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Abstract A novel approach is introduced for obtaining precise solutions of the pairing Hamiltonian for
tetraquarks, which utilizes an algebraic technique in infinite dimensions. The parameters involved in the
transition phase are calibrated based on potential tetraquark candidates derived from phenomenology. Our
investigation shows that the rotation and vibration transitional theory delivers a reasonable agreement with
other works for heavy tetraquarks compared to other methods. To illustrate the concept, we compute the spec-
tra of several tetraquarks, namely charm, bottom, bottom–charm and open charm and bottom systems, and
contrast them with those of other particles.

1 Introduction

Scientists have detected a new particle, dubbed X(2900), by analyzing all the data collected so far by the LHCb
experiment at CERN’s Large Hadron Collider [1,2]. This experiment is renowned for discovering exotic quark
combinations, which help scientists study the strong force, one of the four fundamental forces in the universe.
LHCb has identified several tetraquarks, made up of four quarks (or two quarks and two antiquarks), including
the latest discovery of an entirely new type of tetraquark with a mass of 2.9 GeV/c2, which has only one charm
quark. While scientists predicted this particle’s existence in 1964, it is the first observed instance of a tetraquark
with only one charm quark. Quarks cannot exist independently; they form composite particles, such as mesons
(a quark and an antiquark) or baryons (three quarks or three antiquarks), like the proton. The LHCb detector
located at the LHC focuses on studying B mesons, which are composed of a bottom or an anti-bottom quark.
These mesons quickly decay into lighter particles shortly after being produced in proton-proton collisions at
the LHC. Tetraquarks are believed to be pairs of distinct mesons that are temporarily bound together like a
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“molecule,” according to some theoretical models, while others view them as a single cohesive unit of four
particles. Identifying and measuring the properties of new kinds of tetraquarks, such as their quantum spin and
parity, will provide a better understanding of these strange inhabitants of the subatomic realm. The recently
discovered particle, called X(2900), contains an anticharm, an up, a down, and an antistrange quark (c̄uds̄])
and is considered the first open-charm tetraquark, as all previous tetraquark-like states observed by LHCb had
a charm-anticharm pair, resulting in a net-zero “charm flavour” [1,2].

Pairing interactions between fermionic or bosonic systems are common in many physical contexts such as
Bose–Einstein Condensation and Superfluidity, airing correlations in nuclei: from microscopic to macroscopic
models, high-temperature superconductors, [3–8]. One example of the application of algebraic methods in
hadron physics is the use of such interactions [9–14]. We establish explicit extensions of duality relations
that relate the Hamiltonians and basis classification schemes associated with number-conserving unitary and
number-nonconserving quasispin algebras for four-level pairing interactions. The Hamiltonian of the model
can be defined using a linear combination of first- and second-order Casimir operators when one- and two-body
interactions are present. The four-level pairing model describes a finite system that undergoes a second-order
quantum phase transition between the rotation and vibration limits. Recently, we utilized the interacting boson
approximation proposed by Arima and Iachello [15,16] to calculate wave functions in an interacting sl many-
body boson system [17–22]. It is important to note that, in general, the building blocks of the boson system
are associated with both s and l bosons for single and quadrupole angular momentum. The bosonic pairing
systems exhibit similarities in their Lie algebraic properties, but the differences are significant in terms of the
irreducible representations (irreps) that the eigenstates transform under, which play a critical role in defining the
system’s spectroscopy. Finite pairing systems can be described by two complementary algebraic formulations:
(1) a unitary algebra consisting of bilinear products of a creation and annihilation operator, and (2) a quasispin
algebra that uses creation and annihilation operators for time-reversed pairs of particles [23–29].

Tetraquarks are exotic hadrons composed of four quarks that can include two quarks and two antiquarks or
four quarks of the same flavor. Despite being first proposed in the 1960s, their existence was only confirmed in
2013 by the Large Hadron Collider experiments. In recent years, the study of tetraquarks has gained increasing
interest due to their unique properties and potential implications in particle physics [13]. In this context, we
propose to apply an algebraic framework to investigate the properties of heavy tetraquarks [QQ][Q̄ Q̄]. Our
approach is based on the SU (1, 1) algebraic technique [24,30,31] and extends the sl boson system. We will
derive a new solvable model for hadron physics that takes into account the vector quark pairing strengths and
examine the mass spectra of tetraquarks.

In recent years, there has been a growing interest in exploring the properties of fully-heavy tetraquarks
[32,33]. Theoretically, several models have been proposed to describe these states, including the diquark-
antidiquark model, the chromomagnetic interaction model [34]. On the experimental side, various searches
have been performed to identify fully-heavy tetraquarks in high-energy experiments. For instance, the LHCb
collaboration searched for deeply bound bbb̄b̄ tetraquark states, but no significant excess was found in the
μ+μ−ϒ(1S) invariant-mass distribution [35]. However, the CMS experiment reported a potential candidate
of a fully bottom tetraquark T4b = [bb][b̄b̄] around 18–19 GeV [36]. Moreover, the LHCb collaboration
has recently reported the observation of a narrow peak and a broad structure in the J/ψ-pair invariant mass
spectrum, which could originate from hadron states consisting of four charm quarks [37]. These experimental
results provide valuable information for further theoretical investigations of fully-heavy tetraquarks.

