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Abstract Based on the concept of generalized plasticity,

this study proposes a constitutive model to describe the

time-dependent behavior and wetting deterioration of

sandstone. The proposed model (1) exhibits nonlinear

elasticity under hydrostatic and shear loading, (2) follows

the associated flow rule for viscoplastic deformation, (3)

adopts a creep modulus that varies with the stress ratio, (4)

considers the primary and secondary creep behaviors of

rock, and (5) considers the effect of wetting deterioration.

This model requires 13 material parameters, comprising 3

for elasticity, 7 for plasticity, and 3 for creep. All param-

eters can be determined easily by following the suggested

procedures. The proposed model is first validated by

comparison with triaxial tests of sandstone under different

hydrostatic stress and cyclic loading conditions. In addi-

tion, the model is versatile in simulating time-dependent

behavior through a series of multistage creep tests. Finally,

to consider the effects of wetting deterioration, triaxial and

creep tests under dry and water-saturated conditions are

simulated. Comparison of the simulated and experimental

data shows that the proposed model can predict the

behavior of sandstone in dry and saturated conditions.

Keywords Constitutive model � Creep �
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1 Introduction

The theory of generalized plasticity was first introduced by

Zienkiewicz and Mroz (1984) to simulate soil behavior and

was later elaborated by Pastor and Zienkiewicz (1986) and

Pastor et al. (1990). In contrast to other plastic models, this

theory does not explicitly define the yield and plastic potential

surfaces. Instead, it adopts the gradients of these functions so

that simple models within this framework can consider

material behavior responses under loading. Generalized

plasticity considers plastic deformation at any stress level for

stress increments in both loading and unloading conditions.

These features enable the generalized plasticity model to

predict the stress–strain behavior of numerous soil types with

good accuracy under various types of loading. Researchers

have recently developed various constitutive relationships

based on this framework to describe sophisticated features

encompassing soil behavior, including anisotropy (Pastor

1991; Pastor et al. 1992), unsaturated conditions (Bolzon

et al. 1996; Manzanal et al. 2011b), degradation phenomena

(Fernandez Merodo et al. 2004), and the effects of stress

levels and densification on sand (Ling and Liu 2003; Ling and

Yang 2006; Manzanal et al. 2006, 2011a). Notably, the

transformation of this theory from the defining space to

general Cartesian stress space is one of the key steps in

extending it to computational implementations (Chan et al.

1988).

Other than soil, Weng and Ling (2012) adopted the gen-

eralized plasticity concept to investigate nonlinear elasticity

behavior in rock. The proposed model produces reasonable

predictions of the elastoplastic deformation of sandstone

under varying stress paths, cyclic loadings, and postpeak

behavior. In addition to simulating immediate rock defor-

mation, the time-dependent deformation (i.e., creep defor-

mation) of rock is a major concern in engineering practice
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(Cristescu 1989; Hoxha et al. 2005; Tomanovic 2006; Xie

and Shao 2006; Sterpi and Gioda 2009; Weng et al. 2010a, b).

According to previous studies on creep deformation of

sandstone (Tsai et al. 2008; Weng et al. 2010a), viscoplastic

flows indicate that the viscoplastic potential surface has a

similar shape to the plastic potential surface, but the size of the

viscoplastic potential surface changes with time. The plastic

potential surface has a time-independent size. Meanwhile,

through calculation of the irreversible work, direct evidence

of orthogonality between the yield surface and the plastic

flow, as well as the viscoplastic flow, has been observed.

Thus, it is reasonable to state that the yield surface, plastic

potential, and viscoplastic potential all have the same

geometry. Consequently, the associated flow rules are appli-

cable for modeling the time-dependent deformational

behavior of sandstone.

