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Abstract A model for fragmentation in bench blasting is

developed from dimensional analysis adapted from aster-

oid collision theory, to which two factors have been added:

one describing the discontinuities spacing and orientation

and another the delay between successive contiguous shots.

The formulae are calibrated by nonlinear fits to 169 bench

blasts in different sites and rock types, bench geometries

and delay times, for which the blast design data and the

size distributions of the muckpile obtained by sieving were

available. Percentile sizes of the fragments distribution are

obtained as the product of a rock mass structural factor, a

rock strength-to-explosive energy ratio, a bench shape

factor, a scale factor or characteristic size and a function of

the in-row delay. The rock structure is described by means

of the joints’ mean spacing and orientation with respect to

the free face. The strength property chosen is the strain

energy at rupture that, together with the explosive energy

density, forms a combined rock strength/explosive energy

factor. The model is applicable from 5 to 100 percentile

sizes, with all parameters determined from the fits signifi-

cant to a 0.05 level. The expected error of the prediction is

below 25% at any percentile. These errors are half to one-

third of the errors expected with the best prediction models

available to date.

Keywords Rock blasting � Fragmentation prediction � Size
distribution � Dimensional analysis � Kuz-Ram � Swebrec

1 Introduction

The main goal of rock blasting is the fragmentation of the

rock mass. Prediction of the size distribution of the frag-

mented rock from the rock mass characteristics, the blast

design parameters (both in terms of the geometry and of the

initiation sequence) and the explosive properties is a

challenge that has been undertaken for decades, and is

currently available to the blasting engineer in the form of

formulae that relate the parameters of a given size distri-

bution function to the rock properties and the blast design

parameters.

One of the most relevant fragmentation by blasting

formulae is the Kuznetsov (1973) one:

xm ¼ Aq�0:8Q1=6 ð1Þ

where xm is the mean fragment size in cm, A is a rock

strength factor in the range 7–13, q is the powder factor (or

specific charge, or charge concentration—explosive mass

per unit rock volume) in kg/m3 and Q is the charge per hole

in kg. These three factors comply essentially with the

expected behavior of rock fragmentation by blasting.

Essentially, the Kuznetsov formula means that (1) the

harder the rock, the bigger the fragments; (2) the higher the

specific amount (powder factor) of explosive, the smaller

the fragments; and (3) the larger the scale (the charge per

hole is used as scale factor, and larger charges per hole

indicate larger drill patterns), the larger the fragments. In

Eq. 1, the amounts of explosive in the powder factor and

the charge per hole are given in TNT equivalent mass.

Such equivalent mass can be calculated multiplying the

mass of explosive by its relative strength with respect to

TNT; if such strength is h, Eq. 1 can be written as (Kuz-

netsov 1973, Eq. 12):
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xm ¼ Aq�0:8Q1=6h�19=30 ð2Þ

in which q and Q refer to actual mass of explosive of

relative strength h. Equation 1 or its equivalent Eq. 2 is

written originally for the mean size xm of a Rosin–Rammler

(RR) distribution (Rosin and Rammler 1933; Weibull

1939, 1951) that was assumed to accurately describe the

fragmented rock. The Rosin–Rammler, or Weibull,

cumulative distribution function is:

P xð Þ ¼ 1� exp � x

xc

� �n� �
¼ 1� exp � ln 2

x

x50

� �n� �

ð3Þ

where xc is the characteristic size (the size for which the

passing fraction is 1 - 1/e, or 63.2%) and n is a shape

factor, usually quoted as uniformity index; the expression

on the right is written with the median size x50 instead of

xc. The use of the RR distribution for rock fragmented by

blasting had been positively assessed by Baron and Sir-

otyuk (1967) and Koshelev et al. (1971), which is used by

Kuznetsov (1973).

The Soviet literature of the time does not make it

entirely clear whether Eqs. 1 or 2 refer to the mean or the

characteristic size (which value is close to the mean if the

shape index of the distribution is not much different than

one). There has been some controversy (Spathis

2004, 2009, 2012, 2016; Ouchterlony 2016a, b) about the

actual size that the Kuznetsov formula was addressing. For

all practical purposes, it has been calibrated, tailored and

used over the years to estimate the median size x50 (Cun-

ningham 1987, 2005; Rollins and Wang 1990; Raina et al.

2002, 2009; Liu 2006; Cáceres Saavedra et al. 2006;

Borquez 2006; Rodger and Gricius 2006; Vanbrabant and

Espinosa Escobar 2006; Mitrovic et al. 2009; Engin 2009;

Gheibie et al. 2009a, b; Bekkers 2009; McKenzie 2012;

Sellers et al. 2012; Faramarzi et al. 2015; Jahani and Taji

2015; Singh et al. 2015; Adebola et al. 2016).

Kuznetsov derived his formula based on blasting tests in

limestone specimens reported by Koshelev et al. (1971).

These consisted of eleven small- to mid-scale shots in

irregular limestone blocks, with RDX charges of

0.5–500 g. Kuznetsov then assessed the formula with some

data from large-scale tests by Marchenko (1965), 6 blasts

in limestone, 6 blasts in a medium-hard rock and 14 blasts

in hard and very hard rock (the exact rock type is not

reported, nor is the explosive used). A values recommended

by Kuznetsov were 7, 10 and 13 for medium-to-hard, hard

fissured and hard massive rocks, respectively. Kuznetsov

mentions that the mean deviation of experimental data

from the theoretical (i.e., predicted) data is ±15%; a

detailed analysis of the data and the predictions by Eqs. 1

or 2 gives a mean error of 9%, with minimum and

Table 1 Blast and fragmentation data: blast sites, rock types and references

Blast site Rock References

El Alto quarry, Spain Limestone Segarra and Sanchidrián (2003), Sanchidrián et al. (2006)

Mt. Coot-tha quarry, Australia Hornfels Kojovic et al. (1995), LeJuge and Cox (1995)

Bårarp quarry, Sweden Granitic gneiss Olsson and Bergqvist (2002), Moser et al. (2003)

Kållered quarry, Sweden Gneissic granite Gynnemo (1997)

Billingsryd quarry, Sweden Dolerite Gynnemo (1997)

Rolla quarry, MO, USA Dolomite Otterness et al. (1991)

High Forest quarry, MN, USA Dolomitic

limestone

Ash (1973), Dick et al. (1973)

Guan Shan copper mine, Jiang Shu,

China

Rhyoporphyry Ma et al. (1983)

Rolla quarry, MO, USA Dolomite Stagg and Nutting (1987)

Waterloo quarry, IA, USA Limestone Stagg et al. (1989)

St Paul Park quarry, MN, USA Dolomite Stagg and Rholl (1987)

Granite Falls quarry, MN, USA Granitic gneiss Stagg and Otterness (1995)

Manitowoc quarry, WI, USA Dolomite Stagg and Otterness (1995)

Vändle quarry, Sweden Granite Ouchterlony et al. (2005, 2006), Ouchterlony and Moser (2006), Liu et al.

(2011)

Långåsen quarry, Sweden Granodiorite Ouchterlony et al. (2010, 2015)

Rolla quarry, MO, USA Dolomite Smith (1976)

Rolla quarry, MO, USA Dolomite Brinkmann (1982)

Rolla quarry, MO, USA Dolomite Bleakney (1984)
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maximum errors of -42 and 55%, respectively (Ouchter-

lony 2016a). This matter will be re-assessed in this work.

About ten years after its publication, the Kuznetsov

formula was popularized by Cunningham (1983), who

wrote it so as to use the relative weight strength with

respect to ANFO, the standard explosive in civil applica-

tions, instead of TNT, in what became the popular Kuz-

Ram model. In his text, Cunningham uses the term ‘mean

fragment size,’ but his mathematical definition of it implies

the median; he in fact uses the symbol x50. In the Kuz-Ram

papers that followed (Cunningham 1987, 2005), the term

mean is also used but again contradicted by figures and

equations that imply x50:

x50 ¼ Aq�0:8Q1=6 RWS

115

� ��19=30

ð4Þ

Here RWS is the relative weight strength (heat of

explosion, or energy in general, ratio with respect to

ANFO, in percent; 115 is the relative weight strength of

TNT). Cunningham (1987) adapted a blastability index

proposed by Lilly (1986) to replace Kuznetsov’s numerical

rock factor:

A ¼ 0:06 � RMDþ JFþ RDIþ HFð Þ ð5Þ

The form of the rock mass description term (RMD) has

had some changes over the years; in its final form (Cun-

ningham 2005), it is:

RMD = 10 (powdery/friable), JF (if vertical joints) or

50 (massive);

JF (joint factor) = JPS (joint plane spacing) ? JPA

(joint plane angle);

JPS = 10 (average joint spacing SJ\ 0.1 m), 20

(0.1 B SJ\ 0.3 m), 80 (0.3 m B SJ\ 0.95�(B�S)1/2,
B and S being burden and spacing), 50 (SJ[ (B�S)1/2).
Cunningham (2005) incorporates a joint condition

correction factor that multiplies the joint plane spacing,

with value 1, 1.5 and 2 for tight, relaxed and gouge-filled

joints, respectively;

JPA = 20 (dip out of face), 30 (strike perpendicular to

face) or 40 (dip into face). Cunningham does not give a

JPA value for horizontal planes but Lilly (1986) assigns

them JPA = 10.

The rock density influence (RDI) is:

RDI = 0.025�q - 50.

q being density (kg/m3). Finally, the hardness factor

(HF) is:

HF = E/3 if E\ 50, or

HF = rc/5 if E[ 50.

rc and E being uniaxial compressive strength (MPa) and

Young’s modulus (GPa).

