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Abstract A proper criterion describing when material fails

is essential for deep understanding and constitutive mod-

eling of rock damage and failure by microcracking. Phys-

ically, such a criterion should be the global effect of local

mechanical response and microstructure evolution inside

the material. This paper aims at deriving a new mecha-

nisms-based failure criterion for brittle rocks, based on

micromechanical unilateral damage-friction coupling

analyses rather than on the basic results from the classical

linear elastic fracture mechanics. The failure functions

respectively describing three failure modes (purely tensile

mode, tensile-shear mode as well as compressive-shear

mode) are achieved in a unified upscaling framework and

illustrated in the Mohr plane and also in the plane of

principal stresses. The strength envelope is proved to be

continuous and smooth with a compressive to tensile

strength ratio dependent on material properties. Compar-

isons with experimental data are finally carried out. By this

work, we also provide a theoretical evidence on the hybrid

failure and the smooth transition from tensile failure to

compressive-shear failure.

Keywords Failure criterion � Micromechanics � Damage

and friction coupling � Unilateral effects � Penny-shaped
cracks � Brittle rocks

1 Introduction

Brittle rocks, either in their natural state or subjected to

external loads, contain a large number of randomly ori-

ented and distributed microcracks. In tension, these cracks

are mostly open and will grow in response to locally

concentrated stresses particularly at the tips. In that event,

crack growth usually experiences an unstable stage toward

a brittle failure. However, under increasing compressive

stresses, nonlinear mechanical behaviors of the material are

essentially governed by local coupling between friction-

induced inelastic deformation and cracking-related damage

evolution. Proper account of the unilateral effects and

damage-friction coupling allows to explain and model lots

of nonlinear mechanical phenomena usually observed at

laboratory.

Theoretical prediction of macroscopic fracture stresses

(strength) has been of great interest in mechanics and

engineering science. For quasi-brittle microcracked rocks,

the final failure is mainly attributed to damage cumulation

due to crack growth. In the literature, various efforts have

been made to predict material failure. Firstly, empirical

attempts were devoted to setting up failure criteria based on

experimental results. We can mention among others the

well-known Mohr–Coulomb criterion, the Drucker–Prager

criterion (Drucker and Prager 1952) and the Hoek–Brown

criterion (Hoek and Brown 1980). However, these criteria

are nearly based on mathematically empirical approaches.

Starting from experimental values of failure stresses

obtained from various loading paths (uniaxial tension and

compression, conventional triaxial compression, true tri-

axial compression, direct shear test, Brazilian indirect

tension test, etc.), one tried to determine a reduced form of

mathematical criteria which are generally functions of

stress invariants and material symmetry properties.

& Qi-Zhi Zhu

qizhi.zhu@gmail.com

1 College of Civil and Transportation Engineering, Hohai

University, Nanjing, China

2 Key Laboratory of Ministry of Education for Geomechanics

and Embankment Engineering, Hohai University, Nanjing,

China

123

Rock Mech Rock Eng (2017) 50:341–352

DOI 10.1007/s00603-016-1083-0

http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-016-1083-0&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00603-016-1083-0&amp;domain=pdf


Therefore, strength prediction in such a way is completely

separated from deformation analysis. Moreover, although

capable of defining limiting conditions on failure stresses,

these criteria concerned and told very little about physical

mechanisms behind macroscopic phenomena as well as

specific microstructure evolution closely related to poten-

tial failure modes for a given loading path. In particular,

the transition between different failure modes, which has

been experimentally evidenced by Ramsey and Chester

(2004), has never been properly theoretically investigated.

Because of the lack of consistent framework, the empiri-

cally obtained failure envelopes are often not smooth.

The Griffith failure theory proposed nearly a century ago

remains up to now the cornerstone of studying initiation

and propagation of a single crack. In his pioneering works,

Griffith (1921, 1924) regarded initial cracks as the gov-

erning factor of brittle failure and then predicted the tensile

strength by investigating the stress state at the tips of flat

elliptical cracks. This theory succeeded to a large extent in

incorporating material microstructure (cracks) into failure

prediction. Later, the Griffith failure theory was extended

to various aspects; for example, the extension to penny-

shaped cracks (Keer 1966; Margolin 1984), the contribu-

tions for brittle fracture under compressive or shear stresses

(McClintock and Walsh 1962; Hoek and Bieniawski 1965;

Wang and Shrive 1993), the works for Griffith failure in

three dimensions (Sack 1946; Kassir and Sih 1967; Hatz-

itrifon and Gdoutos 1988), the work by Brace (1960) to

take into account pore pressure effect, just mention the

representative ones. Comparisons of the Griffith theory

with other well-known failure criteria have also been per-

formed (Clausing 1959; Brace and Bombolakis 1963; Hoek

and Martin 2014). It is worth noticing that in view of the

importance of the Griffith theory, Patersson and Wong

(2010) included in their book a whole chapter on this topic.