Based on these characteristics of sandstone, this study

extends the work of Weng and Ling (2012) to develop an

elastic–viscoplastic model that incorporates the generalized

plasticity concept. This study also presents an assessment

of the validity of the proposed model by comparing sim-

ulated and actual deformations in various multistage creep

tests. Moreover, the strength and stiffness of sandstone are

significantly reduced because of the wetting process (Dyke

and Dobereiner 1991; Hawkins and McConnell 1992; Jeng

et al. 2004). This phenomenon commonly occurs in sand-

stone of medium to moderate strength. To evaluate the

performance of the proposed model for the wetting dete-

rioration of sandstone, this study employs the proposed

model to simulate triaxial and creep tests of deformational

behaviors under dry and water-saturated conditions.

2 Model Concept

Based on the concept of generalized plasticity, the total

strain increment can be divided into elastic and plastic

components as follows:

de ¼ dee þ dep; ð1Þ

where de, dee, and dep are the increments of the total,

elastic, and plastic strain tensors, respectively.

The elastic and plastic strain increments can be obtained

from

dee ¼ Ce : dr ð2Þ

and

dep ¼ dkng ¼
1

HL=U

ngL=U � n
� �

: dr; ð3Þ

where Ce is the elastic constitutive tensor, dr is the

increment of the stress tensor, ng is the unit vector defining

the plastic flow direction, n represents the loading-direction

vector, dk is a plastic scalar, and HL=U is the plastic

modulus, which can be assumed directly without intro-

ducing a hardening rule. Subscripts ‘‘L’’ and ‘‘U’’ indicate

loading and unloading, respectively.

To consider time-dependent deformation, the plastic

strain increment dep can be substituted by the viscoplastic

strain increment devp. Equation (3) can then be modified to

devp ¼ 1

HL=U

ngL=U � n
� �

: drþ GðtÞ
Hc

nc � nð Þ : dr; ð4Þ

where Hc is the creep modulus, GðtÞ is a time-dependent

function, and nc is the viscoplastic flow vector. The con-

cept employed in Eq. 4 is similar to the viscoelastic model

in rheology. The first term 1
HL=U

ngL=U � n
� �

: dr represents

instantaneous deformation, whereas the second term
GðtÞ
Hc

nc � nð Þ : dr corresponds to long-term deformation,

including the primary and secondary creep behavior of the

rock.

Based on this concept of generalized plasticity, the yield

and viscoplastic potential surfaces are not directly specified,

but the scalar functions for plastic modulus HL=U, creep

modulus Hc, and direction tensors n, ng, and nc are required.

To incorporate the deformation characteristics of sandstone

into the generalized plasticity, this study proposes (and sub-

sequently defines) the major constituents of the model,

including nonlinear elasticity, dilatancy, plastic modulus, and

a time-dependent function.

2.1 Nonlinear Elastic Behavior

According to hyperelasticity theory, the strain tensor is

related to the derivatives of the energy density function as

follows:

ee ¼ oX
or

; ð5Þ

where X is the energy density function. Based on experimental

sandstone results, this study adopts the following energy

density function for X, which has been proposed by previous

studies (Weng et al. 2010a; Weng and Ling 2012):

X ¼ b1I
3=2
1 þ b2I�1

1 J2 þ b3J2; ð6Þ

where b1, b2, and b3 are material parameters, I1 is the first stress

invariant (I1 ¼ rkk ¼ 3p0), and J2 is the second deviatoric

stress invariant (J2 ¼ 1
2

sijsji, where sij is the deviatoric stress

tensor). After substituting Eq. (6) into Eq. (5), the elastic strain

tensor ee
ij takes the following form:

ee
ij ¼

oX
orij

¼ 3=2b1I
1=2
1 � b2I�2

1 J2 þ J2

� �
dij þ b2I�1

1 þ b3

� �
sij; ð7Þ
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where dij is the Kronecker delta tensor.

