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List of Symbols

k Drucker–Prager material constant

j Drucker–Prager material constant

J2 Second invariant of the stress deviator tensor

I01 First invariant of the effective stress tensor

r01 Major principal effective stress

r02 Intermediate principal effective stress

r03 Minor principal effective stress

soct Octahedral shear stress

r0oct Octahedral effective normal stress

C0 Uniaxial compressive strength

T0 Uniaxial tensile strength

h Lode angle

b MSDPu parameter that defines the shape of the

criterion in the p-plane (usually, b % 0.75)

a1 MSDPu parameter

a2 MSDPu parameter

/ Angle of internal friction

c Cohesion

1 Description

The Drucker–Prager failure criterion is a three-dimensional

pressure-dependent model to estimate the stress state at

which the rock reaches its ultimate strength. The criterion

is based on the assumption that the octahedral shear stress

at failure depends linearly on the octahedral normal stress

through material constants.

2 Background

The Drucker–Prager failure criterion was established as a

generalization of the Mohr–Coulomb criterion for soils

(Drucker and Prager 1952). It can be expressed as:

ffiffiffiffiffi

J2

p
¼ kI01 þ j ð1Þ

where k and j are material constants, J2 is the second

invariant of the stress deviator tensor and I01 is the first

invariant of the stress tensor, and are defined as follows:

I01 ¼ r01 þ r02 þ r03

J2 ¼
1

6
r01 � r02
� �2þ r01 � r03

� �2þ r03 � r01
� �2

h i ð2Þ

r1
0, r2

0, and r3
0, are the principal effective stresses.

The criterion, when expressed in terms of octahedral

shear stress, soct, and octahedral normal stress, roct
0, takes

the form:

soct ¼
ffiffiffi

2

3

r

3 k r0oct þ j
� �

ð3Þ

where r0oct = 1/3 I1
0 and soct =

ffiffiffiffiffiffiffiffiffi

2
3

J2:
q

The Drucker–

Prager criterion can thus be considered as a particular case

of Nadai’s criterion that states that the mechanical strength

of brittle materials takes the form soct = f(r0oct), where f is

a monotonically increasing function (Nadai 1950; Addis

and Wu 1993; Chang and Haimson 2000; Yu 2002). It can

be also considered as an extension of the Von Mises failure

criterion, which is recovered when k = 0.
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The original Drucker–Prager criterion has been modified

to incorporate tension cut off or a cap model (e.g. Lubarda

et al. 1996), which allows yield under hydrostatic pressure.

Extended Drucker–Prager models have been proposed

where the criterion is expressed in linear (i.e. the original

criterion), general exponent, or hyperbolic form (e.g.

Pariseau 1972 or Hadjigeorgiou et al. 1998).

The modified Drucker–Prager criterion includes the

generalized Priest criterion (GP) (Priest 2005), which is

discussed in detail in this issue, and the MSDPu (Mises–

Schleicher and Drucker–Prager unified) criterion. The

MSDPu has been proposed to approximate the short-term

laboratory strength of low-porosity rocks (Aubertin and

Simon 1996; Aubertin et al. 1999; Li et al. 2000) and

provides for a non-circular surface in the p-plane, which

allows for different strength values in triaxial compression

and extension. The MSDPu criterion is expressed as:

ffiffiffiffiffi

J2

p
¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 I2
1 � 2 a1I1

� �

þ a2
2

b2 þ 1� b2ð Þ sin2 45� � 1:5 hð Þ

s

ð4aÞ

a ¼ 2 sin /
ffiffiffi

3
p

3� sin /ð Þ
ð4bÞ

a1 ¼
1

2
Co � Toð Þ �

C2
o � To

b

� �2

6 a2 Co þ Toð Þ ð4cÞ

a2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Co þ To

b2

3 Co þ Toð Þ � a2

� �

CoTo

s

ð4dÞ

where Co and To are the uniaxial compression and tension

strengths, respectively; / is the internal friction angle of

the rock, h is the Lode angle and b is a parameter that

defines the shape of the criterion in the p-plane (usually,

b % 0.75).