The form of RMD implies that JF may enter twice in

Eq. 5, directly and through RMD. The direct term in Eq. 5

Cunningham (1987) is in all probability a printing error and

Cunningham (2005) removed it in later Kuz-Ram model

updates, so that:

A ¼ 0:06 � RMDþ RDIþ HFð Þ ð6Þ

Cunningham (2005) also incorporated a delay-depen-

dent factor in the central size formula, based on Bergmann

et al. (1974) data:

At ¼ 0:66
DT
Tmax

� �3

� 0:13
DT
Tmax

� �2

� 1:58
DT
Tmax

� �
þ 2:1;

� DT
Tmax

\1

At ¼ 0:9þ 0:1
DT
Tmax

� 1

� �
;

DT
Tmax

[ 1 ð7Þ

where Tmax ¼ 15:6B=cP; DT is in-row delay (ms), B is

burden (m) and cP is P-wave velocity (m/ms). Note that At

is not continuous at DT/Tmax = 1, but replacing the con-

stant term 2.1 by 2.05 would make it so.

As previously stated, the various factors (e.g., the rock

description pre-factor 0.06) were tailored by Cunningham

to fit the median. The final form of the Kuznetsov–Cun-

ningham formula should be (Cunningham 2005):

x50 ¼ AAtq
�0:8Q1=6 RWS

115

� ��19=30

C Að Þ ð8Þ

The factor C(A) is included in order to correct the pre-

dicted median size, to be determined experimentally from

data in a given site; according to Cunningham, it would

normally be within the range 0.5\C(A)\ 2.0. This sug-

gests a prediction error expected of up to about 100%. This

is larger than Kuznetsov’s (1973) error bounds, but while

Kuznetsov’s A values lie in the range 7–13, Cunningham

(1987) covers the much wider range 0.8–22.

Besides adapting Kuznetsov’s central size formula,

Cunningham (1983) followed up the conclusion of the

Soviet researchers that the fragmented rock could be

described by the RR function and formulated an equation

for the uniformity or shape index (n in Eq. 3); in its final

form, after several corrections and refinements (Cunning-

ham 1987, 2005), the shape index for the RR distribution of

rock fragments is:

n ¼ ns 2� 0:03
B

d

� �0:5
1þ S=B

2

� �0:5

1�W

B

� �
lc

H

� �0:3
A

6

� �0:3

CðnÞ

ð9Þ

where W is drilling deviation, lc is charge length, H is

bench height and ns is a factor that accounts for the delay

precision:
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ns ¼ 0:206þ 1� Rs=4ð Þ0:8; Rs ¼ 6st=DT ð10Þ

where st is the standard deviation of the initiation system.

The factor C(n) is, again, a variable correction to match

experimental data if available; no expected range is given

to it.1

The Kuznetsov–Cunningham formula is physically

sound, as previously discussed. Similar forms may be

obtained applying asteroid collision principles (Holsapple

and Schmidt 1987; Housen and Holsapple 1990) as shown

by Ouchterlony (2009b). However, the experimental data

supporting the median size expression are, as mentioned

above, extremely limited. Furthermore, no experimental

data supporting the shape index formula seem to have been

reported. The initial shape index dependence on geometry

appears to originate in 2D blast modeling by Lownds

(1983) (Cunninghan 1983, p. 441).2

The assessment of the Kuz-Ram model by, e.g., the

JKMRC (Kanchibotla et al. 1999; Thornton et al. 2001;

Brunton et al. 2001) and other publications (e.g., Ford 1997;

Morin and Ficarazzo 2006; Gheibie et al. 2009a, b; Hafsaoui

andTalhi 2009; Strelec et al. 2011; Tosun et al. 2014) seldom

include hard experimental data and are often obscured by the

lack of real knowledge of the resulting muckpile fragmen-

tation, which hinders a reliable error assessment. A generally

accepted weakness of the Kuz-Rammodel is that it normally

predicts too few fines in a muck pile. This led to model

extensions involving one RR function for the coarse material

and another for the fines, the crush zone model (CZM,

Kanchibotla et al. 1999; Thornton et al. 2001; Brunton et al.

2001) and the two-component model (TCM, Djordjevic

1999) from the JKMRC. Of these, the CZM has become the

one more used. The CZM rests on the assumption that the

fines come from a volume around the borehole in which the

rock may fail under compression (it is ‘crushed’); the radius

of the crush zone is:

rc ¼ rb

ffiffiffiffiffi
Pb

rc

r
ð11Þ

where rb is the borehole radius, Pb is the borehole pressure

and rc is the uniaxial compressive strength. The crushed

volume is a fraction Fc of the volume excavated by each

borehole, BHS:

Fc ¼
p r2c � r2b
� �

H � lsð Þ
BHS

ð12Þ

where ls is the stemming length. The crushed zone

maximum size of fragments is assumed to be 1 mm. The

CZM uses the Kuz-Ram model3 for the coarse part (above

50% passing for competent rock, rc[ 50 MPa, and 90%

for soft rock, rc\ 10 MPa), below which a second RR

function is used, defined so as to include (for the competent

rock case) the (x50, 0.5) and (1 mm, Fc) points; for the soft

rock case, the grafting point is (x90, 0.9).
4 Such a ‘fines’ RR

function is defined by x50 and a uniformity index nf:

nf ¼
ln � ln 1�Fcð Þ

ln 2

h i
ln 1=x50 mmð Þ½ � ð13Þ

An analogous expression can be obtained for the soft

rock case.

Both the Kuz-Ram model and its CZM extension have

been assessed with the data set of 169 blasts that is

described in Sect. 3. Figure 1 shows the logarithmic errors

of the size prediction:

eL ¼ ln
x�

x

� �
ð14Þ

where x* and x are predicted and data sizes, respectively.5

The error of the Kuz-Ram and crush zone predictions in

about half of the cases (the interquartile range) lies within

an approximate range [-0.6, 0.4], roughly equivalent to

relative errors -75 to ?50% in nearly the whole percent-

age passing range. The prediction is noticeably negative-

biased (the sizes predicted are smaller than the data) in

most of the range except the upper end. Other conclusions

from Fig. 1 are that the largest bias occurs in the central

zone, which suggests that (1) the median size formula has a

limited predictive capability in terms of accuracy, with a

systematic error of some -30%; the precision (i.e., the

random error around the central value) is also limited, with

the interquartile range of about [-75, ?50%]; this pre-

diction error is larger than the assessment by Ouchterlony

(2016a) on the original Kuznetsov’s formula (-42 to 55%

maximum error), though the number of blasts used in the

present case more than quadruples the data set used by

Kuznetsov; (2) the prediction in the extremes of the range

analyzed is somewhat better than in the central range which

1 The factor (A/6)0.3 in Eq. 8 is absent in Cunningham (2005),

Eq. 14. This must be a typographical error since this factor is defined

in his Eq. 12 and present in his Table 1. The factor (A/6)0.3 introduces

a weak dependence of n on rock mass conditions.
2 As a strong indicator of the source, we take, e.g., Lownds’s Fig. 8.

From it follows the term 1 - W/B in the n-factor formula.

3 In what the CZM makes use of the Kuz-Ram formulae, their last

versions (Eqs. 6–10, Cunningham 2005) have been used. The CZM

contains an in-house redefinition of the rock factor A, which seems to

have never been officially published; it is used here in its original

form, i.e., Kuz-Ram’s rock factor.
4 Kanchibotla et al. (1999) say that ‘It is likely that for intermediate

strength rocks the point where the two distributions are joined will

vary between x50 and x90.’ How this is effected in practical

applications has not been published however.
5 Note that a log error ±ln 2 = ±0.69 means a prediction value

double or half the data value, ±ln 3 = ±1.10 corresponds to triple/

one-third, etc.

784 J. A. Sanchidrián, F. Ouchterlony

123



means that also the uniformity (the overall slope in the

size/passing plot in log–log) of the distribution is generally

overestimated.

The data from the seminal small-scale (bench height of

about 1 m) blasting tests by Otterness et al. (1991)

underscore the above. Plotting some percentile sizes as a

function of the powder factor from a selection of 10 blasts

of nearly identical geometry gives the results shown in

Fig. 2. Power laws fit each percentile size quite well (the

determination coefficients are given in the figure; both the

pre-factor and the exponent are significant in all the fits,

and the maximum p values are 0.002 for the pre-factor and

0.003 for the exponent). Ouchterlony et al. (2016) show

that such pattern requires that (1) the RR exponent would

need to be variable at different percentiles (which would

require a different function—e.g., a piecewise RR with

variable exponent), and (2) its value should depend on the

specific charge; only if the exponent of the power law xP ¼
const=qj is constant in some percentile interval, then the

RR exponent might not depend on q, but it would still need

to vary at different percentiles. This fundamental discrep-

ancy with the experimental evidence lies at the core that

the RR function with a single n value is a poor description

of the fragmentation data, and a severe hindrance for its use

in state-of-the-art fragmentation prediction models.

The xP versus specific charge convergent lines pattern

(which we call ‘fan’ plots) is a general characteristic of

fragmentation by blasting. In fact, most of the groups of

data that form the basis for this work show the same

behavior as the data in Fig. 2; power laws fit the percentile

size data to the powder factor quite well, and the exponent
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Fig. 1 Boxplots of the

prediction error for the Kuz-

Ram and crush zone models,

based on the data set of 169

blasts. Blue boxes Kuz-Ram;

magenta boxes CZM.