In the Mohr plane, the original Griffith failure function

takes the form

s2 þ 4rtrn � 4r2t ¼ 0 ð1Þ

with s, rn and rt representing the norm of the shear stress

vector, the normal stress and the tensile strength, respec-

tively. As have been commented by McClintock and Walsh

(1962), the criterion (1) presents some obvious deficiencies

in predicting compressive strength, arising from the smaller

increase in compressive strength as the confining pressure

increases. Moreover, the predicted ratio of compressive

strength to tensile strength is fixed at eight, but this ratio is

found in experiment to vary for different rocks. In order to

amend the discrepancy between theoretical predictions by

the Griffith criterion and experimental observations,

McClintock and Walsh (1962) made their own contribu-

tions by accounting for contact conditions and frictional

sliding for closed cracks under local normal compression.

To be definite, when rn\0, the Griffith failure condition is

modified as

sþ arn � 2rt ¼ 0 ð2Þ

where a is the coefficient of friction of crack surfaces.

When rn [ 0, the Griffith failure function was assumed to

be still valid. It is worthy emphasizing that for the modified

failure criterion, although the two parts always intersect at

the s-axis, its smoothness takes place only in the particular

case where a ¼ 1, implying a mathematical inconsistency

in this modification.

A criterion describing when material fails is essential,

but still far from a complete constitutive modeling of

mechanical behaviors of the material. Given a single

strength criterion, there is still a need to incorporate into it

evolution laws of both crack growth and inelastic strain and

to introduce into it a hardening/softening function for

achieving a complete material response. Differing greatly

from the above common process, Zhu (2016) recently

realized strength prediction in combination with deforma-

tion analysis for brittle rocks where use has been made of

an upscaling method but under isotropic assumptions upon

both inelastic strain and damage. As a further extension

along the line, the present paper is devoted to setting up a

new strength criterion from microcracking mechanisms via

a well-developed micromechanics-based anisotropic uni-

lateral damage-friction coupling model (Pensée et al. 2002;

Zhu et al. 2008a, b, 2016; Zhu and Shao 2015). The closed-

form failure functions are the inherent consequence of a

combined unilateral damage/friction process. Not only the

purely tensile failure mode but also the tensile-shear failure

mode and the compressive-shear failure mode which may

present in microcracked rocks are taken into account in a

unified and consistent framework. The new criterion offers

an enrichment to the original Griffith failure function and

also to its modified version at least on three critical aspects:

(1) in compression regime, it arises from a local Coulomb-

type friction criterion in combination with a strain energy

release rate-based damage criterion, both formulated on

micro scale. Friction effect is thus taken into account in a

proper way; (2) theoretical demonstration for the hybrid

failure mode as well as the transition from the tensile

failure mode to the compressive-shear failure mode; (3) the

smoothness at the transition from the tensile to compres-

sive-shear failure mode is ensured theoretically.
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2 Constitutive Equations of the Matrix–Cracks
System

This section briefly presents the micromechanics-based

unilateral damage formulations, relying on which we will

derive failure functions for microcracked brittle rocks.

2.1 System Free Energy

Focus here is put on brittle rocks whose matrix phase is

weakened by a large number of randomly oriented and

distributed penny-shaped microcracks. As usually per-

formed in multiscale analyses, we extract a representative

elementary volume (REV), which occupies a geometric

domain X and has external boundary surface oX. In this

matrix–cracks system, the solid phase is assumed to be

isotropic and linearly elastic with stiffness tensor C. To

facilitate mathematical formulations, microcracks with the

same normal is put into a family. Geometrically, a family

of penny-shaped cracks can be characterized by its normal

vector n, mean surface radius a and its half-opening c. The

corresponding volume fraction /c is then given by /c ¼
4
3
pa2cN ¼ 4

3
p1d with 1 ¼ c=a being crack aspect ratio and

N the number of cracks per unit volume. For each crack

family, the dimensionless crack density parameter d ¼
N a3 is taken as internal damage variable.

Microcracks in a family could be either open or closed.

Therefore, we may envisage any open/closure combination

of all considered representative crack families. We propose

here to apply the Mori-Tanaka homogenization scheme

(Mori and Tanaka 1973) to the matrix—(penny-shaped)

cracks system. On the one hand, for simple matrix–cracks

configurations, this scheme can produce the same results as

those in the linear elastic fracture mechanics (Kachanov

1992; Benveniste 1986); on the other hand, the effective

compliance predicted by this scheme is of linear form,

which can facilitate significantly constitutive formulations.

The Gibbs free energy of the REV described above takes

the following general form (Zhu and Shao 2015)

w ¼ 1

2
r : Shom : rþ r :

Xnc

j¼1

�c;j �
Xnc

j¼1

1

2d j
�c;j : Cn;j : �c;j

ð3Þ

where Shom ¼ Sþ
Pno

r¼1 d
rSn;r is the effective compliance

tensor with S ¼ C�1 being the compliance tensor of the

matrix, r is the macroscopic stress tensor; no and nc rep-

resent the family number of open cracks and that of closed

cracks, respectively; �c;j denotes the local inelastic strain

related to displacement discontinuities across the surfaces

of closed cracks in the jth family. By using the fourth-order

orientation-dependent operators Tijkl ¼ 1
2
ninkdjl þ ninldjk
�

þ njnkdil þ njnldik � 4ninjnknlÞ and Nijkl ¼ ninjnknl, the

fourth-order modulus tensor Cn and its pseudo-inverse Sn

are given by

Cn ¼ cnNþ ctT; Sn ¼ 1

cn
Nþ 1

ct
T: ð4Þ

For penny-shaped cracks, cn and ct are two constants only

function of the Young’s modulus E and the Poisson’s ratio

m of the matrix, such that cn ¼ 3E=16 1� m2ð Þ and ct ¼
2� mð Þcn (Kachanov 1992).