Equation (7) shows that the increment of the elastic

strain tensor dee
ij is

dee
ij ¼

o2X
orijorkl

drkl ¼ Ce
ijkldrkl; ð8Þ

dee
ij ¼

h
U1dijdkl þ U2dijskl þ U3dikdjl

� 1

3
U3dijdkl þ U2dklsij

i
drkl;

where U1 ¼ 3=4b1I
�1=2
1 þ 2b2I�3

1 J2; U2 ¼ �b2I�2
1 , and

U3 ¼ b2I�1
1 þ b3. Equations (7) and (8) are derived from

rigorous elastic theory, and satisfy the principle of ther-

modynamics, which indicates that energy is conserved

during any type of loading. A similar relationship based on

hyperelasticity was also proposed by Houlsby et al. (2005);

they adopted a power function of the stress to describe the

nonlinear elastic stiffness of soil. Mira et al. (2009) com-

bined the work of Houlsby et al. (2005) and generalized

plasticity to successfully predict soil behavior under cyclic

loading.

Based on Eq. (7), the elastic strain induced in the shear-

loading stage can be calculated as shown in Eqs. (9) and

(10):

ee
v ¼ �3b2

ffiffiffi
J2

p
=I1ð Þ2; ð9Þ

ce ¼ 2
ffiffiffi
3
p b2I�1

1 þ b3

� � ffiffiffiffiffi
J2

p
: ð10Þ

Equations (9) and (10) show two features of the proposed

model: (1) shear loading induces elastic dilative deforma-

tion, and (2) the elastic shear stiffness increases with the

application of increasing hydrostatic pressure. In addition,

greater values for the parameters b1, b2, and b3 indicate that

increasing elastic strain is generated by the model.

2.2 Dilatancy and Viscoplastic Flow

For stress–dilatancy relationships, this study adopts a

function similar to that of Pastor et al. (1990), relating the

dilatancy dg and stress ratio g as follows:

dg ¼
dep

v

dcp
¼ ð1þ aÞðMg � gÞ; ð11Þ

where dep
v and dcp are the incremental plastic volumetric

and shear strain, respectively. The term Mg is the threshold

of shear dilation in the triaxial plane. When g ¼ Mg, dg

equals zero and volumetric strain does not occur. The

sandstone converts from compression to dilation when

g[ Mg. a is a model parameter.

Based on the definition by Weng and Ling (2012), the

stress ratio g here is defined as

g ¼ q=qf ; ð12Þ

where q ¼
ffiffiffiffiffiffiffi
3J2

p
and qf is the shear strength. The linear

strength criterion, known as the Drucker–Prager criterion,

is adopted as follows:

qf ¼
ffiffiffiffiffiffiffiffi
3J2f

p
¼

ffiffiffi
3
p
ðadI1 þ kdÞ; ð13Þ

where the parameters ad and kd are the slope and cohesive

intercept of the failure envelope, respectively. If the shear

strength exhibits a nonlinear failure envelope, use of the

Hoek–Brown criterion (Hoek and Brown 1980) for rock is

recommended.

To further investigate the variation of dilatancy with the

stress ratio, the actual behavior of sandstone was compared with

the proposed model. The plastic flow angle b1 is defined by

tan b1 ¼
dcp

dep
v

¼ 1

dg

: ð14Þ

When b1 ranges from 0� to 90�, dep
v indicates compression.

Conversely, when b1 is [90�, dep
v is dilative. Figure 1

shows the typical variation of the plastic angle b1 with the

stress ratio. At low stress ratio, the plastic angle b1 is

smaller than 90�, and gradually increases with the shear

stress ratio. When the stress ratio g equals Mg; b1 becomes

90� and the volumetric deformation begins to dilate. In

addition to Mg, the parameter a affects the slope of the

proposed model; as a increases, b1 becomes flatter.

Furthermore, the viscoplastic flow angle b2 is defined as

tan b2 ¼
dcvp

t0!t

devp

vðt0!tÞ
ð15Þ

where dcvp
t0!t is the creep shear-strain increment from time

t0 to t; devp

vðt0!tÞ is the creep volumetric-strain increment

from time t0 to t, and t0 is the initiation time of one

particular loading step in a sequence of loading steps
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angle b2 under shear loading with different confining pressures. g is

defined as q=qf and serves as an index of the degree of shear loading.
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during testing under either increasing or constant loading

(creep test condition). The time t is an arbitrary time after

creep begins. Figure 1 shows the variation in the

viscoplastic flow angle b2 with the stress ratio g. The

tendency of the viscoplastic flow angle b2 is relatively

consistent with that of the plastic flow angle b1 (Fig. 1),

indicating that the viscoplastic flow vector is likely the

same as the plastic flow (i.e., nc ¼ ng). In addition, the

proposed model reasonably simulates these two variations.