Various theoretical models have been developed to study fully-heavy tetraquarks, including phenomenolog-
ical mass formulae [34,38,39], QCD sum rules [40–43], QCD motivated bag models [44], NR effective field the-
ories [45,46], potential models [47–60], non-perturbative functional methods [61], and even some exploratory
lattice-QCD calculations [62]. Some models predict that QQQ̄Q̄ (Q = c or b) bound states exist and have
masses slightly below the respective thresholds of quarkonium pairs (see, for example, Refs. [34,38,40–
42,45,46,54]). However, other studies suggest that no stable ccc̄c̄ and bbb̄b̄ tetraquark bound states exist
because their masses are larger than two-quarkonium thresholds (see, for example, Refs. [39,47,49,51,62]).
A better understanding of the mass locations of fully-heavy tetraquark states is crucial for our comprehension
of their underlying dynamics and for experimental studies.

2 Theoretical Method

In the context of describing a tetraquark system, diquark clusters play an important role. It is suggested that a
tetraquark system, denoted by T = Q1Q2 Q̄3 Q̄4, consists of two point-like diquarks. To consider multi-level
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pairing in this context, we extend the interacting boson model using algebraic solutions of an sl-boson system
[17]. The dynamical symmetry group in this case is generated by s and l operators, where l represents the
configuration of the multiquark states. In the Vibron Model, scalar s-bosons with spin and parity lπ = 0+ and
vector l-bosons with spin and parity lπ = 1− represent elementary spatial excitations. The generators in the
finite-dimensional SU (1, 1) algebra satisfy the following commutation relations.

[S0(l), S±(l)] = ±S±(l), (1a)

[S+(l), S−(l)] = −2S0(l). (1b)

We can use the ̂SU (1, 1) algebra to describe the rotation and vibration transitional Hamiltonian of the
T4c = [cc][c̄c̄], T4b = [bb][b̄b̄], and T2bc = [bc][b̄c̄] systems. It is worth mentioning that the quasi-spin
algebras have been extensively discussed in previous studies, such as Refs. [17,28].

Taking into account the generators of the SUl(1, 1)-algebra for tetraquarks given by Eqs. (1a) and(1b), we
can express the relevant quantities as linear combinations of these generators.

S+(l) = 1

2
l† · l†, (2a)

S−(l) = 1

2
l̃ · l̃, (2b)

S0(l) = 1

2

(
l† · l̃ + 2l + 1

2

)
, (2c)

where l† is the creation operator of an l-boson constituting the tetraquark, and l̃ν = (−1)νl−ν .
A complementary relation for tetraquark states can be expressed by

|N ; nl νl , n� JM〉 = |N ; κl μl , n� JM〉, (3)

with κl = 1
2νl + 1

4 (2l + 1) and μl = 1
2nl + 1

4 (2l + 1), where N , nl , νl , J and M are quantum numbers of
U (N ), U (2l + 1), SO(2l + 1), SO(3) and SO(2), respectively. The quantum number n� is an additional one
needed to distinguish different states with the same J .

The infinite dimensional ̂SU (1, 1) Lie algebra is defined by

S±
n = c2n+1

Q1
S±(l1) + c2n+1

Q2
S±(l2) + c2n+1

Q̄3
S±(l̄3)

+ c2n+1
Q̄4

S±(l̄4), (4a)

S0
n = c2n

Q1
S0(l1) + c2n

Q2
S0(l2) + c2n

Q̄3
S0(l̄3)

+ c2n
Q̄4

S0(l̄4), (4b)

The real-valued control parameters cQ and cQ̄ play a crucial role in determining the properties of tetraquarks.

Specifically, l1 and l2 correspond to the first and second tetraquarks, respectively, while l̄3 and l̄4 correspond
to the third and fourth tetraquarks. Additionally, the integer n can take on values of 1, 2, 3, and so on.