2.2 State Equations

The constitutive model based on the linear homogenization

method is formulated within the framework of irreversible

thermodynamics with internal variables. From Eq. (3) are

derived the macroscopic strain

e ¼ ow
or

¼ Shom : rþ
Xnc

j¼1

�c;j ð5Þ

and the thermodynamic force associated with the local

inelastic strain �c

rc ¼ ow
o�c

¼ r� 1

d
Cn : �c ð6Þ

rc is physically interpreted as the local stress acting on

microcracks. Its normal part rcn and tangential part sc are

obtained by projecting the stress vector (rc � n) onto the

normal direction and crack plane, respectively

rcn ¼ n � rc � n; sc ¼ rc � n � d� n� nð Þ; ð7Þ

or in a more explicit form

rcn ¼ rn �
cn

d
�c : n� nð Þ; sc ¼ s� ct

d
�c � n � d� n� nð Þ

ð8Þ

with rn ¼ n � r � n and s ¼ r � n � d� n� nð Þ.
In the same way, we derive the damage-conjugated

thermodynamic force

Yd ¼
ow
od

¼ 1

2d2
�c : Cn : �c ð9Þ

for a family of closed cracks, and

Yd ¼
ow
od

¼ 1

2
r : Sn : r ð10Þ

for a family of open cracks.

2.3 Friction Criterion and Damage Criterion

on Crack Scale

Given the local stressrc, it is natural and rational to define for

a family of closed cracks a friction criterion in terms of the
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normal and shear stress components rcn and s
c. The following

Coulomb-type criterion formulated on the microscale

f ðrcÞ ¼ sck k þ arcn � 0 ð11Þ

is used to characterize the friction-induced inelastic

deformation, where a represents the apparent friction

coefficient of crack surfaces with asperities.

In continuum damage mechanics, the strain energy

release rate-based damage criteria have been widely used,

which take the following general form

gðYd; dÞ ¼ Yd �R dð Þ� 0: ð12Þ

Function R dð Þ represents the current material resistance to

further damage evolution by crack growth.

3 Failure Criterion in the Mohr Plane

3.1 Derivation of the Failure Functions

For open cracks, recall that the local damage criterion is

given by

gðr; dÞ ¼ 1

2
r : Sn : r�R dð Þ� 0 ð13Þ

By denoting j ¼ ct=ð2cnÞ ¼ 1� m
2
and s ¼ sk k, the dam-

age criterion is cast into the form

gðr; dÞ ¼ s2

j
þ r2n � 2cnR dð Þ ¼ 0 ð14Þ

It is seen that material failure will take place once R dð Þ
reaches its maximal value at a critical damage d ¼ dc. By

defining the uniaxial tensile strength rt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2cnR dcð Þ

p
, the

following failure function is finally achieved for both the

tensile mode (s ¼ 0) and the tensile-shear mode

gðrÞ ¼ s2

j
þ r2n � r2t ¼ 0 ð15Þ

Under compressive stresses with the algebraic sequence of

the principal stresses r1\r2\r3, it is known a priori that

the normal n of the critical cracking plane is located inside

the plane e1; e3ð Þ (see Fig. 1). For this reason, the stress

tensor is written in the following form

r ¼ r3dþ r2 � r3ð Þe2 � e2 þ r1 � r3ð Þe1 � e1: ð16Þ

It follows by introducing Eq. (16) into Eq. (8)

rcn ¼ r3 þ r1 � r3ð Þ e1 � nð Þ2� cn

d
�c : n� nð Þ ð17Þ

and

sc ¼ r1 � r3ð Þ e1 � nð Þ e1 � e1 � nð Þn½ � � ct

d
�c � n

� d� n� nð Þ ð18Þ

Further, according to the shear stress vector s, the flow

direction inside the crack plane, denoted by the unit vector

t , is defined as

t ¼ r1 � r3ð Þ e1 � nð Þ e1 � e1 � nð Þnð Þ
r1 � r3ð Þ e1 � nð Þ e1 � e1 � nð Þnð Þk k