Based on this assumption, Eq. (4) can be modified to

devp ¼ 1

HL=U

ngL=U � n
� �

: drþ GðtÞ
Hc

ngL=U � n
� �

:

dr ¼ 1

HL=U

1þ
HL=U

Hc

GðtÞ
� �

ngL=U � n
� �

:

dr ¼ 1

Hvp

ngL=U � n
� �

: dr; ð16Þ

where Hvp is the viscoplastic modulus. To express the

stress increments as a function of strain increments, Eq.

(16) is inverted and expressed as

dr ¼ Devp : de; ð17Þ

Devp ¼ De �
De : ngL=U � n : De

Hvp þ n : De : ngL=U

;

where Devp and De are the elasto–viscoplastic and elastic

tensors, respectively.

According to Pastor et al. (1990), the viscoplastic flow

direction under loading and unloading ngL=U in triaxial

space is

ngL=U ¼
dgffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ d2
g

q ;
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

g

q

0

B@

1

CA

T

: ð18Þ

Similarly, the loading-direction vector can be expressed as

n ¼ dfffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

f

p ;
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ d2

f

p

 !T

; ð19Þ

where df ¼ ð1þ aÞð Þ Mf � gð Þ and Mf is a material

parameter.

According to Jeng et al. (2002), Weng et al. (2005), and

Tsai et al. (2008), triaxial results show that the plastic

potential surface of sandstone coincides with the yield

surface in the prepeak stage. Therefore, the associated flow

rule, n ¼ ngL=U and Mf ¼ Mg, can be used when formu-

lating the constitutive model for sandstone. However, n

should be specified differently from ngL=U, and the non-

associated flow rule should be followed if the softening

(postpeak) behavior is considered (Weng and Ling 2012).

2.3 Plastic Modulus for Loading and Unloading

Figure 2 shows the variation of the plastic modulus of

sandstone at various stages of shear loading. This figure

indicates that the plastic modulus decreases as the stress

ratio rises. In particular, the modulus decreases by

approximately three orders of magnitude when approach-

ing the failure state g ¼ 0:8� 1ð Þ. Based on this tendency,

the function of the plastic modulus for sandstone under

loading can be expressed as

HL ¼ H0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0=patm

p
HfHs; ð20Þ

Hf ¼ 1� g2
� �

; ð21Þ

Hs ¼ exp �b0nsð Þ; ð22Þ

where H0 is a multiplication factor related to the initial

plastic modulus, Hf and Hs are plastic coefficients, patm is

the atmospheric pressure, b0 is a material parameter, and

ns ¼
R

dcpj j ¼
R

dns is the accumulated plastic shear strain.

The original model suggests that plastic strain also

occurs during the unloading process; the unloading plastic

modulus HU can be expressed as

HU ¼ HU0; ð23Þ

where HU0 is a material parameter.

2.4 Creep Modulus for Time-Dependent Behavior

For time-dependent deformation, Fig. 3 shows the varia-

tion of the creep modulus of sandstone for various stress

ratios. This figure shows variations similar to that of the

plastic modulus (Fig. 2). Thus, the function of the creep

modulus for sandstone can be written as

Hc ¼ Hc0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0=patm

p
H0fHs; ð24Þ
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H0f ¼ ð1� gÞ2; ð25Þ

where Hc0 is a factor related to the initial creep modulus.

Considering the primary and secondary creep behaviors of

rock (Goodman 1989), this study proposes the following

time-dependent function:

GðtÞ ¼ 1� exp c1 t � t0ð Þ½ � þ c2g t � t0ð Þ; ð26Þ

where c1 and c2 are material parameters. The term 1�
exp �c1ðt � t0Þ½ � is adopted to describe the primary creep

behavior, while the term c2gðt � t0Þ corresponds to sec-

ondary creep deformation. As g increases, the secondary

creep deformation develops more rapidly.