To ensure that the fully-heavy tetraquarks satisfy the correct properties, we impose the condition
S−(l)|lw〉 = 0 on the lowest weight state. The state |lw〉 can be defined as follows:

|lw〉 = |N ; κl μl , n� JM〉, (5)

where N = 2k + νQ1 + νQ2 + νQ̄3
+ νQ̄4

. Hence, we have

S0
n |lw〉 = �l

n|lw〉, �l
n =

∑
l

c2n
l

1

2

(
nl + 2l + 1

2

)
. (6)

The system shows vibrational and rotational transitions due to continuous variations of the pairing strengths,
cl , in the closed interval [0, 1]. The all-heavy tetraquark pairing model undergoes a quantum phase transition.
The vibration limit is reached when cQ1 = cQ2 = cQ̄3 = cQ̄4 = 0, while the rotational limit is attained when
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cQ1 = cQ2 = cQ̄3 = cQ̄4 = 1. In our analysis, we obtained diverse values for the control parameters, cQi and
cQ̄i

, in the interval [0, 1] with i = 1, . . . , 4, between the two limits.
The Hamiltonian of the heavy tetraquark pairing model is expressed in terms of the Casimir operators

Ĉ2 using branching chains. The first two terms of the Hamiltonian, S+
0 S−

0 and S0
1 , are associated with the

SU (1, 1) algebra, while the remaining terms are constant in terms of the Casimir operators. In the duality
relation for tetraquarks, the irreducible representations simplify the quasi-spin algebra chains (4a) and (4b),
and the labels for the chains are related via the duality relations. The Hamiltonian for the heavy tetraquark
pairing model is derived by utilizing the generators of the SU (1, 1) algebra. However, the pairing models of
multi-level are also characterized by an overlaid U (n1 + n2 + . . .) algebraic structure with this branching:
U (10)N ⊃ SO(10)ν ⊃ SO(9)ν ⊃ SO(3)s ⊗ SO(3)Q Q ⊗ SO(3)Q̄ Q̄ ⊗ SO(3)J .

So, we can define the Hamiltonian with

Ĥ = g S+
0 S−

0 + α S0
1 + β Ĉ2(SO(9))

+ γ1 Ĉ2(SO(3)R) + γ2 Ĉ2(SO(3)Q1Q2)

+ γ3 Ĉ2(SO(3)Q̄3 Q̄4
) + γ Ĉ2(SO(3)J ), (7)

where g, α, β, γ1, γ2, γ3, and γ are real-valued parameters.
To find the non-zero energy eigenstates with k-pairs, we exploit a Fourier Laurent expansion of the eigen-

states of Hamiltonians which contain dependences on several quantities in terms of unknown c-number param-
eters xi , and thus eigenvectors of the Hamiltonian for excitations can be written as

|k; νQ1νQ2νQ̄3
νQ̄4

n� JM〉 =
∑
ni∈Z

an1n2...nk

= xn1
1 xn2

2 xn3
3 . . . xnkk S+

n1
S+
n2
S+
n3

. . . S+
nk |lw〉, (8)

and

S+
ni = cQ1

1 − c2
Q1

xi
S+(S1) + cQ2

1 − c2
Q2

xi
S+(S2)

+ cQ̄3

1 − c2
Q̄3

xi
S+(S̄3) + cQ̄4

1 − c2
Q̄4

xi
S+(S̄4). (9)

The coefficients xi are determined through the following set of equations

α

xi
=

∑
l

c2
l

(
νl + 2l+1

2

)
1 − c2

l xi
−

∑
j �=i

2

xi − x j
. (10)

In the pursuit of finding exact solutions for a spin-spin interaction system, Gaudin utilized a similar structure
[63] as an ansatz, which has now been verified as a consistent operator form in constructing the Bethe ansatz
wavefunction for the present tetraquark system. To obtain the energy spectra, the Bethe ansatz equation (BAE),
a non-linear equation, is employed for a k-pair excitation. The quantum number k-pair excitation pertains to
the overall number of bosons N and is linked to seniority numbers, specifically the quantum number νl of
SO(2l + 1). As per equation (4), the allowed seniority numbers for a fixed νl include nl = νl , νl + 2, νl + 4,
and so on. This information is well-established in the field. Our approach to calculating the masses of heavy
tetraquarks follows the procedure outlined in Ref. [24]. To account for the bosonic nature of the excitations
(vibrations and rotations), we use the totally symmetric representation (7) and define the boson number as the
total number of vibrational states in the representation [N ].

Pairing in tetraquarks is an interesting phenomenon that affects their rotational and vibrational behavior.
The quantum phase transition occurs between the vibrational and rotational limits in the fully-heavy tetraquark
pairing model, and the quark (antiquark) configuration can undergo vibrations and rotations described by the
quantum numbers νQi , νQ̄i

, and J . While we will not consider bending and twisting in this analysis due to
their higher mass requirements, we must account for the internal degrees of freedom of quarks and antiquarks.
To address this complication, we apply the method of pairing strengths, following Refs. [13,17]. This scheme
illustrates the stringlike configuration of the tetraquark and the vibration-rotation pattern we aim to identify.
Within the two-quark configuration, we must follow the operator Q with Q̄, but since we are dealing with
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tetraquarks, we could also have combinations of QQ and Q̄ Q̄. To determine the appropriate rotation-vibration
pattern, we need to ensure that the pairing number N = 2k + νQ1 + νQ2 + νQ̄3 + νQ̄4

is satisfied. We
can optimize the control parameters to find the exact symmetry of vibration and rotation that gives us the
desired pairing number. By understanding the pairing behavior in tetraquarks, we can better understand their
physical properties and potentially make predictions for future experiments. In summary, our work builds on
previous research in the field, but we introduce new ideas related to pairing in tetraquarks and optimize control
parameters to identify the appropriate symmetry of vibration and rotation.