Horizontal lines show the ln 1.5

and -ln 1.75 levels, equivalent

to relative errors ?50 and

-75% (color figure online)
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Fig. 2 Log–log interpolated percentile size data xP for rounds #1, 2,

5, 6, 13, 14, 18, 19, 25, 29 from Otterness et al. (1991) with P = 20,

35, 50, 65 and 80%. Fitted power laws xP = A/qj are plotted (color

figure online)
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is a function of P. In well-controlled model-scale blasts,

this behavior is extremely well developed; the conse-

quences of that are discussed in Ouchterlony et al. (2016).

The facts above are not described by any known credible

theory of blast fragmentation that favors a specific frag-

ment size distribution. On the contrary, they speak in favor

of developing prediction equations for blast fragmentation

that do not depend on any specific size distribution func-

tion. Size and passing data have a clear physical meaning,

whereas shape, or uniformity, indices are just a reduced

interpretation of the data through some particular size

distribution. A median, or a 20 percentile size, even a 63.2

percentile like xc, have their full meaning without any

additional statement; however, a shape index has no real

meaning unless it is tied to a particular distribution—a RR,

a Swebrec, a lognormal, a maximum-size-transformed RR

one, etc.

2 The Model Foundations

Ouchterlony’s (2009b) blasting-related interpretation of

Holsapple and coworkers’ work on asteroid collisions

(Holsapple and Schmidt 1987; Housen and Holsapple

1990) has already been mentioned. From the dimensional

analysis, Ouchterlony arrives at the following expression

for the fraction P of fragments of mass less than m:

P ¼ F1

m

M
;Ps;Pg

	 

ð15Þ

where M is the total nominal mass fractured; Ps and Pg are

strength- and gravity-related non-dimensional parameters;

and F1 is an unspecified functional dependence.

The mass of a fragment is m = k1qx
3, x being size and

k1 a particle shape factor. The nominal mass broken for

each explosive charge, for the case of bench blast, is

generally approximated as M = qBHS/cos h, h being the

holes inclination angle with respect to the vertical. Intro-

ducing a (as yet undetermined) characteristic blast size

Lc;M ¼ k2rL
3
c, with k2 a blast geometry or bench shape

factor:

k2 ¼
BHS

L3c cos h
ð16Þ

Equation 15 becomes:

P ¼ F1

k1x
3

k2L3c
;Ps;Pg

� �
ð17Þ

Neglecting the gravity parameter (that, for the case of

asteroids, applies to bodies for which the material strength

is less than the gravitational self-compressive strength

which, obviously, does not apply to Earth) and solving

Eq. 17 for x/Lc:

x

Lc
¼ F2 P;

k1

k2
;Ps

� �
ð18Þ

The strength factor Ps has the following expression

(Ouchterlony 2009b, Eq. 7b, adapted from Housen and

Holsapple 1990, Eq. 40):

Ps ¼ EM

r�

q

� �3l= s�2ð Þ
L�3l kþsð Þ= s�2ð Þ
s e 3l�2ð Þ=2 q

qe

� �1�3m

ð19Þ

where EM is impact energy per target mass, clearly related

to the powder factor in rock blasting; r* is a rock strength

quantity with dimension [stress][length]k[time]s; e is the

explosive energy per unit mass;6 qe is impactor density

which is transposed in the blasting model as the explosive

density;7 and Ls is a characteristic length (in the collision

model, it is the target radius) that we will choose for

simplicity equal to Lc.
8 The constants l, m, k and s are to be

determined experimentally. l and m describe the impactor

coupling to the target; the two extremes of the coupling are

energy-scaled impacts (l = 2/3, m = 1/3) and momentum-

scaled ones (l = 1/3, m = 1/3). Holsapple and Schmidt

(1987) show that the case of a point source explosion has

l = 2/3 and that collisions on non-porous targets, includ-

ing rocks, are governed by l close to 0.6, whereas porous

targets (such as dry sand) have l = 0.37–0.40, close to the

momentum limit. Selecting thus the energy-scaled inter-

action for the blasting case analogy in Earth’s rock:

Ps ¼ EM

r�

q

� �2= s�2ð Þ
L�2 kþsð Þ= s�2ð Þ
c ð20Þ

k and s are material constants that describe the dependence

of the strength on the scale of the target and the loading

rate, respectively. Loading rate in blasting can, in principle,

be described by the rise time of the pressure in the bore-

hole, or the reaction time in the detonation front. This time

is proportional to the ratio of the length of the reaction zone

to the average sound speed of the detonation products in

the reaction zone (Price 1981); in homogeneous explosives

such as straight emulsions, it can range from less than

6 The collision model uses impact velocity U, dimensionally equal to

the square root of energy per unit mass (hence the dividing factor 2 in

the exponent of e that does not exist when U is used). Note that the

impact energy per unit impactor mass for a typical collision velocity

of some km/s is some MJ/kg, of the same order of magnitude that

energies per unit mass of explosives.
7 Having equated the velocity squared of the impactor to the

explosive energy per unit mass, the density of the impactor plays the

same role as the explosive density since, for both, the driving energy

is formally density 9 volume 9 energy per unit mass.
8 Lc is also an equivalent block length (actually the edge length of the

cube with equal volume); choosing this or an equivalent sphere radius

would only mean a different value for the shape factor k2.
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100 ns to about 1 ls, depending on the size of the sensi-

tizing microspheres (Hirosaki et al. 2002); for heteroge-

neous explosives such as ANFO or ANFO/emulsion

mixtures, rise times in the order of 10 ls have been

reported (Onederra et al. 2011). Reaction time, or reaction

zone thickness with which to estimate the reaction time

using the reaction zone sonic velocity (that can be esti-

mated from the detonation velocity), is never included in

blasting reports so we have no way to assess its influence in

the model. We are forced then, as a first approximation, to

not consider the loading rate dependence, i.e., make s = 0

in Eq. 20.

About the scale dependence, let us define �r as the

strength (with dimensions of stress) of the rock mass of a

certain size �R; we may write:

r� ¼ �r�Rk ð21Þ

Assuming r* invariant for a certain rock mass (which

amounts to consider a classical power dependence of

strength with size, Persson et al. 1994, quoting Weibull

1939; Jaeger and Cook 1969; Hoek and Brown 1980;

Scholz 1990), the strength for a given size R is:

r ¼ �r

R=�Rð Þk
ð22Þ

Using Eq. 21 for r* and making s = 0 in Eq. 20 for a

non-rate variable model:

Ps ¼ EM

�r�Rk

q

� ��1

Lkc ð23Þ

Writing EM (energy per unit rock mass) in terms of the

powder factor q (mass of explosive per unit rock volume)

and the explosive energy per unit mass e, EM = qe/q, the
factor Ps becomes:

Ps ¼
qe

�r
Lc
�R

� �k

ð24Þ

The size of fragments for a given fraction passing P, or

size quantile P, becomes, from Eq. 18:

x

Lc
¼ F2 P;

k1

k2
;
qe

�r
Lc
�R

� �k
" #

ð25Þ

The Kuznetsov formula and others that have been pro-

posed for the calculation of the fragments size (Langefors

and Kihlström 1963; Holmberg 1974; Larsson 1974; Kou

and Rustan 1993; Rustan and Nie 1987) generally agree

that the central fragment size is a power function of the

powder factor; plots as the ones in Fig. 2 say the same for

other percentile sizes so this will be attempted here.

Assuming a power form also for the other parameters and

writing Ps and the k-ratio as the reciprocals in Eq. 25, this

becomes:

x

Lc
¼ Pr k2

k1

� �h �r�Rk

qeLkc

� �j

¼ Pr k2

k1

� �h �r
qe

� �j �R

Lc

� �kj

ð26Þ

The constants r, h, j and k are to be determined from

experimental data. Note that they are not universal for all

percentages passing since that would lead to a Gates–

Gaudin–Schuhmann distribution (Gates 1915; Gaudin

1926; Schuhmann 1940), with exponent 1/r:

P ¼ x

xmax

� �1=r

; xmax ¼
k2

k1

� �h �r
qe

� �j

L1�kj
c

�Rð Þkj ð27Þ

The P-dependence of j is already stated in Sect. 1

(Fig. 2), and the variation of r follows from the fact that the

log–log slope of the cumulative size distribution is known

to vary across the percentage passing range. In fact, Eq. 27

could be thought of as a piecewise log–log linear repre-

sentation of the size distribution in which the top size and

the slope vary constantly across the size range.

The fragments shape factor k1 is an experimental vari-

able that is generally unknown so it will be considered as

one more parameter (that, in principle, may also vary with

the size of the fragments, hence with the percentile). Thus,

for each percentage passing P, the group Pr/k1
h can be

considered a single parameter, k (which should tend to zero

with P). Assuming arbitrarily that the strength parameter �r
corresponds to a unit size (in the same units as those used

for Lc) of rock mass, �R = 1, Eq. 26 is, finally:

xP

Lc
¼ kkh2

�r
qe

� �j
1

Lkjc
ð28Þ

The size has been written xP to show that it is the per-

centile P size. This model requires the calibration of the

four functions k(P), h(P), j(P) and k(P) which, together

with the selection of the strength variable �r and the char-

acteristic size Lc, will be accomplished from experimental

data.

3 The Data

Fragmentation data from bench blasting have been gath-

ered for a total of 169 blasts published in the literature.

Some of them were small-scale (half to 1 m bench height)

tests, and others were full-scale production blasts; all of

them were carried out in the field on natural rock mass. For

all of them, the fragmentation data were obtained by

sieving and weighing of a sample of the muckpile, and the

description of the blasts and the rock mass was reasonably

detailed so that calculations of the Kuz-Ram type made in

Sect. 1, and likewise of the model presented here, can be

carried out. Table 1 lists the mine and quarry sites and the

sources of the data; Table 2 gives a general description of
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the size distribution data; Tables 3, 4 and 5 give relevant

rock and blast design variables.