3 Parameter Determination

There are a total of 13 material parameters

b1; b2; b3; ad; kd; Mg; a; H0; b0; HU0; Hc0; c1; c2

� �
to be

determined from experimental results. The influence of

these parameters on the deformation behavior is relatively

straightforward. The parameters b1, b2, and b3 are elastic

parameters; ad and kd are strength parameters; Mg and a are

parameters related to the stress–dilatancy relationship; H0

and b0 are parameters representing the variation of the

loading plastic modulus; HU0 is a parameter related to the

unloading plastic modulus; and Hc0, c1, and c2 are time-

dependent parameters. To obtain the values of these

parameters, it is recommended to conduct three triaxial

tests with various hydrostatic pressures and one multistage

creep test. The difference between the hydrostatic pressures

should be sufficiently great to encompass the range of

stress levels of interest. Furthermore, the test with the

medium hydrostatic pressure should be conducted with

multiple unloading–reloading procedures to distinguish and

separate elastic deformation from total deformation. The

creep test should involve at least three shear-loading stages.

The following section demonstrates how these parame-

ters can be determined from laboratory experiments using a

sample of Mushan sandstone (MS), a weak rock commonly

found in mountainous areas of northern Taiwan. The

porosity of the sampled specimen, denoted as MS-A, is

*14.1 %, and the dry density is *2.28 g/cm3. The aver-

age uniaxial compressive strength is 37.1 MPa in dry

conditions and 28.9 MPa in saturated conditions. Petro-

graphic analysis shows that the percentages of grains,

matrices, and voids are 59.9, 26.0, and 14.1 %, respec-

tively. The average grain diameter is *0.24 mm. Miner-

alogically, MS-A sandstone consists of 90.7 % quartz and

9.0 % rock fragments, and is classified as lithic greywacke

(Weng et al. 2008). The following subsections describe the

determination of each parameter.

1. Elastic Parameters b1, b2, and b3

The parameter b1 controls the interaction between

hydrostatic stress and elastic volumetric strain. This

parameter can be determined by fitting the elastic vol-

umetric unloading–reloading regression curve. The

parameter b2 is related to the coupling between shear
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stress and elastic dilation, and can be obtained by fitting

the unloading–reloading regression curve with normal-

ized stress (
ffiffiffi
J2

p
=I1) using Eq. (9). After obtaining the

parameter b2, the parameter b3 can be obtained by fitting

the shear stress and elastic shear strain curve using

Eq. (10).

2. Strength Parameters ad and kd

The parameters adand kd can be determined by fitting

the failure envelope of sandstone using Eq. (13).

3. Stress–Dilatancy Parameters Mg and a

The term Mg is determined by the threshold of shear

dilation in a diagram of plastic flow angle b versus stress

ratio (Fig. 1). Alternatively, this parameter can be

obtained directly from the plastic volumetric strain curve

under shear loading. The parameter a is determined by

fitting the curve of plastic flow angle b versus stress ratio

(Fig. 1). Another method for obtaining a is from the slope

of the graph between dilatancy dg and Mg

	
g

� �
.

4. Loading Plastic Modulus Parameters H0 and b0

The initial plastic modulus parameter H0 can be deter-

mined based on the initial stress ratio in a diagram of the

normalized plastic modulus HL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
patm=p0

p
versus the

stress ratio (Fig. 2) or by fitting the initial slope of both

the plastic shear and volumetric strain curves under

shear loading. In this study, the plastic strain is the

unrecoverable deformation under short-term loading (a

few minutes). The parameter b0 controls the degree of

plastic modulus degradation; a higher b0 value induces

further significant modulus degradation. This parameter

can be determined by matching the shear or volumetric

strain curve as the stress ratio g approaches 1.

5. Unloading Plastic Modulus Parameter HU0

The parameter HU0 can be determined by matching the

slope of the unloading curves.