3 Results

The determination of tetraquark mass in the diquark–anti-diquark pairing model requires solving the eigenvalue
problem of Eq. (7). However, in addition to the spins of diquark and antidiquark clusters, the J PC quantum
numbers that define a tetraquark state also include the total spin, spatial inversion symmetry, and charge
conjugation of the system. Recent studies have shown that the J PC quantum numbers of a Q1Q2 Q̄3 Q̄4 system
can be 0++, 1+−, and 2++, as discussed in Ref. [64]. These quantum labels are essential for characterizing
the properties of the tetraquark system. The total spin of the tetraquark is determined by the combination of
the spins of diquark and antidiquark clusters, and it affects the tetraquark’s stability and decay properties.
Spatial inversion symmetry is related to the tetraquark’s mirror image, and it determines whether the system
is symmetric or asymmetric with respect to spatial inversion. Charge conjugation, on the other hand, is related
to the transformation of particles to their corresponding antiparticles and is a fundamental symmetry of the
strong interaction. Understanding the impact of total spin, spatial inversion symmetry, and charge conjugation
on tetraquark states is crucial for predicting their properties and behavior. By considering these quantum
numbers, we can gain insights into the tetraquark’s internal structure and its interactions with other particles.
This knowledge is essential for advancing our understanding of the strong interaction and the behavior of
exotic hadrons. For scalar, vector and tensor systems, we have:

1. Two states for the scalar system:

|0++〉 = |0Q1Q2 , 0Q̄3 Q̄4
; J = 0〉, (11a)

|0++′〉 = |1Q1Q2 , 1Q̄3 Q̄4
; J = 0〉. (11b)

2. Three states for the vector system:

|A〉 = |0Q1Q2 , 1Q̄3 Q̄4
; J = 1〉, (12a)

|B〉 = |1Q1Q2 , 0Q̄3 Q̄4
; J = 1〉, (12b)

|C〉 = |1Q1Q2 , 1Q̄3 Q̄4
; J = 1〉. (12c)

Charge conjugation is a fundamental symmetry of the strong interaction that transforms particles into their
corresponding antiparticles. This symmetry leads to different configurations in which |A〉 and |B〉 can
interchange, while |C〉 remains odd.
In the J P = 1+ configuration, we have one C-even and two C-odd states. This arrangement plays a crucial
role in determining the properties and behavior of the system. Understanding the implications of these
configurations is essential for predicting the tetraquark’s stability and decay properties.

|1++〉 = 1√
2
(|A〉 + |B〉), (13a)

|1+−〉 = 1√
2
(|A〉 − |B〉), (13b)

|1+−′〉 = |C〉. (13c)

When considering tetraquarks, it is essential to choose appropriate values for the spin of the quark-antiquark
pairs. In particular, the selection of spin states can impact the overall properties and behavior of the system.
In the case of a tetraquark composed of Q1, Q2, Q̄3, and Q̄4, the appropriate spin states depend on the
charge conjugation of the system. Specifically, when C = +, the only allowed state is one where Q1 Q̄3
has a spin of SQ1 Q̄3

= 1.
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Fig. 1 The predicted mass spectrum of the T4c tetraquarks. All spectroscopies are in GeV

3. One state for the tensor system:

|2++〉 = |1Q1Q2 , 1Q̄3 Q̄4
; J = 2〉, (14)

where this state has also SQ1 Q̄3
= 1.

3.1 The Charm System

The pairing tetraquark model considers two phases, rigid and non-rigid, which correspond to rotation and
vibration symmetries, respectively. While both phases are idealized situations, they must coexist in reality,
resulting in the emergence of vibrational-rotational modes in the transitional region. The parameters in this
region are known as the phase parameters, where cQi = 1 with i = 1, . . . , 4 corresponds to the rotational
mode and cQi = 0 corresponds to the vibrational mode. The mass spectrum of the pairing tetraquark model
can be calculated with fixed phase parameters, and the transitional spectra from one phase to another can be
obtained by adjusting the phase parameters within the closed interval [0, 1].

To determine the phase coefficients, we can look at the meson-meson thresholds, such as ηc(1S)ηc(1S) and
J/ψ(1S)J/ψ(1S) for J PC = 0++, ηc(1S)J/ψ(1S) for J PC = 1+−, and J/ψ(1S)J/ψ(1S) for J PC = 2++,
from a transitional theory perspective.

Our numerical values for the coefficients are cQ1 = 0.92, cQ2 = 1, and cQ̄4
= 0. These values yield the

following mass values:

|0++′〉 = |1cc, 1c̄c̄; J = 0〉 : M = 5.978 GeV, (15)

|1+−′〉 = |1cc, 1c̄c̄; J = 1〉 : M = 6.155 GeV, (16)

|2++〉 = |1cc, 1c̄c̄; J = 2〉 : M = 6.263 GeV, (17)

for the T4c tetraquark system. As shown in the (Fig. 1), we overall calculate the mass for T4c tetraquark system.

