®

Few-Body Syst (2024) 65:32 Check for
https://doi.org/10.1007/s00601-024-01899-0 updates

RESEARCH

D. V. Fedorov

The N(1440) Roper Resonance in the Nuclear Model
with Explicit Mesons

Received: 22 January 2024 / Accepted: 27 February 2024
© The Author(s) 2024

Abstract We show that the N(1440) Roper resonance naturally appears in the nuclear model with explicit
mesons as a structure in the continuum spectrum of the physical proton, which in this calculation is made of
a bare nucleon dressed with a pion cloud.

1 Introduction

The N(1440) Roper resonance is a relatively broad nucleon resonance with the mass of about 1440 MeV
and the width of about 350 MeV [1]. While the exact nature of the resonance is still debated (see [2-5] and
references therein), one line of thought is that it consists of a quark core augmented by a meson cloud. This
concurs well with the nuclear model with explicit mesons (MEM) where the physical nucleon is made of a
bare nucleon—the quark core—dressed with a meson cloud [6,7]. One might therefore expect that in MEM
the Roper resonance should somehow reveal itself in the continuum spectrum of the physical proton.

In this contribution we investigate the continuum spectrum of the physical proton within one-pion MEM
in the hope to identify the Roper resonance and establish the parameters of MEM that are consistent with the
tabulated mass and width of the resonance. The method we use is calculation of the strength-function of a
certain fictional reaction, where the proton is excited from the ground state into continuum, with the subsequent
fit of the calculated strength-function with a Breit-Wigner distribution.

2 The Physical Nucleon in MEM

The MEM is a nuclear interaction model, based on the Schrodinger equation, where the nucleons do not interact
with each other via a potential but rather emit and absorb mesons [6,7]. The mesons are treated explicitly on
the same footing as the nucleons.

The physical nucleon in MEM is represented by a superposition of states where the bare nucleon is
surrounded by different number of (virtual) mesons. In one-pion approximation the physical nucleon is a
superposition of two states: the bare nucleon, and the bare nucleon surrounded by one pion. The corresponding
wave-function of the physical nucleon, W, is a two-component vector,
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where ¥ is the (wave-function of the) state with the bare nucleon and no pions, 1r;—the state with a bare

nucleon and one pion, R is the coordinate of the center-of-mass of the system, and 7 is the coordinate between
the bare nucleon and the pion.
The Hamiltonian H that acts on this wave-function is a matrix,

)
H=|Kvtmy W , 2)
w Ky +my+ Ky +my

where Ky, K are kinetic energy operators for the bare nucleon and the pion, my and m, are masses of
the bare nucleon and the pion, and W and W are pion emission and absorption operators (also called the
nucleon-pion coupling operators).

The corresponding Schrodinger equation is given as

Ky +my wt Vo) _ g (Vo 3)
w Ky +my+ Ky +my |\ ¥ Y )’

with the normalization condition

(W) = (Yolvo) + (W1 1¥1) =/d3R|wo|2+/d3R/d3r|w1|2 =1, (4)
%4 \%4 %4

where E is the energy of the system and V is the normalization volume.
The simplest W-operator that is consistent with conservation of isospin, angular momentum, and parity
can be written as

W = (T7)(6F)F(r), 5)

where & is the vector of Pauli matrices that act on the spin of the nucleon, T is the isovector of Pauli matrices
that act on the isospin of the nucleon,! and where F(r) is a (short-range) form-factor. The dimension of W is
E /\/V, therefore it might be of convenience to choose

F(r) =Sy f(r) ®)
where f(r) is normalized such that
/d3rr2f2(r) =4n/r4f2(r)dr =1, 9)
0

in which case the strength factor S, has the dimension of energy and one can (hopefully) meaningfully compare
form-factors of different shapes.”

I The isospin factor T7 is given as
7 = 1on’ + V2r_at + V2tn 6)

0

where 70, 7+, and 7w~ are the physical pions and where the 7-matrices are given as

1 1
0= (6%) == (15) = (60). L

2 The Gaussian form-factor normalized according to (9) is given as

~12
3 bS 2
fr) = <47r ﬁ;’) exp (— ’ ) (10)
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3 The Semi-Relativistic Schrodinger Equation
3.1 The Two-Component Wave-Function

The p-component of the two-component wave-function W in (1) represents a single bare proton at rest in the
volume V. This component can be chosen as

rt
Yo = —=co, (11)
vV
where p is the proton isospin state,
1
p= (0) wp = p, (12)
and where 1 is the spin-up state,
1
t=1{g) o0 t=t, (13)

and where ¢ is a dimensionless normalization constant.
With this ¥y the inhomogeneous term, W), in the second row of the Schrodinger equation (3) takes the
the form