Table 1 Material parameters for different types of sandstone used in the proposed model

Model property Parameter MS-A sandstone MS-B sandstone (dry) MS-B sandstone (saturated)

Elastic component b1 ðMPaÞ�1=2 130 9 10-6 173 9 10-6 215 9 10-6

b2 1,463 9 10-6 2,200 9 10-6 3,300 9 10-6

b3 ðMPaÞ�1=2 29 9 10-6 35 9 10-6 50 9 10-6

Failure criterion ad 0.39 0.35 0.32

kd ðMPaÞ 8.2 9.71 9.06

Plastic component Mg 0.62 0.61 0.65

a 2.9 2.0 4.0

H0 ðMPaÞ 4,590 3,067 2,530

b0 120 400 410

HU0 ðMPaÞ 180,000

Time-dependent component Hc ðMPaÞ 540 750 125

c1 ðhÞ�1 0.97 2.5 2.5

c2 ðhÞ�1=2 0.012 0.02 0.018
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Fig. 5 Simulation of stress–strain relationships on dry MS-A sand-

stone under different hydrostatic pressures
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6. Time-Dependent Parameters Hc0; c1, and c2

The initial creep modulus parameter Hc0 can be deter-

mined at the initial stress ratio in a diagram of the

normalized creep modulus Hc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
patm=p0

p
versus the stress

ratio (Fig. 3). The parameter c1 controls the retardation

time during the primary creep behavior; as c1 increases,

the primary creep deformation develops more rapidly.

Moreover, the parameter c2 influences the secondary

creep behavior; as c2 becomes greater, the secondary

creep deformation increases more rapidly. The influence

of c1 and c2 on the creep strain is shown in Fig. 4. The

parameter c1 can be determined by matching the initial

slope of the creep strain versus time curve, and the

parameter c2 can be determined by matching the final

slope of the creep strain versus time curve.

Using these procedures, the corresponding material

parameters of MS-A sandstone in dry conditions can be

obtained from one triaxial test with a pure shear stress

path (PS test) and one creep test, both under hydrostatic

pressure of 40 MPa. Table 1 presents a summary of

these parameter values.

4 Model Validation on Immediate Deformation

To assess the validity of the proposed model, this section

shows how the proposed model can simulate the immediate

deformation behavior under various hydrostatic stress and

cyclic loadings.

Five PS tests of MS-A sandstone with hydrostatic stress

ranging from 20 to 60 MPa were simulated. Figure 5a

shows the measured and simulated shear-induced shear

strains under various hydrostatic stress conditions, exhib-

iting satisfactory agreement. Figure 5b shows the measured

and simulated shear-induced volumetric strains under

varying hydrostatic stress conditions. These simulated

results are consistent with the measured results.

This study also used the proposed model to simulate

three stress-controlled unloading–reloading cycles in a PS

test. Figure 6 shows a comparison of the simulated and

experimental results under constant hydrostatic stress of

60 MPa. Although the unloading–reloading-induced

deformations are not large in either the shear or volumetric

(a) Shear strain 

(b) Volumetric strain 

0

20

40

60

80

100

120

140

0 1000 2000 3000 4000 5000 6000

Sh
ea

r 
st

re
ss

 q
(M

P
a)

Deviatoric strain  γ (10-6)

Cyclic test p = 60 MPa

Simulation

0

20

40

60

80

100

120

140

-2000 -1500 -1000 -500 0 500 1000

Sh
ea

r 
st

re
ss

 q
(M

P
a)

Volumetric strain (10-6)

Cyclic test p = 60 MPa

Simulation

Fig. 6 Simulation of loading–unloading–reloading behavior under

hydrostatic stress of 60 MPa

(a) Shear creep strain 

(b) Volumetric creep strain 

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35 

Sh
ea

r 
cr

ee
p 

st
ra

in
 (

10
-6

)

Time (hour)

