.3 × 142.6 7.6 ± 2.5
0934 244.2 × 148.4 11.8 ± 3.2
0936 216.7 × 147.5 14.3 ± 5.7
1309 213.6 × 161.1 23.4 ± 0.8
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Fig. 9  Error (%) for noisy TLS surfaces of the 4 samples and 11 scan-
ning configurations
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include the high incidence angle (approximately 47°), and 
the 1309 anomaly may be related to low original point den-
sity of 2 mm (compared to 1 mm range image pixel size).

The results of Figs. 10 and 11 suggest that noise estimated 
from wavelet components of range images is more reliable 
than for surface images.

4.3.4  Optimal Wavelet‑Denoising Procedure

To evaluate how the threshold selection methods, wave-
let transform methods and denoising directions influence 

wavelet-denoising results; the errors for denoised surfaces 
are shown in Fig. 12 and discussed below.

Threshold selection method Low thresholds preserve most 
of the coefficients (conservative thresholding) and result in a 
rougher denoised surface. High thresholds, on the opposite, 
remove more coefficients, thus return a smoother surface. 
The error depends on the actual surface roughness and scan-
ning configuration. With the Grasselli parameter overesti-
mated up to 350%, the penalised low threshold is inefficient 
in case of sample 0727. This threshold is better suited for 
rougher sample 1309, where the error varies approximately 
between 70% and − 50%. The local fixed form and global 
penalised high thresholds return similar errors, which are 
the smallest for all the scanning configurations in case of 
smoother samples 0727 and 0934. However, those thresh-
olds underestimate the actual surface roughness of rougher 
samples 0936 and 1309, especially for longer ranges.

Possible reasons for underestimated Grasselli parameters 
for rougher samples include the removal of some surface 
details due to high thresholds, and increase in the laser beam 
footprint size with scanning range. A solution for the first 
cause is to apply more conservative thresholds like penalised 
medium or penalised low (Bitenc et al. 2015b).

DWT versus SWT Denoised surfaces using the SWT are 
smoother than for the DWT. The reason is that the SWT 
reconstruction process averages slightly shifted DWTs. 
Because the SWT error is mostly smaller compared to 
the DWT for short ranges and their error differences are 
relatively small for longer ranges, the SWT is a preferred 
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a range; and b surface images versus mean intensity. A one-term 

power-series curve is fitted into the data and the root-mean-square 
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wavelet transform for its advantages as stationary invariance 
and reduced edge effect.

Range versus surface denoising The errors for range and 
surface denoising results are shown in Fig. 13. The results 
show a considerable amount of noise removal when com-
pared to the error of noisy TLS surfaces shown in Fig. 9. 
The Grasselli parameter of denoised surfaces for samples 
0727, 0934, and 0936 is over- or underestimated by maxi-
mum 39%, and for the roughest sample 1309, the parameter 
is underestimated up to 57%. For most samples and scanning 
configurations, range-denoised surfaces appear smoother 
than surface denoised, as a consequence of larger σe and, 
thus, higher thresholds.

5  Summary and Conclusions

In this paper, advanced wavelet-denoising methods were 
applied to remove TLS range noise, to capture surface mor-
phology details for quantifying rock surface roughness. The 
TLS data were acquired at different ranges and incidence 
angles, for four rock samples having different roughness and 
reflectivity. Two wavelet transforms, DWT and SWT, were 
used in combination with four threshold selection methods. 
Denoising was executed in the direction of range measure-
ments (range denoising) and in direction of surface rough-
ness measurements perpendicular to the mean plane (surface 
denoising). By systematically comparing reference ATOS 
surfaces to noisy and denoised TLS surfaces, the influence 
of noise and noise estimations from the TLS data has been 
quantified, and the success of wavelet-denoising procedures 
has been demonstrated.

The analyses have shown roughness over-estimation due 
to the TLS noise, especially for smoother natural rock sur-
faces. By applying wavelet-denoising procedures, TLS data 
were substantially improved and more reliable estimates of 
rock surface roughness were obtained. However, the suc-
cess depends on the threshold value defined by the threshold 
selection method and noise estimation.

The results of this study suggest that the optimal thresh-
old selection method should be chosen based on surface 
roughness properties. High thresholds, including fixed-form 

or penalised high, successfully eliminated the high noise 
effect for smoother surfaces. More conservative thresholds 
(removing less coefficients), including penalised low, have 
shown to be more appropriate for rougher surfaces, where 
the noise is mixed with surface details.

The TLS range noise is not precisely known a priori and 
depends on surface reflectivity and scanning geometry. In 
this research, the noise (σe) was estimated with the Median 
Absolute Deviation of the first-level detail coefficients 
obtained from the DWT and SWT of range and surface 
images. The results show that σe values calculated from 
both wavelet transforms are similar and are, especially when 
using range images, highly correlated with the raw inten-
sity values. The observed inversely proportional functional 
relationship coincides with the intensity-based stochastical 
model presented in the previous research (Wujanz et al. 
2017). However, the σe depends on the image construction 
method. The grid (pixel) size should be equal to or bigger 
than the TLS sampling interval, and the Nearest-Neighbour 
(NN) interpolation method is preferred to the mean. Our 
initial studies showed that adopting the mean value within a 
radius results in lower σe as compared to NN.

The comparative analysis of denoised surfaces using 
DWT and SWT shows that the SWT surfaces are smoother. 
This finding is attributed to the SWT reconstruction algo-
rithm, which involves the averaging of slightly shifted 
DWTs. Since the differences of surface rouhgness are small, 
the SWT is preferred due to its stationary invariance and 
ability to reduce edge effects.

Finally, the main finding of this research is that range 
denoising outperforms surface denoising, because it returns 
more reliable σe for arbitrary scanning configurations. If the 
TLS polar coordinates are available, denoising should pref-
erably be performed in the range direction.

The Grasselli parameter is highly sensitive to TLS noise. 
Fractal representations of surface features have also been 
found to be sensitive to noise (Khoshelham et al. 2011), as 
well as roughness values obtained through virtual compass 
and disc-clinometer measurements (Bitenc et al. 2015c). 
Further research is warranted to assess the relative sensitiv-
ity of alternate roughness parameters to TLS noise.

To establish the optimal scanning configuration for dis-
cerning the rock surface details, the combined influence of 
TLS noise and the laser beam footprint size are deserving 
of future research. This is because the influence of noise 
is attenuated by the smoothing effect of the footprint size, 
particularly for rough surfaces combined with increasing 
scanning range and incidence angle. Constructing a full 
2.5D image from a scattered 3D point cloud remains a chal-
lenge in applying image denoising methods to TLS data. A 
possible solution is to utilize diffusion wavelets (Coifman 
and Maggioni 2006), which are an extension of the classical 

Fig. 12  Error (%) of range (a–d) and surface (e–h) denoised surfaces 
using DWT (solid line with circles) and SWT (dashed line with tri-
angles) in combination with the four thresholds (color-coded lines), 
local fixed form (fl), and global penalised high (ph), medium (pm) 
and low (pl), versus scanning configuration for sample a, e 0727, b, f 
0934, c, g 0936, and d, h 1309

◂
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wavelet transform and have been shown to function well for 
discrete structures such as point.
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