3.2 The Bottom System

The scenario presented here bears some resemblance to the earlier case. However, this time, according to
the transitional theory, the extraction phase coefficients must be computed with regard to the meson-meson
thresholds, such as ηb(1S)ηb(1S) and ϒ(1S)ϒ(1S) for J PC = 0++, ηb(1S)ϒ(1S) for J PC = 1+−, and
ϒ(1S)ϒ(1S) for J PC = 2++. Our numerical values for the coefficients are cQ1 = 0.97, cQ2 = 1, cQ̄3 = 1,
and cQ̄4

= 0. These values yield the following mass values:

|0++′〉 = |1bb, 1b̄b̄; J = 0〉 : M = 18.752 GeV, (18)

|1+−′〉 = |1bb, 1b̄b̄; J = 1〉 : M = 18.808 GeV, (19)
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Fig. 2 The predicted mass spectrum of the T4b tetraquarks. All spectroscopies are in GeV

|2++〉 = |1bb, 1b̄b̄; J = 2〉 : M = 18.920 GeV, (20)

for the T4b tetraquark system.
As shown in the (Fig. 2), we overall calculate the mass for T4b tetraquark system.

3.3 The Bottom–Charm System

This study also considers the T2bc = [bc][b̄c̄] tetraquark structure, which combines c quarks with b quarks.
Here, the [bc] diquark spin may be either 0 or 1, allowing for the possibility of all states analyzed in the previous
section. Once again, the best method for extracting the control parameters in T2bc tetraquarks, based on the
transitional theory, is to utilize the corresponding meson-meson families. This method yields the following
values: cQ1 = cQ2 = 1, and cQ̄3 = cQ̄4

= 0. The computed masses can be classified into the following
categories:

(i) The J PC = 0++ contains two scalar states with masses

|0++〉 = |0bc, 0b̄c̄; J = 0〉 : M = 12.359 GeV, (21)

|0++′〉 = |1bc, 1b̄c̄; J = 0〉 : M = 12.503 GeV. (22)

(ii) The J PC = 1+− contains two states with masses

|1+−〉 = 1√
2
(|0bc, 1b̄c̄; J = 1〉

− |1bc, 0b̄c̄; J = 1〉) : M = 12.896 GeV, (23)

|1+−′〉 = |1bc, 1b̄c̄; J = 1〉 : M = 12.016 GeV. (24)

(iii) The J PC = 1++ contains one state with mass

|1++〉 = 1√
2
(|0bc, 1b̄c̄; J = 1〉

+ |1bc, 0b̄c̄; J = 1〉) : M = 12.155 GeV. (25)

(iv) The J PC = 2++ contains one state with mass

|2++〉 = |1bc, 1b̄c̄; J = 2〉 : M = 12.897 GeV. (26)

As shown in the figure (Fig. 3), we overall calculate the mass for T2bc tetraquark system.
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Fig. 3 The predicted mass spectrum of the T2bc tetraquarks. All spectroscopies are in GeV

Fig. 4 The predicted mass spectrum of the open charm and bottom tetraquarks. All spectroscopies are in GeV

3.4 The Open Charm and Bottom System

In the most recent research, a thorough investigation was conducted on open charm (OC) and bottom (OB)
tetraquarks comprising bottom and charm quarks, including cqq̄q̄ , cqs̄q̄, css̄q̄, and css̄s̄ for charm, and bqq̄q̄ ,
bqs̄q̄ , bss̄q̄, and bss̄s̄ for bottom. The outcomes for the masses of these tetraquraks are summarized in Figs. 1,
and the available experimental data is compared in Table 1. Based on the method used in this study, the resulting
values are demonstrated in the Caption of Fig. 1. Our numerical values are cQ1 = 0.83, cQ2 = 1, cQ̄3

= 0
and cQ̄4

= 0, cQ1 = 0.86, cQ2 = 1, cQ̄3
= 0 and cQ̄4

= 0 cQ1 = 0.89, cQ2 = 1, cQ̄3
= 0 and cQ̄4

= 0
and cQ1 = 0.92, cQ2 = 1, cQ̄3

= 0 and cQ̄4
= 0 for open charms cqq̄q̄, cqs̄q̄, css̄q̄, and css̄s̄, respectively.

In contrast, numerical values are cQ1 = 0.91, cQ2 = 1, cQ̄3
= 0.15 and cQ̄4

= 0, cQ1 = 0.93, cQ2 = 1,
cQ̄3

= 0.15 and cQ̄4
= 0 cQ1 = 0.93, cQ2 = 1, cQ̄3

= 0.29 and cQ̄4
= 0 and cQ1 = 0.93, cQ2 = 1,

cQ̄3
= 0.37 and cQ̄4

= 0 for open bottom bqq̄q̄, bqs̄q̄ , bss̄q̄, and bss̄s̄, respectively.
As shown in the (Fig. 4), finally we calculate the mass for open charm and bottom tetraquark systems.