¼ sign r1 � r3ð Þ e1 � e1 � nð Þnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e1 � nð Þ2

q ð19Þ

The norm sck k, denoted by sc; can then be reformulated in

terms of s

sc ¼ s� ct

d
t � �c � n ð20Þ

By defining the flow direction tensor

D ¼ t�s nþ an� n; or Dij ¼
1

2
nitj þ njti
� �

þ aninj

ð21Þ

The friction criterion is finally rearranged into the form

f ðr; �c; dÞ ¼ sþ arn �
1

d
D : Cn : �c � 0 ð22Þ

The evolution of the inelastic strain is determined by

adopting an associated flow rule

_�c ¼ ks
of

orc
¼ ksD ð23Þ

According to Eq. (19), under monotonic loading, D is

independent on the stress level. When no rotation of the

principal directions occurs, the cumulated inelastic strain

�c can be simply measured as �c ¼ KsD with the cumula-

tion Ks ¼
R
ks operated over the loading history. It follows

f ðr; �c; dÞ ¼ sþ arn �
Ks

d
D : Cn : D� 0 ð24Þ

penny-shaped crack

Fig. 1 Illustration of a penny-shaped crack with the normal n inside

the plane e1; e3ð Þ and forming the angle h with the axis e1
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On the other hand, we rewrite the damage criterion (12) by

means of the tensor D

g ¼ 1

2

Ks

d

� �2

D : Cn : D�R dð Þ� 0 ð25Þ

When it is satisfied, i.e. g ¼ 0, we have the relation

Ks

d
¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
R dð Þ
n

s
ð26Þ

with n ¼ 2D : Cn : D ¼ 2cn jþ a2ð Þ.
The friction criterion is finally written in the form

f ðr; dÞ ¼ sþ arn �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
R dð Þn

p
� 0 ð27Þ

It is seen from the above friction-damage coupling analyses

that friction-induced material hardening/softening is actu-

ally controlled by the kinetics of the damage resistance

function R dð Þ. In other words, material failure will take

place once R dð Þ reaches its maximal value at a critical

damage d ¼ dc. By defining the purely shear strength

rs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R dcð Þn

p
¼ rt

ffiffiffiffiffiffiffiffiffiffiffiffiffi
jþ a2

p
, the failure function reads

f ðr; dcÞ ¼ sþ arn � rs ¼ 0 ð28Þ

3.2 Comparisons with the Griffith Failure Criterion

and its Modified Version

In Fig. 2 are presented and compared the original Griffith

failure function and its modified version in theMohr plane. It

is seen that the original Griffith criterion is continuous and

smooth but would underestimate material strength in com-

pression regime. McClintock and Walsh (1962) amended

this shortcoming by taking into account contact condition on

closed frictional cracks under local compressive normal

stress. However, this improvement caused the mathematical

inconsistency that the two parts of the envelope are tangen-

tial to each other only for the particular case where a ¼ 1.

In the present work, we have dealt in a consistent and

unified framework with the cases of open cracks and closed

cracks in order to take into account unilateral effects. The

unilateral damage as well as damage-friction coupling

analyses result in the failure functions (14) and (28) for

open and closed microcracks, respectively. The failure

criterion is summarized as follows:

s2

j
þ r2n � r2t ¼ 0; rn � 0

sþ arn � rs ¼ 0; rn � 0

8
<

: ð29Þ

In Fig. 3 is presented the present failure criterion in theMohr

plane. The failure envelope consists of two parts: the straight

line for closed cracks and the elliptically curved line for open

cracks. By combining functions (28) and (14), it is proved

that the two parts are jointed and tangent to each other at

point a
jþa2 rs;

j
jþa2 rs

� �
. In other word, they are continuous

and smooth in the whole hardening/softening process.

Moreover, this C1-type continuity is independent on the

material properties. It is worthy noticing that the derived

failure function in compression regime takes the same form

as the modification by McClintock and Walsh (1962) to the

original Griffith criterion. The difference between them only

resides in their intersections with the s-axis.

4 Failure Criterion in the Plane of Principle
Stresses

As aforementioned, brittle rocks usually contain a large

number of randomly oriented and distributed microcracks

and experience a nonlinear dissipative process by crack

Fig. 2 Illustration of the original Griffith failure criterion and its

modification

Fig. 3 The new Griffith-type failure envelope (solid line) in the Mohr

plane
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growth, coalescence and localization into a thin band,

finally forming a macroscopic shearing plane. Material

failure takes place with the occurrence of one or several

critical sliding planes inclined at a mathematically deter-

mined tip angle. Therefore, in order to derive the failure

function, we have to follow such a procedure: find the

critical plane and then formulate the failure function. To

this end, we distinguish three loading paths usually envis-

aged in geomechanics.

4.1 Triaxial Tests with Axial Compression

Denoting by h the angle formed by the axis e1 and the

normal n of microcracks in a given family, one has e1 � n ¼
cos h with h 2 0; p

2

	 

(see Fig.1). It follows

s ¼ r � n � d� n� nð Þk k ¼ r1 � r3j j cos h sin h ð30Þ

and

rn ¼ n � r � n ¼ r1 cos
2 hþ r3 sin

2 h ð31Þ

Furthermore, triaxial tests with axial compression

r1 � r3\0ð Þ imply

s ¼ � r1 � r3ð Þ cos h sin h ð32Þ

By inserting Eq. (31) and Eq. (32) into Eq. (28) and after

some arrangements, the friction criterion takes the form

f ¼ r1�
cosh sinhþ a sin2 h
cosh sinh� acos2 h

r3þ
1

sinhcosh� acos2 h
rs ¼ 0

ð33Þ

It is now convenient to define the orientation-dependent

function h hð Þ ¼ coshsinh� acos2 h. One can prove that

the maximal value of h hð Þ is obtained with the critical

angle hc, which satisfies the following condition

tan hc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
þ a ð34Þ

Frictional sliding along the critical plane inclined at h ¼ hc
leads to the macroscopic failure of the material. Substitu-