3 Formulation

The original criterion, i.e. Eq. (1), describes a right-circular

cone in the stress space when k[ 0, or a right circular

cylinder when k = 0; hence the intersection with the

p-plane is a circle (Fig. 1).

The parameters k and j can be determined from triaxial

tests by plotting the results in the I01 and
ffiffiffiffiffi

J2

p
space.

Alternatively, the parameters can be obtained from stan-

dard compression triaxial tests and can be expressed in

terms of internal friction angle and cohesion intercept

(Colmenares and Zoback 2001, 2002; Yi et al. 2005, 2006):

k ¼ 2 sin /
ffiffiffi

3
p

3� sin /ð Þ
ð5aÞ

j ¼ 6 c cos /
ffiffiffi

3
p

3� sin /ð Þ
ð5bÞ

where c and / are the cohesion intercept and internal

friction angle of the rock, respectively. The Drucker–

Prager failure cone is circumscribed to the Mohr–Coulomb

hexagonal pyramid. There is also the option of obtaining

the values of k and j that match results from triaxial

extension tests. The failure cone passes through the interior

vertices of the pyramid, resulting in the middle cone shown

in Fig. 1. As a result, and considering only triaxial loading

conditions, the circumscribed cone overestimates strength

when the stress field evolves from triaxial compression

(r01 [r02 = r03) to triaxial extension (r01 = r02 [ r03),

and the middle cone underestimates strength, with

increasing errors, as the stress state moves from triaxial

extension to triaxial compression.

For plane strain, assuming that the dilation angle of the

rock is equal to the internal friction angle, i.e. an associated

flow rule (inscribed cone in Fig. 1):

k ¼ tan /
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 12 tan2 /
p ð6aÞ

j¼ 3c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9 + 12 tan2 /
p : ð6bÞ

4 Experimental Data

The difficulties of the Drucker–Prager criterion in pre-

dicting polyaxial strength data of intact rock have been

documented in the technical literature. It was perhaps Mogi

(1967) who first recognized the inability of the criterion to

match experimental observations when plotted in the soct–

roct
0 space, as the data showed different results in triaxial

compression than in triaxial extension. Later, Vermeer and

De Borst (1984) indicated that the Drucker–Prager

approximation was useful for stiff clays with low friction

angles but not for sand, rock or concrete. Comparisons

between laboratory results and predictions from the crite-

rion have consistently shown that Drucker–Prager criterion

tends to overestimate the strength of rock. This was the

conclusion reached by Colmenares and Zoback (2002)

when they compared the suitability of the criterion with the

strength of the following five rocks, obtained from labo-

ratory results reported by others: KTB amphibolite (labo-

ratory results obtained from Chang and Haimson 2000),

Dunham dolomite (Mogi 1971), Solnhofen limestone

(Mogi 1971), Shirahama sandstone (Takahashi and Koide

1989) and Yuubari shale (Takahashi and Koide 1989).

Colmenares and Zoback (2002) observed that Drucker–

Prager yielded errors larger than other criteria including
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Mohr–Coulomb, Hoek–Brown, Modified Lade, Modified

Wiebols and Cook, Mogi (1967) and (1971). Similar con-

clusions were reached by Al-Ajmi and Zimmerman (2005,

2006) who added to the Colmenares and Zoback (2002)

rock database laboratory results from Mizuho trachyte

(Mogi 1971), coarse-grained dense marble (Michelis 1985,

1987) and Westerly granite (Haimson and Chang 2000).

The shortcomings of the Drucker–Prager failure crite-

rion in reproducing polyaxial laboratory experiments are

illustrated in Fig. 2, which is a plot of laboratory strength

tests on Dunham dolomite (Mogi 1971).