Wiro = (?ﬁ)(&?)F(r)%co. (14)

Since all terms in that equation should have the same spin-isospin structure one has to conclude that the
component V| is bound have the same form as W, that is,

¥y = (%’ﬁ)@?)i—;mr), (15)

where ¢ () is a (yet unknown) scalar function.
Therefore we are going to search for the wave-function of the physical proton (in the center-of-mass system)
in the form

p_TcO
w=| . (16)
@) @M LLe ()

where the constant ¢ and the function ¢ (r) are to be found by solving the corresponding Schrédinger equation.
The normalization condition the function W is given as’

(W|W) = |col? +3/d3rr2|¢>(r)|2 = |eol® + 1271/drr“|<z><r>|2 =1. (18)

3 taking into account the following equations,

Gn)'Er) =3, @Hi6GFH =r2. 17)
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3.2 The Schroédinger Equation

With the ansatz (16) the Schrodinger equation (3) turns into the following system of equations for the constant
co and the function ¢ (r),

myco+ 127 [drr* F(r)¢(r) = Eco

FE(r)co+ (Kny +my + Ky +my)rp(r) = Ere(r) ' )
It is of advantage to introduce the radial function u(r),
¢(r) = @ (20
with the simple boundary condition at the origin,
u(r - 0) — 0, 21
and the normalization condition
lcol® + l2nfdr|u(r)|2 =1. (22)
For the u(r) function the Schrodinger equation becomes
myco+ 127 [drr? F(r)u(r) = Eco
(23)

FF(r)co + (Ky +my + Kr +mz) Su(r) = E5u(r)

In the center-of-mass frame the nucleon and the pion have equal momenta with opposite signs, —p and p.
Their (relativistic) kinetic energies are therefore given as

KN“l‘mN:\/m%\/"‘ﬁzy Kn‘i‘mn:\/m%"i‘ﬁz- (24)

The momentum as a quantum-mechanical operator in coordinate space is given as

o . .
= —ihV. (25)

5— _inl
P ! or

Correspondingly the kinetic energies operators are

Ky +my = \/m% —h*V2, Kz +myz =/m2 — h?V2 (26)

With these kinetic energies the Schrodinger equation turns into the following system of integro-differential
equations,

myco + 12 fooo drr’F(ru(r) = Eco

) ) ; 27)
FE(rco + frx (VD Lu(r) = ESu(r)
where the function
fix(x) i\/mN —h2x+\/m,2, — h%x (28)
is representable by a Maclaurin series.*
4
x xr x5yt
VI—XZI—E—K—E—@‘F.... (29)
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The single action of the V2 operator on rizu(r) is given as

Y Ff, 2 Foa
\Y% r—zu(r) =3 u ——u|=—=Du, (30)
where the action of the operator D is defined as

ﬁ - " 2
u=\u ——=ul. 3D
r

Repeating the action suggests that for any non-negative integer n
P 7o
(v3)" <r—2u(r)> = —D"u. (32)

r

Therefore for any function f(x) that can be represented as a power series the following holds true,
2 ;: ;: A
FV)zum) ) = 5 f D (33)

Inserting this into (27) gives, finally, the sought semi-relativistic radial Schrédinger equation for the physical
proton in one-pion MEM,

myco + 127 fdrrzF(r)u(r) = Ecp
) , (34)
r2F(r)co + fx (D)u(r) = Eu(r)

with the boundary condition u(0) = 0.

4 Numerical Solution of the Schrodinger Equation

The system of Eqgs. (34) can be solved numerically by discretizing the r-variable and using finite-difference
approximations for the derivatives and integrals.
Let us introduce a regular grid,

Fiel.n = 1A, u; =u(r;), F; = F(r}), (35)

where Ar is the grid spacing. The integral in the first equation in (34) can then be approximated as
n
1271/drr2F(r)u(r) ~ ZVIZnArrizFivUnArui. (36)
i=1

Introducing the auxiliary tilde-variables,
F; = V122 ArF(ry), ii; = V127 Aru(r;), (37)
the system of Eqgs. (34) turns into the following form,
myco + Z?:l rizf':iﬁi = FEcy
] ) : (38)
riFico+ Y j_y fx(D)ijiij = Eii;

where the numbers fx (lA))i ;j are the matrix elements of the matrix representation of the operator fx (13) on
the grid; and where applies the ordinary matrix normalization condition,

n
lcol® + ) lais]* = 1. (39)
i=1
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The system of Eqgs. (38) with the normalization condition (39) is in fact a real symmetric matrix eigen-
problem,

o co
7} 7}

H|i|=£g|4|, (40)
Uy Uy

where the Hamiltonian matrix H is given as

my rlzﬁl rzzﬁz
r121:”1
H= r3F fx(D)ij : S

The D operator on the grid can be built using the second order central finite-difference approximation for
the second derivative,

L~£// ~ ﬁi—l - 2’/~li + ﬂi+1

i N ’ (42)
which gives
=2
= 0 00...
-2 1 00... rt X

N 1 1-2 10... 0;—22 00...