tion of Eq. (34) into Eq. (33) gives

f r1; r3ð Þ ¼ r1 � tan2 hcr3 þ 2 tan hcrs ¼ 0 ð35Þ

Let us define the uniaxial compressive strength rc by set-

ting r2 ¼ r3 ¼ 0

rc ¼ 2 tan hcrs ¼ 2 tan hc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R dcð Þn

p
ð36Þ

The failure function is written in the following final form

f r1; r3ð Þ ¼ r1 � tan2 hcr3 þ rc ¼ 0 ð37Þ

Moreover, the friction coefficient a can be related to a

friction angle / such that a ¼ tan/. It is further shown that
there exists the following relation between the two angles

/ and hc

hc ¼
p
4
þ /

2
: ð38Þ

The above trans-scale relationship allows the parameter a
to be determined from a series of triaxial compression tests.

4.2 Triaxial Tests with Axial Extension

In this loading case, the norm of the shear stress vector s is
expressed as

s ¼ r1 � r3ð Þ cos h sin h ð39Þ

This time, the friction criterion (28) is reformulated as

follows

f ¼ r1 �
cos h sin h� a sin2 h
cos h sin hþ a cos2 h

r3 �
1

sin h cos hþ a cos2 h
rs ¼ 0

ð40Þ

We now define h hð Þ ¼ cos h sin hþ a cos2 h. It is proved

that the maximal value of h hð Þ is obtained at h ¼ he which
satisfies the condition

tan he ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ 1

p
� a ð41Þ

The failure criterion takes the expression

f r1; r3ð Þ ¼ r1 � tan2 her3 � re ¼ 0 ð42Þ

with the axial extension strength re ¼ 2 tan hers and the

ratios rc=re ¼ tan2 hc and re=rc ¼ tan2 he:
Similarly, the following relation between / and he is

achieved

he ¼
p
4
� /

2
ð43Þ

4.3 Tensile Failure

We now proceed to reformulate the tensile failure function

(14) in terms of the principal stresses. By combining

Eqs. (14), (30) and (31), the damage criterion for open

tensile cracks is rewritten in the form

g ¼ 1

j
r1 � r3ð Þ2cos2 h sin2 hþ r3 þ r1 � r3ð Þ cos2 h

	 
2�r2t ¼ 0

ð44Þ

Accordingly, we define the following orientation-depen-

dent function
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h hð Þ ¼ 1

j
r1 � r3ð Þ2cos2 h sin2 hþ r1 cos

2 hþ r3 sin
2 h

� �2

ð45Þ

In order to derive the critical failure plane, we impose the

condition

dh

dh
¼ 1

2j
r1 � r3ð Þ2sin 2h cos 2h� r1 cos

2 hþ r3 sin
2 h

� �

r1 � r3ð Þ sin 2h ¼ 0 ð46Þ

leading to two candidates of solution

sin 2h ¼ 0 ð47Þ

and

1

2j
r1 � r3ð Þ cos 2h� r1 cos

2 hþ r3 sin
2 h

� �
¼ 0 ð48Þ

The latter one can be cast into the form

tan2 h ¼ 1� 2jð Þr1 � r3
r1 � 1� 2jð Þr3

ð49Þ

or for latter reference

cos2 h ¼ r1 � 1� 2jð Þr3
2 1� jð Þ r1 � r3ð Þ ; sin2 h ¼ 1� 2jð Þr1 � r3

2 1� jð Þ r1 � r3ð Þ
ð50Þ

On the other hand, for open tensile cracks, when neglecting

the initial opening degree, the opening-closure transition

imposes the condition rn � 0 for open cracks. More

explicitly, one has

r1 cos
2 hþ r3 sin

2 h� 0 ð51Þ

We now distinguish the following cases:

• Case 1 r1 [ 0 and r3 ¼ 0. Eq. (49) gives the relation

tan2 h ¼ 1� 2j ¼ �1þ m\ 0, which is thus impossi-

ble. We must have sin 2h ¼ 0, leading to the solutions

h ¼ 0 or h ¼ p
2
and the former giving a bigger value for

h hð Þ. The failure function then takes the form

r1 � rt ¼ 0 ð52Þ

corresponding to a purely tensile failure.

• Case 2 r3 [ 0 and r1 ¼ 0. Eq. (49) becomes

tan2 h ¼ 1
1�2j, which is also impossible. In this case,

the solution will be h ¼ p
2

and the tensile failure

function is obtained

r3 � rt ¼ 0 ð53Þ

• Case 3 r1 [ 0 and r3\0, that gives r1 � r3 [ 0.

According to Eq. (50), one has 1� 2jð Þr3 � r1 � r3
1�2j;

on the other hand, combination of Eq. (49) with

condition (51) gives r1þ r3 � 0. On summary, the

stresses are constrained by the following condition

�r1 � r3 � 1� 2jð Þr1 ð54Þ

It is shown that the failure function takes the following

form (see ‘‘Appendix 1’’ for the proof)

1

4 1� jð Þ r1 þ r3ð Þ2þ 1

4j
r1 � r3ð Þ2�r2t ¼ 0 ð55Þ

corresponding to a tensile-shear failure mode.