Creep test p = 40 MPa
Simulation η = 0.94

η = 0.87

η = 0.74

η = 0.5
η = 0.37

-1200

-1000

-800

-600

-400

-200

0

200

0 5 10 15 20 25 30 35 

V
ol

um
et

ri
c 

cr
ee

p 
st

ra
in

 (
10

-6
)

Time (hour)

Creep test p = 40 MPa
Simulation

η = 0.94

η = 0.87

η = 0.74

η = 0.5η = 0.37

Fig. 7 Comparison of volumetric creep strain and shear creep strain

predicted by the proposed model and data obtained from multistage

creep tests under hydrostatic stress of 40 MPa

A Generalized Plasticity-Based Model for Sandstone Considering Time-Dependent Behavior 1203

123



strain, the proposed model can simulate the cyclic behavior

satisfactorily.

This study also validated the proposed model by com-

paring with triaxial test results for different stress paths

using two other sandstone samples. Weng and Ling (2012)

provided additional details regarding these simulations.

The comparisons showed that the proposed model satis-

factorily captures the instantaneous deformation of

sandstone.

5 Validation of Time-Dependent Behavior

This section describes simulations of a series of multistage

creep tests to further assess the validity of the proposed

model regarding time-dependent behavior. First, this sec-

tion presents a multistage, long-term creep experiment

under hydrostatic stress of 40 MPa (Fig. 7). This experi-

ment has five stages of sustained loading with stress ratio g
ranging from 0.37 to 0.92. The comparison of the simulated

results with the actual creep behavior of the studied sand-

stone is as follows:

Figure 7 shows the creep strain predicted by the pro-

posed model and data obtained from the multistage creep

test. Table 1 presents the parameter values required for the

proposed model.

Regarding the material behavior during shearing,

Fig. 7a and b show the shear and volumetric strain versus

time during the creep stage, respectively. These figures

show that a higher stress ratio increases the magnitude of

the creep-induced shear strain (Fig. 7a). Figure 7b shows

that the simulated volume contracts under lower shear

stress and converts to dilative behavior with an increasing

shear-stress ratio. The behaviors of the material can be

simulated by the proposed constitutive model. Although a

minor discrepancy between the simulated and actual

behavior occurs in the primary creep deformation, which is

attributable to the creep modulus function in Eq. (24)

underestimating the creep strain for low stress ratios, the

simulated secondary creep deformation is consistent with
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the experimental results. Figure 8 shows an additional

comparison of the simulated and actual behavior of the

total deformation induced by a multistage creep experi-

ment. This figure shows the strain induced by shearing,

including the total strain, elastic component, and visco-

plastic component. Regarding the elastic component of

deformation, the simulations are consistent with the actual

results. In addition, viscoplastic volumetric strain is

induced by increasing either the shearing or the creep under

constant shear loading (Fig. 8b). To increase the shearing,

the material first undergoes shear contraction and gradually

transitions to shear dilation. Similarly, for creep deforma-

tion under constant shear stress, the material transitions

from initially contracting to dilating. The proposed con-

stitutive model captures all these material behaviors well.

To further evaluate the predictive capability of the

proposed model under different hydrostatic stresses, two

additional creep tests at hydrostatic stresses of 20 and

60 MPa were simulated based on the same set of param-

eters presented in Table 1. Figures 9 and 10 show the

simulated creep strains under different stress ratios g from

0.18 to 0.92. Comparison of the simulated results in

Figs. 7, 9, and 10 indicates that the creep strain increases as

the shear stress increases, but decreases under higher

hydrostatic stress; such comparison also shows that the

influence of the shear stress on the creep behavior is more

significant than the influence of the hydrostatic stress on

the creep behavior. The total deformation in the three

multistage creep tests was simulated and is presented in

Fig. 11. This figure shows that the proposed model is

capable of providing reasonable simulations under various

situations.