D=—51 0 121...|+] g 0=20... (43)
N 3

Now the matrix fx (D) can be built in the following way: if A; and v; are the eigenvalues and eigenvectors of
the D operator,

bvi:)\ivi, i=1...n, (44)
then the matrix representation of any Maclaurin expandable operator f (b) is given as
fD)y= VMV, 45)

where V is the matrix of eigenvectors v; and where f(}) is a diagonal matrix with diagonal elements f(A;).
The Hamiltonian matrix built this way has the bounding box boundary conditions inbuilt,

u(0) =0, #(Rmax) =0, (46)

where Rpnax = (n + 1)Ar. Diagonalization of this Hamiltonian matrix produces one state, 1O (), with the
energy below my (this state is the physical proton°—the bound state of the bare proton and the pion) and
n discretized-continuum states, g k=1..m) (r), with energies above the pion emission threshold.® These states
decay into a nucleon and a pion, and the Roper resonance, if any, must be lurking somewhere there.

5 To be absolutely correct, the mass m y of the bare nucleon must be larger than the nucleon’s physical mass such that adding
the pion binding energy produces the observed physical mass of the dressed nucleon. However in all our examples later on the
binding energy of the pion is of about 3 to 8% of the nucleon mass and therefore in this exploratory investigation we neglect this
effect and assume that m y equals the physical mass of the nucleon.

6 The pion threshold in these calculations corresponds to a decay into a bare nucleon and a pion, meaning that in the threshold
energy, Ey, = my +my, my is strictly speaking the mass of the bare nucleon that is larger than the physical mass by the binding
energy of the virtual pion. In reality the emitted bare nucleon immediately gets dressed with another virtual pion which reduces its
mass back to the physical mass, restoring the correct threshold. However this mechanism is not included in the current one-pion
approximation. However since the binding of the virtual pion in the present calculations is always small we assume that m y is
the physical mass.
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Fig. 1 The radial wave-functions a® (r): the ground (bound) state wave-function i© | a below-resonance continuum wave-
function #®, and an on-resonance continuum wave-function i#®?. The model parameters are the ones in the first line in Table 1,
the discretization parameters are Ar=0.08 fm, Rpax = 35fm

Mathematically the exact continuum spectrum is recovered in the limit Rpyax — 00, Ar — 0. However in
practice the discretized calculations converge when Rpax is much larger than, and Ar is much smaller than,
the typical length of the system given by the interaction range b,, ~ 1.5fm. As illustrated in the Appendix the
discretized calculations converge to within about three decimal digits when Ryax /by ~ by, /Ar ~ 20.

An example of the radial eigenfunctions &*) (r) is shown on Fig. 1: the ground state is a localised bound
state of the bare nucleon and the pion; the “below-resonance” continuum wave-function shows little presence
at the shorter distances; the “on-resonance” wave-function has a much larger amplitude in the inner region.

5 The Strength-Function of a Fictional Reaction

A resonance is usually identified as a peak in a reaction cross-section with an approximately Breit-Wigner
shape. The Roper resonance decays largely (55-75% [1]) into a nucleon and a pion, therefore it should be
possible to observe this resonance in a reaction where our dressed proton is excited from the ground state into
a continuum spectrum state (which decays into a nucleon and a pion).

Let us consider a reaction where a proton undergoes a transition, caused by a certain operator X, from the
ground state Wy to a state in the continuum W; (which then decays into a nucleon and a pion). The amplitude
of this quantum transition is given, in the Born approximation, by the matrix element

M; o = (W;|X|W). (47)

Since a resonance should not depend on the way the state W; is populated, the particular form of the X operator
should be unimportant (as long as the matrix element is not identically zero) and one can just as well use a
fictional operator. We have chosen the following matrix element,

o0
. 1
Mico= / u® ()= u® (rydr, (48)
r
0

as experimentation shows that this one produces the best looking strength-functions (see below).
The cross-section of an excitation reaction into continuum states with energies £ + % is determined by
the so called strength-function, S(E), which is defined as