Complementary to Case 3 when 1� 2jð Þr1 � r3\0,

we must have the condition sin 2h ¼ 0 and the solution

h ¼ 0 is attained according to function (44).

• Case 4 r1\0 and r3 [ 0, that gives r1 � r3\0. We

then derive from Eq. (50) the relation

1� 2jð Þr3 � r1 � r3
1�2j and r1þ r3 � 0 by combining

(49) and (51), leading to the inequality

�r3 � r1 � 1� 2jð Þr3 ð56Þ

In this case, the failure function (55) is shared.

Complementary to Case 4 when 1� 2jð Þr3 � r1\0.

One shall take the candidate sin 2h ¼ 0. According to

function (44), we finally have the solution h ¼ p
2
and

r3 ¼ rt.
• Case 5 r1 [ 0 and r3 [ 0. There is no solution for the

candidate (49). We must have sin 2h ¼ 0. More

precisely, h ¼ 0 for r1 [ r3 or h ¼ p
2
for r1\r3.

4.4 Summary on the Failure Functions

It is now our purpose to formulate the complete failure

function based on the above detailed analyses. We are

particularly concerned with the loading path of triaxial

compression. By collecting the failure functions achieved

in the previous parts, one has

r3 � rt ¼ 0; if � 1� mð Þrt � r1 � 0

1

m
r1 þ r3ð Þ2þ 1

2� m
r1 � r3ð Þ2�2r2t ¼ 0; if � r3 � r1 � � 1� mð Þrt

r1 � tan2 hcr3 þ rc ¼ 0; if r1 � � r3

8
>><

>>:
ð57Þ
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It is worth indicating that unlike the original Griffith failure

function that contains two parts, the present failure crite-

rion consists of three parts, corresponding to three failure

modes of brittle rocks: purely tensile failure, tensile-shear

failure and compressive-shear failure.

4.5 Some Discussions on the New Failure Criterion

Based on the above analyses, the complete failure envelope

in the (r3; r1) plane is depicted in Fig. 4, from which are

captured the following features:

• The whole failure envelope is symmetric with respect

to the straight line defined by r1 � r3 ¼ 0, the upper

and lower branches corresponding to the extension and

compression loading paths, respectively. Moreover,

each branch contains three parts: a cutoff part, an

elliptically curved line defined by Eq. (55) which

describes the tensile-shear failure for the case of open

cracks, and the second straight line (Eq. (37) or

Eq. (42)) which reflects the compressive-shear failure

for the case of closed cracks under compressive normal

stress. The smooth transition from the tensile failure

mode to compressive-shear failure mode can be

demonstrated theoretically (see ‘‘Appendix 2’’).

• The two straight lines are tangent to the elliptical curve,

respectively, at point Aðrt; ð1� 2jÞrtÞ and point

B
1þ 2 j� 1ð Þ cos2 hc

1þ 4 j� 1ð Þ sin2 hc cos2 hc
rc cos

2 hc;

�

� 1þ 2 j� 1ð Þ sin2 hc
1þ 4 j� 1ð Þ cos2 hc sin2 hc

rc cos
2 hc

�
;

as proved in ‘‘Appendix 2’’ and illustrated in the

amplification region of Fig. 4, which presents an

appealing feature of continuity and smoothness of the

new failure criterion.

• The compressive strength rc and the tensile strength rt
are not symmetrical. It is not surprising in view that the

unilateral contact effect has been taken into account

properly. Moreover, unlike the Griffith criterion, the

ratio rc=rt is here not fixed but varies with the material

properties. More precisely, one has

rc
rt

¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
a2þ 1

p
þ a

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

2
þ a2

r
¼ 2tanhc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m

2
þ a2

r

ð58Þ

The evolution of the ratio rc=rt with the friction

coefficient is presented in Fig. 5. It is seen that a bigger

value of friction coefficient leads to a higher level of a

compressive to tensile strength ratio, which is obvi-

ously consistent with laboratory observations.

• It is noted that on the basis of stress analyses within the

framework of fracture mechanics Ashby and Sammis

(1990) proposed a crack initiation condition and final

failure criterion for brittle rocks in compression. The

tensile failure mode as well as the transitional failure

mode were not addressed. It is also interesting to notice

that the new criterion (37), the modified part by

McClintock and Walsh (1962) to the original Griffith

criterion, and the criterion proposed by Ashby and

Sammis (1990) all take a linear form in compression

regime. To a certain extent, their comparisons allow to

justify the use of an apparent (effective) friction

coefficient in the present work.

Fig. 4 The new strength

envelope (solid line) in the

plane ðr3; r1Þ with point A and

point B
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5 Comparisons with Experimental Data
for Typical Brittle Rocks

This section is concerned with the evaluation on the

derived failure criterion by comparison with experimental

data from triaxial compression tests on typical brittle rocks.