Elastic modulus is sometimes reported in the sources as

from laboratory tests (static), and sometimes as calculated

from P- and S-wave velocities, which results in somewhat

different figures; the original value quoted in each case has

been retained. This adds some uncertainty, or unwanted

variability, to the data, that would probably not be

Table 2 Fragmentation data

Blast site No. blasts np xmin (mm) xmax (mm) Pmin (%) Pmax (%) Amount sieved

t per blast %

El Alto, Spain 1 14 0.1 1500 0.017 100 481 2

Mt. Coot-tha, Australia 1 5 5.0 1000 2.5 100 32 0.05

Bårarp, Sweden 7 19–20 0.075 500–1000 0.1–0.6 47.9–98.7 247–490 100

Kållered, Sweden 6 17 0.075 2000 0.34–0.49 100 3660–5638 100

Billingsryd, Sweden 6 19 0.074 2360 0.76–1.03 100 10,087–12,898 100

Rolla, MO, USA (Otterness et al.) 29 6–8 9.525 229–457 7.9–20.6 100 0.5–10.5 100

High Forest, MN, USA 20 7–8 4.7625 229–559 1.03–3.86 100 0.9–2.0 100

Guan Shan, China 8 11 100 1500 4.7–11.4 100 4.3–9.3 100

Rolla, MO, USA (Stagg and Nutting) 18 7–8 4.7625 304.8–609.6 2.8–7.4 100 0.7–2.8 100

Waterloo, IA, USA 7 4–5 31.8–57.15 608–738 18.4–27.5 89.4–95.3 141–730 11–100

St Paul Park, MN, USA 6 5 31.8 562–584 27.5–30.7 96.7–97.9 92–270 34–100

Granite Falls, MN, USA 3 5 31.8 543–579 22.8–31.7 96.9–99.2 280–413 3–5

Manitowoc, WI, USA 6 5 22.2 653–825 17.9–22.4 89.8–95.5 130–325 5.5–13

Vändle, Sweden 4 19 0.063 1000 0.50–1.11 100 98–122 0.6–0.9

Långåsen, Sweden 6 19 0.063 1000 0.78–1.10 100 94–413 0.5–1.1

Rolla, MO, USA (Smith) 20 7 4.7625 304.8 1.7–9.7 48–89.5 0.4–2.4 100

Rolla, MO, USA (Brinkmann) 13 7 4.7625 304.8 2.24–7.20 65.1–90.2 1.2–2.8 100

Rolla, MO, USA (Bleakney) 8 7 4.7625 304.8 1.56–7.7 74.1–94.3 1.6–3 100

np, no. of data points per curve; xmin, xmax, minimum and maximum size (where Pmax is not 100%, xmax is a log–log extrapolated value to

P = 100%); Pmin, Pmax, minimum and maximum percentage passing

Table 3 Rock properties

Blast site Density (kg/m3) E (GPa) rc (MPa) cP (m/s) sj (m) jo rc
2/(2E) MPa RMD A

El Alto, Spain 2560 64 119 2994 2.4 0.25 0.11 J 7.7

Mt. Coot-tha, Australia 2730 82.5 200 5766 0.5 0.75 0.24 J 10.1

Bårarp, Sweden 2660–2670 82.5 237 5525 4.0 0.5 0.34 M 6.8–6.9

Kållered, Sweden 2690 34.5 168 5525a 0.47 1.0 0.41 J 8.9

Billingsryd, Sweden 2945–2972 44.7 252 4088–4107a 0.97 0.75 0.71 J 8.9–9.0

Rolla, MO, USA 2650–2677 15.0 62 4496–4511 0.29 0.25 0.13 J 3.1

High Forest, MN, USA 2700 50.0–55.7 143–155 5742–5766 0.10 0.25 0.20–0.21 J 3.8–4.7

Guan Shan, China 2560 27.0 112 3896 1.5 1.0 0.23 M 4.4

Waterloo, IA, USA 2674–2701 57a 131a 3208–3922 0.53 0.25 0.15 J 8.0

St Paul Park, MN, USA 2677a 15a 62a 2228–3627 0.34 0.25 0.13 J 6.7

Granite Falls, MN, USA 2670a 36a 166a 4420a 0.20 0.5 0.38 J 4.1

Manitowoc, WI, USA 2677a 15.0a 62a 3050a 2.0 0.25 0.13 M 4.3

Vändle, Sweden 2640 70.3 207 5612 0.5 0.75 0.31 J 10.0

Långåsen, Sweden 2677 67 206 5275 0.75–4.5 0.5 0.32 J 7.7–9.5

Overall range 2560–2972 15.0–83.0 62–252 2228–5766 0.10–4.5 0.25–1.0 0.11–0.71 J–M 3.1–10.1

E, Young’s modulus; rc, uniaxial compressive strength; cP, longitudinal wave velocity; sj, mean joint spacing; jo, joint orientation index (as

defined in Sect. 4); RMD, Kuz-Ram’s rock mass description (J: jointed, M: massive); A, Kuz-Ram’s rock factor (Eq. 6)
a Not reported in the sources; values estimated
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overcome very much by the estimation of one from the

other by grossly approximate formulae (e.g., Eissa and

Kazi 1988). In some cases, some properties have been

estimated from the data available using, e.g., elastic rela-

tions or properties of similar rocks. These are marked in

Table 3.

The explosive energy is rated as the heat of explosion

value, both for it being a well-defined magnitude, that

does not depend much on the detonation thermodynamic

code and on the products expansion assumptions, and for

being a property commonly specified by the manufactur-

ers; this is the same approach as the Kuz-Ram model in

which the explosive energy is rated by means of the rel-

ative weight strength, a measure of the heat of explosion

with respect to ANFO. Other explosive energy values

such as the useful work could indeed be used, but the

Table 4 Blast design data. Explosives and initiation systems

Blast site Explosive typea Density

(g/cm3)

VOD

(m/s)

e (MJ/kg) Q (kg) q (kg/m3) qe (MPa) Dt (ms) Detonator

type

El Alto, Spain ANFO-Al 0.8 4029 4.84 224 0.45 2.18 42 Non-el

Mt. Coot-tha,

Australia

Watergel 1.2 5447 4.01 119 0.52 2.08 25 Non-el

Bårarp, Sweden Emulsion 1.2–1.225 5000–5851 1.27b–

3.20

5.5–19 0.42–0.47 0.59–1.51 25 Electronic

Kållered, Sweden Emulsion 1.3c 2707–5470 2.90 45–54 0.46–0.63 1.34–1.82 42 Non-el

Billingsryd, Sweden Emulsion 1.3c 3234–5638 2.90 109–157 0.69–0.84 1.99–2.43 25–42 Non-el

Rolla, MO, USA Dynamite 1.12 2560 2.94 0.05–1.1 0.43–1.22 1.26–3.57 1.7–5.8 Seismicd

High Forest, MN,

USA

Dynamite 1.12 2560 2.94 0.05–0.07 0.23–0.51 0.69–1.50 0–25 Electric

Guan Shan, China Dynamite 0.93 3010 1.76b 0.52 0.67 1.17–1.18 0–1.9 Non-ele

Rolla, MO, USA Dynamite 1.12 2560 2.94 0.14 0.43–0.62 1.27–1.82 0–45 EBWf

Waterloo, IA, USA ANFO, Emulsion,

Dynamite

0.81–1.34 3840–5578 2.94–3.89 28–39 0.42–0.57 1.32–1.91 12 Electronic

St Paul Park, MN,

USA

Dynamite 1.12 4330 2.94 12.2 0.50–0.51 1.48–1.49 2–48 Seismicd

Granite Falls, MN,

USA

ANFO, Emulsion 0.8–1.15 4000–4830 3.27–3.89 102–173 0.72–1.05 2.79–3.76 10–12 Electronic

Manitowoc, WI,

USA

ANFO, Emulsion 0.8–1.2 3800–4830 3.27–3.89 39–56 0.75–1.00 2.92–3.51 13 Electronic

Vändle, Sweden Emulsion 1.17–1.23 4718–4771 3.34 77–93 0.53–0.76 1.77–2.53 42 Non-el

Långåsen, Sweden Emulsion 0.98–1.15 5110 3.25 85–116 0.72–1.05 2.35–3.43 5–25 Non-el,

Electronic

Rolla, MO, USA

(Smith)

Dynamite 1.12 2560 2.94 0.03–0.14 0.44–1.00 1.30–2.95 0–25 Electric

Rolla, MO, USA

(Brinkmann)

Dynamite 1.12 2560 2.94 0.14 0.41–1.00 1.22–2.95 0–25 Electric

Rolla, MO, USA

(Bleakney)

Dynamite 1.12 2560 1.38b–

2.94

0.14–0.19 0.45–0.65 0.80–1.91 25 Electric

Overall range 0.8–1.34 2560–5851 1.27–4.84 0.03–224 0.23–1.22 0.59–3.76 0–48

VOD, detonation velocity; e, specific explosive energy (per unit mass); Q, charge per hole; q, powder factor or specific charge; qe, energy

powder factor or explosive energy concentration; Dt, in-row delay
a Emulsion designates both straight and blend products
b Decoupled charges. Decoupling ratios (hole-to-charge diameter ratio): Bårarp 1.5, Guan Shan 1.31, Rolla (Bleakney): 1.06–1.5 (energy of the

decoupled shots 2.61–1.38 MJ/kg)
c Mean charge density (includes dynamite as bottom charge, density 1.45 g/cm3)

Precisions for nonstandard systems (not reported for electric, non-electric or electronic)
d 0.11 ms
e The delay was given by different lengths of shock tube
f Exploding bridge wire. Precision: max (0.0025% delay time, 50 ns)
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model would require a recalibration with them—a difficult

task though, since useful work is often not given by the

manufacturers and there is not a common ground for a

standard calculation of it. When a heat of explosion value

is not reported in the blast description, a value compatible

with the type of explosive used has been assigned. In a

few cases (9 blasts, their energies marked with b in

Table 4), decoupled charges were used; for these, the

explosive energy used is the energy remaining in an

isentropic expansion point at the expansion ratio equal to

the ratio of the borehole volume to the charge volume.