6 Wetting Deterioration

Wetting deterioration is a decrease in material strength and

stiffness caused by water penetration. To consider the

wetting deterioration of sandstone, this study used other

MS sandstone specimens, which are denoted as MS-B, for
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triaxial tests and multistage creep tests under dry and

water-saturated conditions. The MS-B specimens have the

following mean physical properties: porosity of 14.0 % and

dry density of 2.28 g/cm3. The average uniaxial

compressive strength is 27.2 MPa in dry conditions and

12.9 MPa in saturated conditions. Based on petrographic

analyses, the percentages of grains, matrices, and voids are

60.0, 26.0, and 14.0 %, respectively. The average grain

diameter is *0.34 mm. Mineralogically, MS-B sandstone

consists of 88.5 % quartz and 7.2 % rock fragments, and is

classified as lithic greywacke.

Figure 12 shows the failure envelopes of sandstone

under dry and saturated conditions. The two failure enve-

lopes remain linear under different hydrostatic pressures,

and the saturated sandstone has lower shear strength than

dry sandstone does. Table 1 presents the corresponding

parameters, ad and kd, both of which are reduced because

of wetting deterioration. In addition to the strength, Fig. 13

shows the variations of plastic deformation under dry and

saturated conditions. The figure shows that the values of

the plastic angle b1 under dry and saturated conditions

exhibit similar tendencies, but the saturated condition has a

lower value than the dry condition under the same stress

ratio (Fig. 13a), thereby indicating that the dilation

threshold in a saturated condition occurs later than that
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under a dry condition. Figure 13b shows the variations of

the plastic modulus under both conditions. The plastic

modulus decreases as the stress ratio increases. When

approaching a failure state, the saturated modulus decrea-

ses by approximately three orders of magnitude and the dry

modulus also exhibits a similar tendency. Figure 14 pre-

sents the creep deformation under dry and saturated con-

ditions. Greater creep strains can be induced under

saturated conditions, especially when the loading approa-

ches the shear strength. The creep volumetric strain

(Fig. 14b) is initially compressive and then becomes dila-

tive at later stages of loading. The amount of creep volu-

metric strain when approaching the shear strength is

considerably greater than that under lower levels of shear

stress.

Figures 15 and 16 present simulated results for PS tests

under dry and saturated conditions, respectively, to enable

an evaluation of the validity of the model. The hydrostatic

pressure ranges from 20 to 60 MPa. The corresponding

parameters of MS-B sandstone are shown in Table 1. The

figures show that the proposed model can reasonably

predict the deformation behavior of sandstone caused by

wetting deterioration. In addition, Fig. 17 shows the sim-

ulated stress–strain curves of the multistage creep tests.

This simulation, which is also shown in Fig. 17, is con-

gruent with the experimental data. In summary, the pro-

posed model can predict the behavior of sandstone in dry to

saturated conditions.

7 Conclusions

This study extends previous research on predicting the

time-dependent behavior and wetting deterioration of

sandstone and presents a constitutive model based on

nonlinear elasticity and generalized plasticity. The pro-

posed model (1) exhibits nonlinear elasticity under

hydrostatic and shear loading, (2) follows the associated

flow rule for viscoplastic deformation, (3) adopts a creep

modulus that varies according to the stress ratio, (4) con-

siders both the primary and secondary creep behavior of

rock, and (5) considers the effect of wetting deterioration.
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This model involves 13 material parameters, comprising 3

for elasticity, 7 for plasticity, and 3 for creep. All param-

eters can be determined straightforwardly by following the

recommended procedures.

For prediction of immediate deformation, this study

validates the proposed model by comparison with triaxial

test results of MS-A sandstone under various hydrostatic

stress and cyclic loading conditions. The proposed model is

versatile in simulating the time-dependent behavior of

sandstone through a series of multistage creep tests. Fur-

thermore, to consider the effect of wetting deterioration,

this study uses MS-B sandstone in triaxial and creep tests

under dry and water-saturated conditions. Comparison of

the simulated and experimental data shows that the pro-

posed model can predict the behavior of sandstone in dry to

saturated conditions. Future studies should extend the

presented q-p0 formulation to the multiaxial stress space

and incorporate this constitutive model into finite-element

software for analytical use in relevant rock engineering

applications.
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