4 Discussion

The calculation process involves a fixed set of Hamiltonian parameters while allowing the phase parameters to
fluctuate during the transition. In Ref. [14], the authors demonstrated that the boson number’s quantum value
could be obtained by taking the N → ∞ limit. It was found that taking N to be a large number was sufficient
to account for all known and unknown states up to the maximum value of the quantum number of the angular
momentum and other relevant quantum numbers for the applications. In this current research, we are utilizing
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Table 1 Masses of fully-heavy tetraquark systems as computed within the theoretical framework presented herein

Structure Configuration J PC Mtetra in this work (GeV) Threshold Eth (GeV) � (GeV)

T4c = [cc][c̄c̄] AĀ 0++ 5.978 ηc(1S)ηc(1S) 5.968 0.01
J/ψ(1S)J/ψ(1S) 6.194 − 0.216

1+− 6.155 ηc(1S)J/ψ(1S) 6.081 0.074
2++ 6.263 J/ψ(1S)J/ψ(1S) 6.194 0.069

T4b = [bb][b̄b̄] AĀ 0++ 18.752 ηb(1S)ηb(1S) 18.797 − 0.045
ϒ(1S)ϒ(1S) 18.920 − 0.168

1+− 18.808 ηb(1S)ϒ(1S) 18.859 − 0.051
2++ 18.920 ϒ(1S)ϒ(1S) 18.920 0.0

T2bc = [bc][b̄c̄] AĀ 0++ 12.503 ηb(1S)ηc(1S) 12.383 0.12
J/ψ(1S)ϒ(1S) 12.557 − 0.054
B±
c B∓

c 12.550 − 0.047
B∗±
c B∗∓

c 12.666 − 0.163
1+− 12.016 ηc(1S)ϒ(1S) 12.444 − 0.428

J/ψ(1S)ηb(1S) 12.496 − 0.48
B±
c B∗∓

c 12.608 − 0.592
B∗±
c B∗∓

c 12.666 − 0.65
2++ 12.897 J/ψ(1S)ϒ(1S) 12.557 0.34

B∗±
c B∗∓

c 12.666 0.231
1√
2
(AS̄ ± S Ā) 1++ 12.155 J/ψ(1S)ϒ(1S) 12.557 − 0.402

B±
c B∗∓

c 12.608 − 0.453
B∗±
c B∗∓

c 12.666 − 0.511
1+− 12.896 ηc(1S)ϒ(1S) 12.444 0.452

J/ψ(1S)ηb(1S) 12.496 0.4
B±
c B∗∓

c 12.608 0.288
B∗±
c B∗∓

c 12.666 0.23
SS̄ 0++ 12.359 ηc(1S)ηb(1S) 12.383 − 0.024

J/ψ(1S)ϒ(1S) 12.557 − 0.198
B±
c B∓

c 12.550 − 0.191
B∗±
c B∗∓

c 12.666 − 0.307

The meson–meson threshold is Eth, and � = M − Eth represents the energy distance of the tetraquark with respected its lowest
meson-pair threshold. The notation s and a indicates scalar and axial-vector diquarks

the same approach as in Ref. [14], setting N = 100 to ensure that all states up to the maximum quantum
number are considered.

The Hamiltonian’s pattern is comparable to the O(4) restriction proposed in mesons, where the control
parameter is set to 1. Our study indicates that the control parameters cQ̄3 and cQ̄4

cannot be considered as 1
in the presence of heavy antiquarks, except for T4b tetraquarks. This is due to the fact that the T4b tetraquark’s
mass is two to three times more substantial than that of T2bc and T4c tetraquarks. For heavy mass tetraquarks,
pairing strength plays a significant role, as evidenced by the larger cQ1 value in the T2bc case than in the T4c
case. The same reasoning applies to the open and bottom tetraquark system.

The Hamiltonian’s parameters for the discussed structures are presented in the Figures’ captions. During
the transition phase, we set α to be 1.5. As the pairing model’s vibrational-rotational transition is a second-order
quantum phase transition, the masses of the wave functions in the tetraquark’s vibrational model are smooth
with respect to parameter changes. This enables us to determine them in the transition region.

In Table 1, we present the difference between the calculated masses of the tetraquarks and the threshold
for meson-pairing. The values of � represent the difference between the tetraquark mass Mtetra and its lowest
meson-meson threshold Eth. If � is negative, it implies that the tetraquark state lies below the fall-apart decay
threshold and should therefore be stable. On the other hand, a state with a small positive � could be observed
as a resonance due to suppression by phase space. The states with high positive � values are considered broad
and difficult to detect in experimental analyses.