This energy has been calculated from the JWL isentropes

determined in Sanchidrián et al. (2015) from cylinder test

data for ANFO and emulsion-type explosives. Figure 3

shows the ‘energy efficiency,’ or the ratio of the

remaining energy at a given expansion (described as

decoupling ratio, hole-to-charge diameter ratio) to the

energy at expansion ratio equal one (the fully coupled

case). Except for some outlier, most of the expansion

energy ratio curves are packed in a fairly narrow band so

that, as a first estimation, the mean curve has been used

for all decoupled shots (even for the case of dynamite for

which no experimental expansion data are available).

4 Model Fitting

For each blast, the fragmentation data have been interpo-

lated to determine the size percentiles between 5 and 100.

Linear interpolation in log–log space has been used.

Extrapolation has been allowed whenever the range of data

does not cover the 5–100% passing; however, a penalty has

been applied to the extrapolated points in the fit so that

their weight decreases as the extrapolation distance gets

longer. The penalty function used is:

we ¼ e�0:5 rP�1ð Þ3 ð29Þ

rP being the extrapolation ratio:

rP ¼ e ln P=Pfð Þj j ð30Þ

Table 5 Blast design data. Other dimensional and non-dimensional parameters

Blast site d (mm) B (m) H (m) S (m) lc (m) S/B
ffiffiffiffiffiffiffi
HS

p
a

(m)

cPDt=S
b Bffiffiffiffiffiffiffi

HS
p

cos h

c No.

rows

El Alto, Spain 142 5.00 18.6 6.00 15.8 1.20 10.56 21.0 0.48 1

Mt. Coot-tha, Australia 102 3.80 14.0 4.30 12.1 1.13 7.76 33.5 0.46 4

Bårarp, Sweden 38–76 1.35–2.70 5.0–5.3 1.65–3.40 3.7–4.4 1.17–1.26 2.93–4.12 40.6–83.7 0.46–0.66 1

Kållered, Sweden 76 2.60–2.90 8.6–9.8 2.9–3.3 5.5–8.4 1.00–1.23 5.22–5.69 70.3–80.0 0.49–0.58 3

Billingsryd, Sweden 76 2.60–3.00 16.4–19.5 2.8–3.2 16.8–19.2 1.03–1.19 7.13–7.90 50.8–88.1 0.35–0.43 3

Rolla, USA (Otterness) 11–25 0.25–0.76 0.43–2.26 0.34–1.07 0.4–1.9 1.00–2.03 0.48–1.55 12.4–59.0 0.34–0.79 1

High Forest, MN, USA 22 0.36–0.44 0.70–0.90 0.38–0.88 0.3–0.5 1.00–2.00 0.56–0.84 0–378.3 0.48–0.68 1

Guan Shan, China 42 0.43–0.75 1.4 0.75–1.30 0.7 1.00–3.02 1.02–1.35 0–9.9 0.32–0.73 1

Rolla, USA (Stagg and

Nutting)

27 0.38 1.14 0.53–0.76 1.0 1.40–2.00 0.78–0.93 0–379.3 0.41–0.49 1

Waterloo, IA, USA 89 1.98 6.71 3.05 4.7–5.2 1.54 4.52 12.6–15.4 0.44 1, 3

St Paul Park, MN, USA 63.5 1.75 6.71 2.06 4.9 1.17 3.71 3.0–71.3 0.47 1

Granite Falls, MN, USA 140 3.05–3.35 11.3–12.8 3.96–4.88 8.3–9.8 1.30–1.46 6.69–7.90 10.8–11.2 0.42–0.46 3

Manitowoc, WI, USA 89 1.98 8.23 2.99–3.20 7.2–7.3 1.52–1.62 4.96–5.13 12.4–13.3 0.39–0.40 3

Vändle, Sweden 90 2.86–3.46 10.8–12.7 3.71–4.27 10.3–12.0 1.21–1.34 6.58–7.22 55.2–63.5 0.43–0.52 4

Långåsen, Sweden 89 2.16–2.55 12.9–16.7 2.9–3.4 12.9–16.6 1.33–1.35 6.12–7.54 7.8–45.5 0.32–0.38 4

Rolla, USA (Smith) 27 0.26–0.48 0.38–1.14 0,38–0.76 0.25–1.0 0.79–2.65 0.38–0.93 0–296 0.31–1.26 1

Rolla, USA

(Brinkmann)

27 0.34–0.38 1.14 0.38–0.76 1.0 1.00–2.08 0.66–0.93 0–296 0.39–0.58 1

Rolla, USA (Bleakney) 15.9–19 0.35–0.41 1.14–1.45 0.57 1.0–1.3 1.41–1.64 0.81–0.91 197 0.38–0.50 1

Overall range 11–142 0.25–5.00 0.38–19.5 0.34–6.00 0.25–19.2 0.79–3.02 0.38–10.6 0–379.3 0.31–1.26 1–4

d, hole diameter; B, burden; H, bench height; S, spacing; lc, charged length
a Characteristic length Lc in the model
b Non-dimensional delay factor Gt in the model
c Bench shape factor k2 in the model
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where P is the percentage passing at which the size is being

calculated and Pf is the lowermost (if P\Pf) or uppermost

(if P[Pf) passing value with data.9 The minimum and

maximum percentage passing for the different data groups

that are listed (Pmin and Pmax) in Tables 2 and 6 gives the

number of extrapolated points for each percentage passing;

the large amount of extrapolated points below P = 5%,

with long extrapolations required, prevent from analyzing

any lower percentile size.

Besides the extrapolation penalty, a size-dependent

weight wx = 1/(x/Lc)
1/2 has been included in the least

squares scheme, in order to allow a fair influence of the

small data and to prevent the larger numbers to be too

dominant in the overall error, while not penalizing the

determination coefficient too much. The final weight of

each point is the smaller of the size-dependent weight

(normalized to one) and the extrapolation penalty factor:

w ¼ min we;wxð Þ ð31Þ

Equation 28 is fitted to the xP data values10 by means of

a Levenberg–Marquardt (Seber and Wild 2003) nonlinear

least squares method programmed in a MATLAB (2015)

environment. Numerous minimizations (up to 1000 times

the number of unknown parameters, and more than that in

some particularly difficult cases) are run with variable

starting parameters values until the minimum sum of

squares is ensured, this way avoiding local minima as much

as possible. The result for the 50 percentile sizes of the
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Fig. 3 Fraction of energy

remaining in the detonation

products along expansion

Table 6 Number of extrapolated points

P (%) 100 90 80 70 60 50 40 30 20 10 5 1

No. of interpolated data points 99 122 141 161 164 166 169 167 149 125 96 26

No. of extrapolated points 70 47 28 8 5 3 0 2 20 44 73 143

No. of extrapolated points with rP[ 2 3 0 0 0 0 0 0 0 0 20 44 126

9 For example, if the lower size data of a distribution are at

Pf = 20%, then the value extrapolated at P = 10% has rP = 2, and a

weight we = 0.607; the value extrapolated at P = 5% has rP = 4 and

we = 1 9 10-6.

10 For each fit job, we have 169 data points (one from each

fragmentation curve i.e. a blast). In principle, none of them is a

measured value, but an interpolated one (or extrapolated if this is the

case) at the relevant percentage. This way we can combine the data

(available from each data set at different percentages passing) into a

single percentile set of values. This adds an interpolation error to the

experimental uncertainty of the data; this matter is revisited in Sect. 5.
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distributions data is a modest determination coefficient,

R2 = 0.6413.

Since the determination coefficient may be a misleading

value in nonlinear regression, the relative root-mean-

squared error (RRMSE) and the median absolute log error

(MALE) are also used as meaningful goodness-of-fit val-

ues, as they estimate the prediction capability of the model.

The RRMSE is:

RRMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
=mean xP=Lcð Þ ð32Þ

MSE being the mean-squared error:

MSE ¼ 1

nc � p

Xnc
i¼1

wei xP;pred=Lc
� �

i
� xP;data=Lc
� �

i

� �2 ð33Þ

nc being the number of data points (i.e., the number of

blasts) and p the number of parameters. The extrapolation

weights wei are applied so that only errors of long extrap-

olated (hence dubious) points are downsized; the fit

weights w from Eq. 31 are not used so as not to give an

unrealistic low value of the error. Let the logarithmic error

of each predicted value be:

eLi ¼ wei ln
xP;pred
� �

i

xP;data
� �

i

ð34Þ

where the extrapolation weights wei are also applied here.

The median absolute log error, MALE, expressed as rela-

tive error for better interpretation, MALEr, is:

MALEr ¼ exp median eLij jð Þ � 1 ð35Þ

Both RRMSE and MALE indicate the relative deviation

of the predicted values, MALE being more robust (since it is

a median) and symmetric with respect to zero.11 However,

highRRMSEmay indicate a large number of badly predicted

cases (outliers) which may stay hidden with the MALE.