The calibration procedure is as follows: calibrate first the

two parameters a and R dcð Þ of the compressive failure

function because triaxial compression tests are more easily

performed to obtain reliable data with respect to tensile

tests; next, predict the tensile strength rt according to the

ratio (58); finally, plot the whole strength envelope and

compare it with experimental failure data. It is worthy

emphasizing that complete and consistent testing data

including the zone of tensile failure were rarely reported in

literatures.

5.1 Westerly Granite

We focus first on the strength feature of Westerly granite

(Haimson and Chang 2000; Hopkins 1986) because of its

relatively complete loading range. According to experi-

mental data, the failure stresses for lower and moderate

levels of confining pressures can be fitted quite well by the

linear function r1 ¼ 11:11r3 þ 199:6, its comparison with

function (37) leading to the relations: tan2 hc ¼ 11:11 and

rc ¼ 2 tan hc
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R dcð Þn

p
¼ 199:6 MPa. From the former is

determined the apparent friction coefficient a ¼ 1:52, and

then according to Eq. (58) the tensile strength

rt ¼ 16:6 MPa is predicted for a typical value of m ¼ 0:2.

Figure 6 compares theoretical prediction and experi-

mental data. The predicted tensile strength, although

smaller than the value of 17.9 MPa from isotropic analyses

(Zhu 2016), is still 30 % bigger than the testing data

12.5 MPa. This difference should be caused by the neglect

of initial opening of micro-defects. As one of the

experimental evidences, in the first phase of a triaxial

compression test with low or moderate confining pressure,

the stress–strain curve of brittle rocks is generally concave

due to the progressive closure of existing microcracks. In

Fig. 5 Variation of the ratio of compressive strength to tensile

strength at m ¼ 0:2

Fig. 6 Validation of the proposed failure criterion with Westerly

granite

Fig. 7 Local amplification of Fig. 6 to show the smooth transition

between the different failure modes
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this view, further improvement can be expected by

accounting for the effect of progressive closure of initial

cracks.

In order to show the transition of the failure modes, we

choose to amplify the transition zone, as shown in Fig. 7. It

is seen that the extent of the zone between points A and B

denoting the hybrid tensile-shear failure mode is very

limited. That is why smooth transition from one failure

mode to another is generally very difficult to be clearly

identified in experiment. As an exception, the laboratory

tests conducted by Ramsey and Chester (2004) on dog-

bone samples of Carrara marble gained a great success and

opened a new way to achieve complete failure information

on rock strength.

5.2 Lac du Bonnet Granite

By following the same procedure, we now perform the

comparison between theoretical prediction and experi-

mental data on the failure stresses of Lac du Bonnet

granite. For that, use has been made of the testing data

appeared in Carter et al. (1991). The two basic strength

parameters a and RðdcÞ are determined by fitting the

experimental data for low and moderate confining pres-

sures. The fitting line takes the function

r1 ¼ 14:3r3 þ 230:3, giving the apparent friction coeffi-

cient a ¼ 1:76, the compressive strength rc ¼ 230:3 MPa

and the tensile strength rt ¼ 15:23 MPa. The predicted

strength envelope and the locally amplified transition zone

are plotted in Figs. 8 and 9, respectively. Globally, the

comparisons and comments made on Westerly granite are

shared by Lac du Bonnet granite. Just like the modified

Griffith failure criterion and the criterion proposed by

Ashby and Sammis (1990), the proposed failure function

cannot predict satisfactorily the failure of crystalline rocks

under high confining pressures, in which some ductile

failure mechanisms may be involved but have not been

taken into account in the present model.

6 Concluding Remarks

We proposed a new way to derive a mechanisms-based

failure criterion for brittle rocks weakened by penny-

shaped microcracks. Inherent combination of strength

prediction with inelastic deformation analyses makes it

thoroughly different from the existing ones. The closed-

form failure functions corresponding to the different failure

modes have been determined using an upscaling method.

The strength envelope possesses the C1-type continuity,

which is independent on material properties and state

variables. As one of the original contributions, the hybrid

fracture and the smooth transition from tensile fracture to

compressive-shear fracture have been demonstrated theo-

retically. More useful remarks are made as follows:

In the presented framework, theoretical derivation of

failure criterion has been regarded as one of mandatory

parts of developing a complete multiscale constitutiveFig. 8 Comparison of theoretical prediction with experimental data

from triaxial compression tests on Lac du Bonnet granite

Fig. 9 Local amplification of Fig. 8 to show the smooth transition

between the different failure modes
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model for cracked rocks. In other words, the criterion we

established is the natural result of a set of constitutive

equations (e.g., damage and friction criteria, evolution laws

of internal variables) but not the starting point to formulate

such equations by incorporating evolutions laws as well as

hardening/softening functions.

The failure mechanisms behind theoretical derivations

are quite clear. The formulations involve two crack geo-

metric states (open or closed), two nonlinear dissipation

mechanisms (anisotropic unilateral damage by cracking

and inelastic deformation by frictional sliding) and three

brittle failure modes (purely tensile mode, tensile-shear

model and compressive-shear mode). To the author’s

knowledge, failure criteria with these salient features have

not ever been reported in literatures.