1 2
SE)y=—— D Mol (49)
EicE+A5F

In the box-discretized approximation, that we use here, the strength-function of a transition into a
discretized-continuum state i with the energy E; is given as

1
S(Ej) = — IM; ol?, (50)
1



32 Page 80of 10 D. V. Fedorov

Table 1 The results of the exploratory calculations: S, and b,, are the strength and the range parameters of the Gaussian form-
factor (53), M and I" are the mass and the width of the resonance from the Breit-Wigner fit (51) to the strength-function (50), B
is the binding energy of the virtual pion, and Ny = (Y1|y1) = (1 — c(z)) is the contribution of the state with the virtual pion to
the total norm of the physical proton wave-function

Sw, MeV by, fm M, MeV T, MeV B, MeV Ny, %
99 1.50 1439 260 72 16
80 1.42 1440 357 48 11
63 1.35 1440 454 30 8
16 | | | |
| —— r=260Mev i
147 ---- r=357Mev
1.2 4 — I' = 454 MeV -
5 14 / . -
= s :
S 08 S e eriere . -
S 06 A T o
0.4 / S
0.2 ' -
0 —

1000 1100 1200 1300 1400 1500 1600 1700
E, MeV

Fig.2 The strength-functions S(E;) (50) plotted together with their Breit-Wigner fits (51) calculated for the three sets of parameters
from Table 1

where AE; = E;j+1 — E;.

One can determine the parameters of a resonance, the mass and the width, by applying a Breit-Wigner fit
to the strength-function S(E) [8]. Unfortunately the Roper resonance is broad and is located close to threshold
making it necessary to use a width that is energy-dependent. We shall use the following phenomenological
parametrization of the strength-function (cf. [9]),

S(E) (MT)? O(E — Eqp) (51)
(E2 — M2)2 + (MT)2 "
where
3 E>—E2\"
F=r(=——"th) (52)
M? - E}

6 is the step function, Ey, is the threshold energy, and where the mass M, width I', and power p are the fitting
parameters (p ~ 1).

6 Results

We use the Gaussian form-factor in the normalized form (10),

—1/2
3/7h), r?
F(r) =Sy (47t %) exp (_b_2> , (53)
w

where the strength, S, and the range, b,,, are the model parameters that are varied to reproduce the given
mass M and width I" of the resonance.

Exploratory calculations show that it is possible to reproduce the tabulated mass of the Roper resonance,
1440 Meyv, and any given width within the tabulated limits, 250-450 MeV, within a relatively narrow range of
the model parameters as indicated in Table 1 and on Fig. 2.
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7 Conclusion

We have shown that in the nuclear model with explicit mesons (MEM) the Roper resonance appears as a
structure in the continuum spectrum of the physical proton (in one-pion MEM the physical proton is made
of a bare nucleon dressed with a pion). We have established the range of the model parameters (the strength
and the range of the nucleon-pion coupling operator) that reproduce the tabulated mass and width of the
resonance. With these parameters the pion component in the physical proton takes about 10% of the norm of
the wave-function and reduces the mass of the bare proton by about 5%. These numbers are much smaller
then the corresponding estimates from the pion photo-production cross-section calculation [7]. One source of
the discrepancy could be the plane-wave approximation of the continuum states in [7], whereby all effects of
interactions in the final state (including the Roper resonance) were disregarded. It seems that these effects are
not negligible and must always be taken into account.
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8 Appendix: Numerical Convergence

Figures 3 and 4 illustrate the convergence of the strength-function with respect to variation of the bounding box parameter Ry, and
the discretization parameter Ar. The figures seem to indicate that the strength-function converges within the width of the line on
the figure when Rpax = 30fm and Ar = 0.08fm. Relative to the characteristic scale of the system—the interaction range parameter
by ~ 1.5fm—that gives Rmax/byw ~ 20 and b,/ Ar ~ 20.

16 | I | 1 | 1
1.4 e
1.2 1
1
0.8 -
0.6 -
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0 mpua BT T T T T
1000 1100 1200 1300 1400 1500 1600 1700
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Fig. 3 Convergence of the strength-function S(E;) with respect to the bounding box parameter Ryax. The interaction parameters
Sw and by, are taken from the first row of Table 1, the discretization parameter Ar = 0.08fm. The lines are for guiding the eye
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Fig. 4 Convergence of the strength-function S(E;) with respect to the discretization parameter Ar. The interaction parameters
Sw and by, are taken from the first row of Table 1, the bounding box parameter Ryax = 30fm. The lines are for guiding the eye
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