For the fit under study (Eq. 28, x50), RRMSE = 0.6730,

MALEr = 0.4498. Although the determination coefficient

and the errors are mediocre, the parameters of the model

(k = 0.5932, h = 1.2029, j = 0.2979, d = 1.7740) are

statistically significant with narrow confidence intervals,

p values 8 9 10-7, 6 9 10-10, 1 9 10-4 and 2 9 10-4,

respectively. Figure 4 shows the predicted values versus data

plot and the distribution of residuals; the latter shows some

positive skew, highlighted by the normal and t distributions

fitted. The mean is 0.018 and the 95% coverage interval is

[-0.119, 0.256]. In summary, the model, effectively, trans-

lates a significant relation between the variables, but there

must be other factors of variation that are not accounted for.

At least two influential characteristics that are relevant

to rock blasting are missing from Eq. 28, since they do not

apply to asteroid collisions:

1. The rock mass discontinuities The important geotech-

nical information is neither included in the bench

shape factor k2 nor in the fragments shape factor k1.

Using a classical approach (Lilly 1986, 1992; Scott

1996), the discontinuities are described by means of a

combination of a spacing Js and an orientation Jo term:

10-2 10-1 100

(x50 /Lc) pred

10-2

10-1

100
(x

50
/L

c)
da

ta

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Residuals

0

1

2

3

4

5

6

7

8

9

P
D

F

Normal

t

Fig. 4 Four-parameter model (Eq. 28) for x50. Left data versus

predicted values plot; the blue lines are the data versus predicted

linear fit (dashed ordinary least squares, solid robust, least sum of

absolute residuals); the orange line is the data = predicted values

line. Right normalized histogram of residuals; the two PDF functions

shown are normal (blue) and t (red), fitted to the distribution of

residuals (color figure online)

11 A predicted value ten times the data value has the same log error as

a predicted value one tenth (though with opposite sign), while relative

errors for that case are 9 and -0.9; this downsizing of the negative

errors prevents a fair statistics with relative errors.
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JF ¼ Js þ Jo ð36Þ

The joint spacing term is formulated as a non-dimen-

sional ratio sj/Lj, where sj is the discontinuity mean

spacing and Lj a characteristic size, selected as the

variable (with dimensions of length) giving a higher

determination for the model (see the end of this sec-

tion). A limiting value as is required for large joint

spacing:

Js ¼ min
sj

Lj
; as

� �
ð37Þ

The joints orientation term Jo is defined as:

Jo ¼ aojo ð38Þ

where jo is Lilly’s joints orientation index normalized

to one (listed in Table 3) in order to give it, in prin-

ciple, a similar weight as the spacing term, though the

relative importance of each one will be finally cast by

the constant ao, to be determined from the data. The

joints orientation term describes the relative difficulty

of the blast to break the toe for different joint orien-

tations with respect to the face: jo = 0.25 (horizontal),

0.5 (dipping out of the face), 0.75 (sub-vertical striking

normal to the face) and 1 (dipping into the face or no

visible jointing).

2. The delay Unlike asteroid collisions, rock blasting is

carried out in multiple loadings taking place at

successive times for neighboring shots so that there

is wave and crack growth interference in the rock mass

between two shots in the firing sequence. The general

blasting knowledge, confirmed with experimental

evidence, states that fragmentation improves (i.e., the

size of the fragments decreases) when time is allowed

for the cracks from a hole to propagate and damage the

rock before the next hole detonates (Winzer et al.

1983; Katsabanis and Liu 1996; Cunningham 2005,

referring data by Bergmann et al. 1974; Katsabanis

et al. 2006, 2014; Johansson and Ouchterlony 2013).

The time for the cracks to propagate is a function of

their velocity and that is often normalized by dividing

by the P-wave velocity cP (Roberts and Wells 1954;

Dulaney and Brace 1960). In linear elastic materials,

the theoretical upper limit of the crack velocity is the

Rayleigh wave velocity (Freund 1972), which lies

around 90% of the shear wave velocity, though

measured crack speeds in rock are hardly in excess

of half that velocity (Daehnke et al. 1996; Fourney

2015). Physically, the P-wave velocity determines the

time of the first wave arrival from a neighboring blast

hole; its use is convenient since, unlike the Rayleigh

wave velocity (or the more difficult to know crack

velocity), it is a commonly available, easy to determine

and often reported, property for a given rock mass.

Thus, the non-dimensional delay factor is defined as:

Pt ¼
cPDt
Lt

ð39Þ

where Dt is the in-row delay and Lt is a characteristic

length (to be selected with the same criterion as the other

characteristic lengths, Lc and Lj, see the end of this

section).12 Pt indicates how large the drill pattern

(represented by the characteristic size Lt) is with respect

to the travel distance of the longitudinal waves during a

delay period. With Pt defined by Eq. 39, a power form

for it cannot hold since it would lead to a zero size for an

instantaneous blast if the exponent is positive, or infinite

if negative (as should be since the fragment size

diminisheswith increasing delay). A suitable form of the

Pt function could be an exponential:

ft Ptð Þ ¼ e�dPt ð40Þ

Inserting now the discontinuities term in Eq. 28:

xP

Lc
¼ k min

sj

Lj
; as

� �
þ aojo

� �
kh2

�r
qe

� �j
1

Lkjc
ð41Þ

When Eq. 41, a six-parameter function, is fitted to x50,

the determination coefficient grows to R2 = 0.8504, and

the other two goodness-of-fit parameters reduce to

RRMSE = 0.4270, MALEr = 0.1873, all coefficients sig-

nificant (maximum p value 5 9 10-4). Inserting now the

delay term, Eq. 40:

xP

Lc
¼ k min

sj

Lj
; as

� �
þ aojo

� �
kh2

�r
qe

� �j
1

Lkjc
ft Ptð Þ ð42Þ

R2 = 0.8549, RRMSE = 0.4141, MALEr = 0.2116, all

coefficients significant. The improvement of the quality

figures is marginal considering the increase in one

parameter of the model (MALEr even increases). This,

together with a moderately high p value for d (though still

within the 0.05 limit, p = 0.015), could indicate that the

exponential may not be the right form for the delay factor.

If the ratios xdata/xpred of Eq. 41 (the function without a

delay term) are plotted againstPt, the result is that of Fig. 5

(left graph); the aspect of this plot suggests a time function

decreasing with the time factor down to a minimum, beyond

which the function grows toward a constant value. Previous

published work supports this behavior (Cunningham 2005,

referring to data by Bergmann et al. 1974; Katsabanis et al.

2006, 2014; Johansson and Ouchterlony 2013; Katsabanis

and Omidi 2015), though the existence of either a minimum

or a lower asymptote is somewhat controversial (Katsabanis

12 Note that this non-dimensional form of the delay does not differ

much from Cunningham’s (2005) Dt/Tmax, where the characteristic

length is the burden.
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and Omidi 2015 suggest a minimum for the median size,

though not so for the 20 percentile). Consequently, a time

function has been sought that decreases with increasing

delay with the possibility of having a minimum. Such

function can be the following:

ft Ptð Þ ¼ d1 þ 1� d1 � d2Ptð Þe�d3Pt ð43Þ

d1, d2 and d3 being constants to be determined from the fit;

f(Pt) is 1 at Pt = 0 (the case of simultaneous initiation of

holes), decreases to a minimum at Pt = 1/d2 ? 1/d3 - d1/
d2 and then grows toward an asymptotic value d1 for long
delays (see Fig. 5, right). Equation 43 can also represent a

decay toward a lower asymptote at d1 without a minimum

if d2 = 0, see Fig. 5 (right). Using this delay function leads

to R2 = 0.9242, RRMSE = 0.2992, MALEr = 0.1840, the

nine coefficients strongly significant: the highest p value is

2 9 10-4. Such low p values (lower than those for Eq. 41,

having increased the number of parameters by three) are an

outstanding result, a consequence of the narrow confidence

intervals of the coefficients, and speak strongly in favor of

the delay function in Eq. 43. Figure 6 (left) shows the

predicted values versus data plot; Fig. 6 (right) shows the

histogram of residuals with normal and t distributions

superimposed. The distribution is nearly zero-centered and
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Fig. 6 Nine-parameter model (Eq. 41 with delay function Eq. 43) for

x50. Left data versus predicted values plot; the blue lines are data

versus predicted linear fits (dashed ordinary least squares, solid

robust, least sum of absolute residuals); the orange line is the

data = predicted values line. Right normalized histogram of residu-

als; the two PDF functions shown are normal (blue) and t (red), fitted

to the distribution of residuals (color figure online)
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much narrower than the basic, four-parameter one in

Fig. 4, with mean 0.0028, still slightly skewed with 95%

coverage [-0.064, 0.093]. Figure 7 shows the delay

function.

Many possible characteristic lengths Lc have been tested

(burden, spacing, bench height, stemming length, charged

length and geometric means of their pairs); the geometric

mean of bench height and spacing has been observed to

generally provide a best fit of the final model: Lc = (H�S)1/2.
The shape factor k2 from Eq. 16 is then:

k2 ¼
BHS

HSð Þ3=2cos h
¼ Bffiffiffiffiffiffiffi

HS
p

cos h
ð44Þ

The characteristic lengths for non-dimensionalizing the

joints spacing and the delay have also been selected from

tests with different lengths; the best fits are obtained with

the burden for the joints spacing term and the holes spacing

for the delay factor: Lj = B, Lt = S.