Figure 2a shows the strength of the rock in p-stress

plane for tests where I01 ranges between 800 and

1,000 MPa, together with the corresponding failure enve-

lopes of Mohr–Coulomb and Drucker–Prager inscribed and

circumscribed. The Mohr–Coulomb and Drucker–Prager

parameters are obtained from triaxial compression tests

results, i.e. r01 [ r02 = r03. As expected, the figure shows

a good match between results and predictions of Mohr–

Coulomb and Drucker–Prager around the triaxial com-

pression stresses. The errors, however, increase as the

differences between r02 and r03 increase. These errors are

highlighted in Fig. 2b, which is a plot of two sets of results,

each at a different confining stress, r03 = 25 and 105 MPa,

and for different intermediate principal stresses, r02.

In Fig. 2b, Mohr–Coulomb plots as a horizontal line for

each value of the minor principal stress r03, as the criterion

does not depend on the intermediate principal stress. The

predictions match results for the triaxial compression tests

results, i.e. for r02 = r03, but the errors increase as r02
increases. A similar trend is observed for the predictions

from Drucker–Prager, but with a much larger increase of

the errors as the intermediate principal stress r02 increases.

This is because in Drucker–Prager the contribution of r02 to

strength is the same as that of r03, while in Mohr–Coulomb

there is no contribution. The final result is that Mohr–

Coulomb underestimates the strength of the rock with

increasing intermediate principal stress and Drucker–

Prager overestimates it.

Statistical and theoretical considerations also show that

the Drucker–Prager criterion provides inaccurate predic-

tions of rock strength and tends to overestimate the magni-

tude of r01 at failure. Pariseau (2007) proposed the use of the

Euclidean or distance norm, defined as the square root of the

sum of the squares of the differences between estimated and

maximum shear stress at failure, to evaluate different cri-

teria, including Drucker–Prager. Laboratory data from a

sandstone (results obtained from Pariseau 2007), norite

(Pariseau 2007), Indiana limestone (Schwartz 1964) and

Dunham dolomite (Mogi 1971) were used for the compari-

sons. The Drucker–Prager criterion resulted in the worst

predictions, revealing increasing errors with increasing

confining pressure. Theoretical considerations by Ewy

(1999) and Priest (2010) highlighted the disproportionate

sensitivity of the criterion on the intermediate principal

stress r02, resulting in an overestimation of the rock strength.

Fig. 1 Drucker–Prager and

Mohr–Coulomb failure criteria

in stress space
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5 Advantages and Limitations

The advantages of the Drucker–Prager criterion are its

simplicity and its smooth and, with the exception of some

of the modified criteria, symmetric failure surface in the

stress-space, which facilitate its implementation into

numerical codes (Cividini 1993). The criterion gives as

much weight to r02 as it does to r01 and r03. While it is

certain that r02 has a strengthening effect, it is not as

profound as that predicted by Drucker–Prager. The main

limitation of the criterion is that it tends to overestimate

rock strength for general stress states (Ewy 1999) and

produces significant errors in triaxial extension, i.e.

r01 = r02 [ r03. In addition, while the parameters of the

criterion can be chosen to match the uniaxial tensile

strength of the rock through Eqs. (4), (5) or (6), the crite-

rion does not produce accurate predictions when one or

more principal stresses are tensile.

6 Recommendation

Comparisons between laboratory results and predictions

from the Drucker–Prager failure criterion consistently

show that the criterion tends to overestimate the strength of

intact rock. This is because the strengthening effect of r02
is the same as that of r03 in the criterion, which is not

supported by laboratory observations. Because the criterion

parameters are typically obtained from triaxial tests results,

where the intermediate and the minor principal stresses are

identical, i.e. r02 = r03, the errors between predictions and

results rapidly increase as the values of r02 differ from r03.

The Drucker–Prager failure criterion is easy to use and

implement in numerical models, but due to the potentially

large errors that can occur in estimating intact rock

strength, its use should be limited to a narrow range of

stresses in the vicinity of the intermediate and minor

principal stresses from which the parameters of the crite-

rion are obtained.
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