Our investigation indicates that slightly deviating the control parameter cQ1 from 1 is more suitable for
determining the tetraquark masses, especially for the extensive T2bc families. Additionally, for T4b = [bb][b̄b̄]
states, the dominant contribution comes from the pairing of cQ̄3 and cQ̄4

= 0 quarks, indicating that phase

parameters for Q̄3 and Q̄4 quarks become significant in computing tetraquark masses at high energy, around
18–19 GeV. On the other hand, at low energy, there is a competition between Q1 and Q2.
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Table 2 Comparison of our results with theoretical predictions for the masses of T4b = [bb][b̄b̄], and T4c = [cc][c̄c̄] tetraquarks

Reference bbb̄b̄ ccc̄c̄
0++ 1+− 2++ 0++ 1+− 2++

This paper 18.752 18.808 18.920 5.978 6.155 6.263
[65] 18.460–18.490 18.320–18.540 18.320–18.530 6.460–6.470 6.370–6.510 6.370–6.510
[66] 18.690 – – – – –
[67] 18.748 18.828 18.900 5.883 6.120 6.246
[68] 18.750 – – < 6.140 – –
[69], [70] 18.754 18.808 18.916 5.966 6.051 6.223
[71,72] 18.826 – 18.956 6.192 – 6.429
[73,74] 18.840 18.840 18.850 5.990 6.050 6.090
[75] 19.178 19.226 19.236 – – –
[76] 19.237 19.264 19.279 6.314 6.375 6.407
[77] 19.247 19.247 19.249 6.425 6.425 6.432
[78,79] 19.322 19.329 19.341 6.487 6.500 6.524
[80] 19.329 19.373 19.387 6.407 6.463 6.486
[81] 19.255 19.251 19.262 6.542 6.515 6.543
[82] 20.155 20.212 20.243 6.797 6.899 6.956
[83,84] – – – 5.969 6.021 6.115
[85] – – – 6.695 6.528 6.573
[86] – – – 6.480 6.508 6.565
[87] 19.666 19.673 19.680 6.322 6.354 6.385
[88] – – – 6.510 6.600 6.708
[89] 18.981 18.969 19.000 6.271 6.231 6.287
[90] 19.314 19.320 19.330 6.190 6.271 6.367
[91] set. I 18.723 18.738 20.243 5.960 6.009 6.100
[91] set. II 18.754 18.768 18.797 6.198 6.246 6.323
[92] 19.226 19.214 19.232 6.476 6.441 6.475
Mean value 19.045 19.106 19.197 6.310 6.346 6.414
Comparative percentage 1.53% 1.56% 1.44% 5.27% 3.02% 2.35%

All results are in GeV

Table 3 Comparison of our results with theoretical predictions for the masses of T2bc = [bc][b̄c̄] tetraquarks. All results are in
GeV

Reference AĀ 1√
2
(AĀ ± AĀ) SS̄

0++ 1+− 2++ 1++ 1+− 0++

This paper 12.503 12.016 12.897 12.155 12.896 12.359
[69] 12.359 12.424 12.566 12.485 12.488 12.471
[67] 12.374 12.491 12.576 12.533 12.533 12.521
[68] < 12.620 – – – – –
[93] 12.746 12.804 12.809 – 12.776 –
[80] 12.829 12.881 12.925 – – –
[78] 13.035 13.047 13.070 13.056 13.052 13.050
[82] 13.483 13.520 13.590 13.510 13.592 13.553
Mean value 12.778 12.826 12.922 12.896 12.888 12.898
Comparative percentage 2.15% 6.32% 0.19% 5.74% 0.06% 4.18%

The energy spectra of the fully-heavy tetraquarks under study, where cQi values are in the range of 0.9–1.0,
can be attributed to a rotational phase, based on the definition mentioned above. It is worth noting that a change
of ±15% in all coefficients results in a maximum variation of 30, 23, and 17% in the masses of the T4c, T4b,
and T2bc tetraquark systems, respectively. However, it should be emphasized that the masses of the remaining
tetraquark states undergo lesser modifications.

Our study on the vibrational and rotational transitions in open and bottom tetraquarks suggests that a slight
deviation of the control parameter from the vibration limit is more appropriate for determining the tetraquark
masses, particularly for the open bottom families. This finding emphasizes the importance of choosing the
correct control parameter for accurate mass spectroscopy.