About the strength factor �r, several rock properties have

been tested, and the ratio rc
2/(2E)—the elastic strain energy

at rupture per unit volume—has finally been chosen as the

one giving the most favorable fits to the data. This energy

appears in Griffith’s (1921) energy balance of linear elastic

fracture mechanics, in which the strain energy released by

a crack equals the elastic strain energy.

5 Results and Discussion

The function in Eq. 42 with the delay function ft(Pt) in

Eq. 43 has been fitted to percentiles from 100 to 5. The

parameters are plotted in Fig. 8 as functions of the per-

centage passing. Table 7 summarizes some quality fig-

ures of the fits. Note that the p values are very low for all

parameters and all percentiles, which indicate very tight

confidence intervals, an outstanding result for a nine-pa-

rameter model fit.

For ease of application of the model, approximating

functional forms have been derived for the nine parameters

as functions of P. The result is summarized in Table 8, and

the P-functions are plotted in Fig. 8 as dashed lines. Note

that not all the functions are direct fits to the parameters;

functions for k, j and the delay parameters are fitted first,

and then, the model is adjusted again to the other param-

eters, for which analytic functions of P are finally obtained.
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Fig. 7 Delay function (Eq. 43) for x50
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This two-step procedure allows to correct the errors from

the fits in the first step, which otherwise might combine to

give, in some cases, odd results. k, being Pr/k1
h, has been

chosen a monotonic function of P since the fragments

shape factor is likely not to change much with P. In doing

this, we assume that the observed decrease in k at high P is

not a strong result (just as the mild increase below

P = 10%) and is due to inaccuracies, always greater at

high and low percentages passing. The functional form of

j(P) is also assumed a priori, and it will be revisited below.

Figure 9 shows the resulting set of delay functions for

the different percentages passing.

The overall goodness of the fits is assessed in Fig. 10

where boxplots of logarithmic errors (as defined in Eq. 34)

are plotted for the calculations using both the raw param-

eters from the fits and the functions of Table 8. The penalty

for using Table 8 formulae with respect to using the raw

parameter values is small. The prediction error is 50% of

the times less than about 25% in nearly the whole range

both with the raw parameters and with their fitting func-

tions. The boxplots in Fig. 10 are equivalent to those in

Fig. 1 for the Kuz-Ram and crush zone models (in fact, log

errors in Fig. 1 are also we-corrected, as in Eq. 34). The

comparison of both is self-explanatory.

Another way of assessing the errors is in terms of the

median (used for robustness) error of the size calculation

for each data set, in absolute value; for i ¼ 1; . . .; nc, nc
being the number of data sets (169):

eLi ¼ med eLij


 

; j ¼ 1; . . .; 20 ð54Þ

where eLij are log errors (as in Eq. 34) of the size at passing

Pj = 5, 10 ,…, 100. The distribution of these errors,

expressed as relative errors, exp(eLi) - 1, is given as

boxplots in Fig. 11. This confirms an expected error of the

percentile size prediction in the range of 20%. Plots are

also shown for the Kuz-Ram and crush zone models, the

median error of which (i.e., the expected error) is about

60%.

The 20–25% expected errors of the model should be

viewed in the context of fragment size measurements. All

data used were obtained by sieving and weighing samples

of the muckpile—in many cases a large fraction of that,

encompassing large amounts of material. Sampling, screen

processing and weighing a large amount of rock fragments

in field conditions is a hard task prone to errors. The

sampling must be done on a significant fraction of the

muckpile and from the different zones in it; loader sam-

pling and dumping techniques, and end effects in the pile,

are responsible for shifts in the size distributions (Stagg

and Rholl 1987); the type of sieve (square, rectangular,

grizzly, etc.) has an influence on the screening results;

losses of material due to overweights (not loadable onto

the screen), projections, fines, etc. also introduce errors.T
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Since the data come from different sources, a general

statement on the error of the data is difficult to give, nor is

it usually assessed by the authors. Sanchidrián (2015)

estimated the uncertainty of the data by calculating the

differences of equal percentile sizes of pairs of similar

blasts (i.e., blasts in the same mine or quarry with equal, or

very close, blast design13) for which fragmentation should

be (ideally) the same; such differences are a combined

measure of the uncertainty of the fragmentation

measurement (due to sampling, sieving and weighing), the

variability of the phenomenon and the uncertainty of the

blasting data. To all those, the calculation of sizes at some

given percentages passing adds an interpolation error. The

median differences for percentiles 5–100 was found to be

between 8 and 22%. Even if this is only a rough estimation

of the uncertainty, and does not include possible systematic

measurement errors, it gives an idea of how much accuracy

we should be prepared to demand from a fragmentation

prediction model, as there is no way we can have a better

knowledge of the actual fragmentation than what the

measurements give us.

Figure 12 shows some sample size distribution curves

calculated, compared with the data; the P-functions for the

model parameters are used. Each graph shows distributions

for which the relative errors are around the first quartile,

the median and the third quartile, plus one more in which

the three best and the three worst predicted distributions, as

from the median absolute value of the log error, are plotted.

One of the ideas that inspired this fragment size distri-

bution model in which the exponent of the powder factor is
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Fig. 9 Delay functions (Eq. 43, with coefficients from Eqs. 51–53)
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Fig. 10 Boxplots of logarithmic errors (Eq. 34) of the calculated

percentiles. Blue boxes are the errors using the raw parameters, and

magenta boxes are the errors using the functions in Table 8. The gray

horizontal lines are plotted at ±ln 1.25, equivalent to relative errors of

25% (color figure online)
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Fig. 11 Distributions of the medians of the absolute errors for all

percentiles for each data set (Eq. 54, transformed to relative errors)

13 The concept ‘equal blast design’ is itself somewhat ambiguous

since it is often difficult to determine the blasting parameters exactly;

for instance, the powder factor, unless an extremely careful explosive

mass and dimensional monitoring of the blasted rock is implemented,

can have a certain variation for two seemingly identical blasts due to

small variations of the blast hole diameter (bit wear), the bench height

and burden, or the explosive density; delay time with pyrotechnic

delay systems is also an undetermined variable; minor variations in

the rock properties from one blast to another also make up for

uncertainty in the fragmentation, etc.
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variable with P was the ‘fan’ pattern we referred to in

Sect. 1 (Ouchterlony et al. 2016). If extrapolated toward

very low (away from the feasible range) powder factor, the

different percentile lines often converge (more or less

precisely) in a focal point. The data used for the fits happen

to meet that ‘fan’ pattern more than well (see the upper

graphs of Fig. 13; the energy concentration is used instead

of the charge concentration used in Fig. 2). Even if the

dispersion is very large (due to the great variation of scale,

rock and shape factors, and delay), the coefficients of the

fits (shown on the right plot) are significant, their p values

below 10-23 for the pre-factor and 0.03 for the exponent.

The predicted results from the model also catch much of

this behavior (Fig. 13, lower graphs; the P-functions for the

parameters have been used for the calculation); the p values

of the coefficients (shown in the right plot) are less than

10-22 for the pre-factor and 0.02 for the exponent. As an

exercise to confirm this, without any cross-influence, a

sample calculation with constant blast characteristics

(Table 9) and with the powder factor only variable (im-

plemented by varying the hole diameter) has been done; the

results are shown in Fig. 14 for three delay times; the

fanlike convergence is clearly visible.

The functional form of j(P) (Table 8, Eq. 48) has been

taken from the expression derived by Ouchterlony et al.

(2016) for the exponent of the size versus powder factor

power equations—i.e., the log–log slope of the fan-plot

lines—following the hypothesis that the underlying distri-

bution is a Swebrec function (Ouchterlony

2005a, b, 2009a) with shape parameter independent of the

powder factor. The determination coefficient of the fit of

Eq. 48 to the P-j values of the model is 0.9772. This result

provides an interesting link of the model presented here

with the powder factor fan plots and the Swebrec

distribution.

It is worth noting that the detonation velocity of the

explosive is not among the variables of the model. The

influence of detonation velocity in fragmentation is con-

troversial: It appears only in the Kou and Rustan (1993)

and Rustan and Nie (1987) formulae and is used in the

crush zone model for the calculation of the borehole

pressure; conversely, it is not present in the Kuz-Ram

model (Cunningham 1983, 1987, 2005) and other frag-

mentation prediction formulae (Langefors and Kihlström

1963; Holmberg 1974; Larsson 1974; Chung and Katsa-

banis 2000).

In the present model, detonation velocity might influ-

ence the loading rate and the borehole pressure, both of

which should in principle be relevant to fragmentation.

Concerning the loading rate, the detonation velocity

appears not to be the leading influence, since it varies in a

relatively narrow range for most explosives used in rock

blasting, while the reaction zone thickness appears to be

much more important, as it varies in several orders of

magnitude depending on the physical constitution and the

sensitivity of the explosive. This is why explosives with not

too different detonation velocity as, e.g., a straight emul-

sion and an emulsion/ANFO mixture have very different

loading rates, as noted in Sect. 2.