The present contribution amends the original Griffith

failure criterion by taking into account the effect of friction

on closed cracks under normal compressive stress, and

simultaneously improves the modified Griffith criterion in

the sense that the new one ensures theoretically the

smoothness at the transition of the different failure modes.

Up to now, the effect of the intermediate principal stress

remains a theoretical issue largely open to the scientific

community and is also beyond the scope of the present

work. In both the damage driving force (10) for open

cracks and the friction criterion (11) for closed cracks are

involved two stress-fabric invariants: r : T : r and

r : N : r. However, the fourth-order orientation-dependent
tensors T and N do not provide a closed-form decompo-

sition of the fourth-order identity tensor I. Incorporation of

the invariant r : I�N� Tð Þ : r into the constitutive

model may cast a new light on the investigation on the

effect of the intermediate principal stress.

Future work along this line may include first the account

of pore pressure effect on material strength. On this topic,

some preliminary results have been achieved under iso-

tropic simplification for both the damage and inelastic

strain (Zhu 2016). Moreover, according to experimental

results, the ratio of compressive strength to tensile strength

may vary within a large range (Hoek and Martin 2014). For

some rocks, prediction by Eq. (58) may underestimate this

ratio. This could be partially caused by the neglect of initial

crack opening in the disturbed samples. In the present

model, according to the opening/closure transition condi-

tion of microcracks, tensile failure only occurs for open

cracks and has to be triggered by applying a macroscopic

tensile stress. Thus, further efforts can be made by taking

into account an initial normal strain.
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Appendix 1: Derivation of Function (55)

According to the condition (54) and Eq. (49), we derive the

range of the dip angle as 0� h� p
4
. On the one hand, by

combining Eq. (51) and the conditions that r1 [ 0 and

r3\0, from Eq. (47) is derived the potential solution

h1 ¼ 0. On the other hand, introduction of Eq. (50) into

Eq. (44) gives

h h2ð Þ ¼ 1

4 1� jð Þ r1 þ r3ð Þ2þ 1

4j
r1 � r3ð Þ2 ð59Þ

for the value of h determined by Eq. (50).

Next, we make a difference between h h2ð Þ and

h h1ð Þ ¼ r21

h h2ð Þ � h h1ð Þ ¼ 1

4j 1� jð Þ 1� 2jð Þr1 � r3½ �2 � 0 ð60Þ

and also the difference between h h2ð Þ and

h h ¼ p
4

� �
¼ 1

4j r1 � r3ð Þ2þ 1
4
r1 þ r3ð Þ2

h h2ð Þ � h
p
4

� �
¼ 1

4

j
1� j

r1 þ r3ð Þ2 � 0 ð61Þ

As an inclusion, under the conditions that r1 [ 0 and

r3\0, the solution given by Eq. (50) leads to a maximal

value of h hð Þ. Accordingly, the failure function takes the

form

g r1; r3ð Þ ¼ 1

4 1� jð Þ r1 þ r3ð Þ2þ 1

4j
r1 � r3ð Þ2�r2t ¼ 0

ð62Þ

By following the same procedure, we can derive the same

failure function for the case that r1\0 and r3 [ 0.

Appendix 2: Proof of the Continuity
and Smoothness of the Failure Envelope

It is proposed to reformulate Eq. (62) in the following

form

g r1; r3ð Þ ¼ r21 þ r23 � 2 1� 2jð Þr1r3 � 4j 1� jð Þr2t ¼ 0

ð63Þ

In order to prove the continuity and smoothness at point A,

we set r3 ¼ rt in Eq. (63),
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r1 � 1� 2jð Þrt½ �2¼ 0 ð64Þ

leading to the unique solution r1 ¼ 1� 2jð Þrt. In other

words, the point A takes the coordinate rt; 1� 2jð Þrtð Þ.
As for the point B, from Eq. (37) is derived

r1 ¼ tan2 hcr3 � rc ð65Þ

By combining Eq. (63) and Eq. (65), we obtain the fol-

lowing quadratic function in terms of r3

ar23 þ br3 þ c ¼ 0 ð66Þ

with the coefficients

a ¼ tan2 hc þ 1
� �2 þ 4 j� 1ð Þ tan2 hc ð67Þ

b ¼ 2 � tan2 hc þ 1� 2jð Þ
	 


rc ð68Þ

c ¼ r2c � 4j 1� jð Þr2t ð69Þ

It is proved that

M ¼ b2 � 4ac

¼ 4j 1� jð Þ �4 tan2 hca
2 þ tan2 hc � 1

� �2h i
r2t ð70Þ

Further, from Eq. (34) is derived the relation

a ¼ 1

2
tan hc �

1

tan hc

� �
ð71Þ

Its insertion into Eq. (70) provides D ¼ 0, implying that

function (66) has one unique solution

r3 ¼ � b

2a
¼ 1þ 2 j� 1ð Þ cos2 hc

1þ 4 j� 1ð Þ sin2 hc cos2 hc
rc cos

2 hc ð72Þ

It follows

r1 ¼ � 1þ 2 j� 1ð Þ sin2 hc
1þ 4 j� 1ð Þ cos2 hc sin2 hc

rc cos
2 hc ð73Þ
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