Furthermore, we observed that in open bottom tetraquark states, the dominant contribution comes from
the pairing of the third quarks, indicating that the phase parameters for these quarks play a crucial role in
computing tetraquark masses at high energies around 5–6 GeV. In contrast, for open charm tetraquarks, there
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Table 4 Comparison of our results with theoretical predictions for OC and OB tetraquark states with diquark–antidiquark in
ground 1S state

J P Diquark content Experiment [94] Mass OC [95] OB [95] OC [96] OB [96] OC (This work) OB (This work)

Meson Mass cqq̄q̄ bqq̄q̄ cqq̄q̄ bqq̄q̄ cqq̄q̄ bqq̄q̄
0+ SS̄ D∗

0 (2.400) 2.403
2.318 2.729 6.063 2.399 5.758 2.320 5.047

1+ S Ā 2.838 6.077 2.558 5.950 2.473 5.433
1+ AS̄ D1(2.430) 2.427 2.767 6.164 2.473 5.782 2.481 5.937
0+ AĀ 2.575 6.046 2.503 5.896 2.506 6.079
1+ AĀ 2.747 6.118 2.580 5.937 2.603 6.176
2+ AĀ 2.969 6.226 2.698 6.007 2.715 6.237

cqs̄q̄ bq s̄q̄ cq s̄q̄ bq s̄q̄ cq s̄q̄ bq s̄q̄
0+ SS̄ Ds (2.632) 2.6325 2.873 6.196 2.619 5.997 2.653 5.556
1+ S Ā 2.957 6.210 2.723 6.125 2.705 5.789
1+ AS̄ 2.911 6.274 2.678 6.021 2.682 6.012
0+ AĀ 2.692 6.150 2.689 6.086 2.676 6.010
1+ AĀ 2.866 6.226 2.757 6.118 2.787 6.378
2+ AĀ D∗

s j (2.860) 2.862 3.087 6.337 2.863 6.177 2.862 6.360
css̄q̄ bss̄q̄ css̄q̄ bss̄q̄ css̄q̄ bss̄q̄

0+ SS̄ 3.001 6.317 2.753 6.108 2.750 5.893
1+ S Ā 3.085 6.330 2.870 6.238 2.795 6.110
1+ AS̄ 3.035 6.394 2.830 6.134 2.811 6.106
0+ AĀ 2.827 6.272 2.839 6.197 2.820 6.247
1+ AĀ 2.994 6.347 2.901 6.228 2.868 6.257
2+ AĀ 3.207 6.456 2.998 6.284 2.925 6.573

css̄s̄ bss̄s̄ css̄s̄ bss̄s̄ css̄s̄ bss̄s̄
1+ S Ā 3.201 – 3.025 6.383 3.350 6.127
1+ AS̄ – 6.504 – – 3.332 6.251
0+ AĀ 2.942 6.376 3.003 6.353 3.349 6.358
1+ AĀ 3.111 6.455 3.051 6.372 3.256 6.380
2+ AĀ 3.322 6.566 3.135 6.411 3.539 6.439

All results are in GeV

is a competition between the first and second quarks. These observations suggest that the pairing of quarks and
the interplay of their phase parameters can significantly impact the mass spectroscopy of multiquark systems.

Our findings provide insights into the properties of fully-heavy tetraquarks and highlight the importance of
considering the multiquark dynamics for a more comprehensive understanding of hadron spectroscopy. Further
studies on other types of multiquarks and the inclusion of other degrees of freedom, such as pentaquarks and
hexaquarks, may lead to a better understanding of the underlying physics and shed light on the nature of
hadronic matter.

The comparison between our results obtained from the pairing model and the predictions of previous
theoretical calculations are presented in Tables 2, 3 and 4. In the absence of experimental data for tetraquarks,
it is crucial to compare our results with those obtained by other theoretical studies to assess the deviations and
gauge the consistency of our findings. To achieve this, we calculate the comparative percentage, a quantitative
metric that allows us to evaluate the deviation of our mean values from those reported in other references. The
formula used for the comparative percentage is as follows:

Comparative Percentage =
(

Mean Value (Others) − This work

Mean Value (Others)

)
× 100

Here, the “Mean Value (Others)” represents the average value obtained from various theoretical studies,
while the “Reference Value” denotes as “This work” is the value obtained from our own analysis. By employing
this formula, we can determine the percentage deviation between our results and those of other studies. A higher
comparative percentage indicates a larger deviation, signifying potential discrepancies in our analysis, while a
lower percentage implies closer agreement with the mean values reported in other references. The comparative
percentage serves as a crucial tool for evaluating the reliability and consistency of our findings in the absence
of experimental data for tetraquarks. Our findings show that the pairing model provides reasonable agreement
with the other works, implying that it has the potential to play a crucial role in predicting fully-heavy tetraquark
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mesons. However, future work could aim to further improve the understanding of multiquark dynamics by
including the large-N limit of the pure pairing Hamiltonian.

5 Summary

The aim of this study was to investigate the mass spectra of tetraquarks in the transition region between vibration
and rotation using the algebraic framework. To achieve this, a solvable extended transitional Hamiltonian
based on SU (1, 1) algebra is proposed, which can describe both partial high energy states and quantum phase
transition. The extracted mass spectra of various tetraquarks were in agreement with previous research and
other theoretical approaches. However, it is important to consider other degrees of freedom, such as penta or
hexa quarks, in future studies. Furthermore, the solvable technique introduced in this work could potentially
be applied to diagonalize more complex multiquark systems. This approach is currently being applied to
investigate other types of multiquarks in the following manuscript.
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