About the borehole pressure, Boudet et al. (1996) gave

the following expression of crack speed as function of the

applied stress:

vc=cR ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D1

D

r
ð55Þ

where vc is crack speed, cR is Rayleigh wave speed and D
strain, D = Pb/E; b and D1 are experimental constants,

b\ 1. The borehole pressure can be estimated, for a cou-

pled explosive, as half of the detonation pressure, which

can be approximated from the explosive density and det-

onation velocity squared. Thus, a non-dimensional delay

factor to more correctly account for the time of arrival of

the cracks to the proximity of the next hole in the firing

sequence would be:

Table 8 Functional forms of the parameters; P is fraction passing, 0.05 B P B 1

k ¼ 4:873P1:280 (45) R2 = 0.9993 (R); RRMSE = 0.0169

as ¼ 0:4539þ 0:1557P�1:123 1� Pð Þ0:1 (46) R2 = 0.9873 (R); RRMSE = 0.0389

ao ¼ 0:05431þ 0:1737P�1:012 (47) R2 = 0.9949 (O); RRMSE = 0.0707

j ¼ 0:161þ 0:373 1
P
� 1

� �0:3648 (48) R2 = 0.9772 (O); RRMSE = 0.0610

h ¼ 1:207 P� 0:04744ð Þ0:3152 1�Pð Þ1:25 (49) R2 = 0.9683 (O); RRMSE = 0.0417

k ¼ 0:8201þ 2:773P� 22:33P2 þ 59:62P3 � 65:06P4 þ 25:79P5 (50) R2 = 0.9335 (O); RRMSE = 0.0564

d1 ¼ 0:7811� 0:06989P (51) R2 = 0.7337 (O); RRMSE = 0.0158

d2d3 ¼ 0:000836þ 0:003832P� 0:0137P2 þ 0:0217P3 � 0:012P4 (52) R2 = 0.7528 (O); RRMSE = 0.0776

d2
d3
¼ P�0:09161 1:01� Pð Þ0:2062exp 0:3034Pð Þ (53) R2 = 0.9733 (R); RRMSE = 0.0237

R2, determination coefficient; RRMSE, relative root-mean-squared error

(R) and (O) indicate robust and ordinary least squares fit, respectively
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Pt ¼
cRDt
Lt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� D1

qeD2=E

s
ð56Þ

where D1, an unknown property of the rock, must, how-

ever, be left as a parameter of the fit. As pointed out in

Sect. 4, the wave velocity reported in our data is the

P-wave one, so that, in order to use Eq. 56, we must suc-

cessively estimate the shear wave and the Rayleigh wave

velocities. Tests with this delay factor were not satisfac-

tory, perhaps due to the lack of precision of the Rayleigh

wave velocity estimation or to the constant D1 assumption.

A similar form to Eq. 56 but using directly the P-wave

velocity instead of the Rayleigh wave one also failed. In

summary, we have not been able to account for the two

explosive/rock interaction processes on which detonation

velocity could be influential. Perhaps better data, with a

more detailed description of the detonation physics and the

rock velocities, are required.

Other parameters that are not part of the model are:

• Number of rows Some of the variability in the data is

probably due to this factor. Blasts used to fit the model

were single and multi-row (see Table 5), with 3 or 4
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Fig. 12 Sample size distribution curves; dashed data, solid calcu-

lated. Median relative error of the curves plotted: upper left

11.0–12.6% (around the first quartile); upper right 19.4–21.0%

(around the median); lower left 30.5–33.1% (around the third

quartile); lower right 2.1–3.4% (the three best results),

88.3–107.6% (the three worst results)
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rows and inter-row delays ranging from 24 to 120 ms,

that correspond from 12 to 61 ms/m burden. Schimek

et al. (2015) and Ivanova et al. (2015) reported the

median size finer for the second and third rows of holes

than for the first row, in tests with small-scale bench-

like specimens (210 mm height, 70 9 95 mm bur-

den 9 spacing, seven holes per row), where the first

row was blasted in virgin material. This is seldom the

case in mining or quarrying where, even if only one

row is blasted, the burden has usually been damaged by

the previous blasts in front of it. Error distributions for

blasts with one and several rows have been compared

by the Wilcoxon–Mann–Whitney test, and they are not

different at a 0.05 significance in the range 40–95%

passing, but they are below 40% and also at the

maximum size. Attempts to incorporate the number of

rows into a significant term yielding an improved

predictive capability to the model have been unsuc-

cessful. Two major difficulties have been encountered

for it: (1) the amount of data for multi-row blasts is

significantly smaller than the one row: only 35 blasts

out of 169 are multiple row, and, more importantly, (2)

there is a significant cross-correlation between the

number of rows and the size of the blast in the data

used. The results were in all cases a loss of significance

(high p value) of some of the parameters of the model,

or a marginal gain in the determination coefficient, or

both. Be that as it may, the influence of both the
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Fig. 13 ‘Fan plots’ of percentile sizes versus energy powder factor. Upper graphs data. Lower graphs predicted values. The right graphs show

the extrapolation of the percentile power lines toward lower energy factors
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number of rows and the row-to-row relief time remain a

subject of further study.

• Detonator precision The amount of blasts with precise

initiation (so considered if the time error is less than 1 ms)

and non-precise initiation is fairly balanced: 78 precise

(seismic, electronic and exploding bridgewire detonators)

and 91 non-precise (pyrotechnic, both electric and non-

electric). The error analysis for the two precision

categories shows no difference in the error distributions

for precise and non-precise initiated blasts in the whole

100–5 percentile range at a 0.05 significance.

6 Conclusions

A model for fragmentation by blasting has been built tak-

ing as starting point asteroid collisional fragmentation

theory from which non-dimensional functional forms of the

Table 9 Blast data for sample

calculation
Rock

Discontinuity spacing sj = 0.5 m

Discontinuity orientation Dipping toward face, jo = 0.5

Uniaxial compressive strength (MPa) rc = 100 MPa

Elastic modulus E = 25 GPa

P-wave velocity cP = 4000 m/s

Geometry

Bench height H = 10 m

Burden B = 3.0 m

Spacing S = 3.2 m

Holes inclination 0

Stemming length lS = 2.5 m

Subdrill length lJ = 1.0 m

Hole diameter 50–150 mm

Explosive

Explosive energy e = 3.5 MJ/kg

Explosive density qe = 1200 kg/m3

In-row delay Dt = 0, 10, 30 ms

Powder factor, mass q = 0.21–1.88 kg/m3

Powder factor, energy qe = 0.73–6.57 MJ/m3
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Fig. 14 Sample fragmentation calculation. Left size distributions; right percentiles versus powder factor fan plots. In-row delay 30 ms (solid

lines), 10 ms (dashed lines) and zero (dash-dotted lines)
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percentile sizes of the fragments distribution are derived.

These functions include a scaling length and two non-di-

mensional factors: a rock strength-to-energy concentration

ratio and a bench shape factor. The model is calibrated with

data from 169 blasts for which the blast design variables

were reported and the muckpile was sampled and sieved to

determine the size distribution. Two additional factors are

found to be required: one of them to account for the rock

structure—the joints spacing and orientation—and the

other for the delay between holes.

The scaling of the percentile sizes has been found to be

optimum using the geometric mean of the bench height

H and the spacing S. The bench shape factor is the ratio of

the nominal volume excavated by a blasthole to the scaling

length cubed.

The rock strength-to-explosive energy factor is the ratio

of the resistance capacity (the strength) of the rock to the

driving explosive force; the rock strength is described by

the strain energy at rupture per unit volume rc
2/(2E), rc

being the uniaxial compressive strength and E the Young’s

modulus. The selection of this parameter has been done on

a purely numerical screening of strength variables giving

the best determination of the final model. The explosive

yield is described as the energy concentration per unit

volume, in a direct transpose of the asteroid collision that

uses the impactor kinetic energy. Energy concentration is

calculated as the powder factor times the explosive energy

per unit mass; the explosive energy is rated with the

common heat of explosion value.

The rock structure is accounted by a linear form of the

joints spacing and the joint orientation descriptions. The

joints spacing is written using its non-dimensional ratio to

the burden. The joints orientation term is Lilly’s number

normalized to one.

The influence of the delay is found to be a function of

the non-dimensional factor cPDt/S; the function decreases

as the delay factor increases, reaching a minimum at a

certain value of the factor (in the range 30–40 for most

percentiles), beyond which the function increases toward

an asymptotic value.

The model is applied from 5 to 100 percentile sizes. All

the parameters of the model have tight confidence inter-

vals, which indicate a well-conditioned function and a

robust model of the existing data with good predictive

capability. The expected prediction error is about 20%

across the 100–5 percentile range.
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Sanchidrián JA, Castedo R, López LM, Segarra P, Santos AP (2015)

Determination of the JWL constants for ANFO and emulsion

explosives from cylinder test data. Central Eur J Energ Mater

12(2):177–194

Schimek P, Ouchterlony F, Moser P (2015) Influence of blasthole

delay times on fragmentation as well as characteristics of blast

damage behind a remaining bench face through model-scale

blasting. In: Spathis AT et al (eds) Proceedings of 11th

international symposium on rock fragmentation by blasting

(Fragblast 11), Sydney, Australia 24–26 August 2015. The

Australasian Institute of Mining and Metallurgy, Carlton,

pp 257–265

Scholz CH (1990) The mechanics of earthquakes and faulting.

Cambridge University Press, Cambridge, UK, pp 28–29

Schuhmann R (1940) Principles of comminution, I-size distribution

and surface calculations. AIME Technical Pub. no. 1189.

American Institute of Mining and Metallurgical Engineers,

New York, pp 1–11

Scott A (1996) ‘Blastability’ and blast design. In: Mohanty B (ed)

Proceedings of 5th international symposium on rock fragmen-

tation by blasting (Fragblast 5), Montreal, Canada, 25–29 August

1996. Balkema, Rotterdam, pp 27–36

Seber GAF, Wild CJ (2003) Nonlinear regression. Wiley, Hoboken

Segarra P, Sanchidrián JA (2003) The effect of blast design

parameters on fragmentation in El Alto quarry (Madrid, Spain).

Report 92, Less Fines Project, EC Contract no. G1RD-CT-2000-

00438. Universidad Politécnica de Madrid
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