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Abstract We investigate a method to extract response functions (dynamical polarisabilities) directly from a
bound-state approach applied to calculations of perturbation-induced reactions. The use of a square-integrable
basis leads to a response in the form of a sum of δ functions. We integrate this over energy and fit a smooth
function to the resulting stepwise-continuous one. Its derivative gives the final approximation to the physical
response function. We show that the method reproduces analytical results where known, and analyse the details
for a variety of models. We apply it to some simple models, using the stochastic variational method as the
numerical method. Albeit we find that this approach, and other numerical techniques, have some difficulties
with the threshold behavior in coupled-channel problems with multiple thresholds, its stochastic nature allows
us to extract robust results even for such cases.

1 Introduction

Various methods have been developed to describe total and differential cross sections via square-integrable
wave functions [1–5]. Another common approach in nuclear physics is to use the response functions (dynamical
polarisabilities) in the calculation of cross sections [6]. As far as we are aware, the first method that combined
these two ideas was the Lorentz-integral transform (LIT) [2,7–17]. This uses a transformation of the response
functions that leads to the solution of a set of inhomogeneous Schrödinger equations for a bound state. A
suitably weighted sum of overlaps between the solutions is then subjected to an inverse transform to obtain
the response or dynamical polarisabilities.

This procedure is reasonably robust for problems with a single open channel, such as the photo-dissociation
of the deuteron [14], but seems more challenging in other cases (but see [9,13,18]). Most standard nuclear-
structure methods can be employed to generate a basis and, as we shall see below, good answers can be obtained
with very different approaches in cases with a single open channel. For more than one open channel, however,
all methods seem to struggle to some extent, something that we have found to be more obvious in those using
the stochastic variational method (SVM) [19,20].

Bound-state methods work with square-integrable basis functions, and any response calculated is naturally
discrete. In the manner we apply this, this means that any response function becomes a sum of δ distributions
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with varying strengths, located at the eigenenergies of the channel Hamiltonian. In the LIT, this sum of δs
gets folded with a finite-width Lorentzian [7], giving a continuous function with a small but non-zero width.
An inverse transform is then applied to this to get the physical response function. Typically, this inversion is
done by fitting to the LIT of a continuous function constructed as a sum of carefully chosen basis functions
[9]. These basis functions should reflect properties expected of the physical, continuum response, such as the
correct threshold behaviour. The choice of width also requires care: if too small, the discrete δs start to be
resolved; but if too large, physical features can get washed out.

Despite these subtleties, indications from the literature are that the method can work well for structured
bases, such as hyperspherical harmonics (HH) or no-core-shell-model (NCSM) states [2,7–17]. This type of
basis leads to a regularly-spaced spectrum of the kinetic energy operator. In contrast, the stochastically chosen
basis of the SVM leads to a rather randomly-spaced spectrum, which can generate additional unphysical
structures in the transformed response and so can be less well-suited for inversion of the LIT.

In this article, we develop a powerful alternative which actually takes advantage of the randomness of the
SVM. Instead of folding the response with a smearing function, this uses the integrated response, that is, the
integral up to some energy ω of a response function obtained with a square-integrable basis. This turns the
sum of δ distributions into a step-wise continuous function of ω. We then fit a continuous function to this and
differentiate it to get an approximation of the physical response function. One could argue that this has just
replaced one difficult problem (robust inversion of the LIT) with another (fitting of a function that is robust
enough to yield a reliable derivative), but we will find that the latter is often an easier one, since the use of a
stochastic method can be used to generate bases that cover important areas of the spectrum in more detail. Here,
we outline the method and present evidence that it is trustworthy, by comparing it with both an analytically
solvable model and results from the LIT.

The presentation is organised as follows: in Sect. 2 we succinctly set out the underlying definitions; most
of these can be found elsewhere in detail. We then, in Sect. 3 show that for a simple Pöschl-Teller potential, all
the required quantities can be calculated in analytic form for the full continuum calculation, thus providing an
important benchmark for basis-based methods. In the next section, Sect. 3.2, we solve the problem using first
a simple harmonic oscillator basis, and then a suitable Gaußian basis. The latter will be shown to be extremely
efficient. These are still relatively trivial problems, and we next compare to the photo-disintegration of the
deuteron as discussed by Bampa et al. [14]. We see that both using the LIT transforms, and using a simple fit
to an integrated response function, give largely identical results, apart from small differences in areas of small
response.

Next, we show that our approach well reproduces the response in a 3-particle continuum, Sect. 5, in
anticipation of the difficulties we will encounter when we turn to a combination of a single particle continuum
relative to a two-body bound state and a three-particle continuum in Sect. 6. We compare a hyperspherical-
basis calculation and an SVM result for a two-channel model which has a two-body bound state in one of the
channels. Finally, we draw conclusions and give an outlook in Sect. 7.

2 Calculation of the Cross Section

Inclusive cross sections due to an external probe (also called “perturbation-induced”) are typically of the form
[6]

d2σ

dεd�
= g2

∑

i

fi (ε, q, �)Fi (ε, q), (1)

where ε, q with q = |q| are the energy and momentum transfer of the external probe to the system, g is a
coupling constant, � = (θ, φ) are the scattering angles, and the fi are kinematic factors for the i th channel.
The key aspect of the calculation is the dynamical response functions Fi (ε, q) [10,12]. For a single channel
with no additional bound states, these read

F(ε, q) =
∫

dk〈ψ0|O†(q)|ψk〉〈ψk|O(q)|ψ0〉δ(Ek − E0 − ε). (2)

The complete set of scattering eigenstates ψk are normalised as
∫

dk|ψk〉〈ψk| = 1̂. (3)
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Since the states O(q)|ψ0〉 are square integrable, it seems entirely sensible to replace the integral over k by a
suitable sum over square-integrable states,

F(ε, q) =
∑

i

|γi (q)|2δ(Ei − E0 − ε), (4)

with

γi (q) = 〈φi |O(q)|ψ0〉. (5)

Clearly this form as a sum of delta distributions is not useful in itself, since we know that the solution obtained
by using the scattering states is by construction continuous. We circumvent this to an extent by investigating
the integrated response function

T (ε, q) =
ε∫

0

dε′F(ε′, q), (6)

rather than F . Indeed, we do note that the total strength can be captured correctly: completeness shows that
we can impose the sum rule

∑

i

|γi (q)|2 = 〈ψ0|O†(q)O(q)|ψ0〉, (7)

which holds for any complete basis, but not necessarily for a finite one. This sum-rule thus sets a useful
constraint on the choice of the basis functions.

We can alternatively try and tackle this issue by a Lorentz integral transform, which effectively modifies
the response function by adding a complex energy,

L(q, σ ) =
∞∫

0

dε
F(ε, q)

(ε − σR)2 + σ 2
I

(8)

where we take without loss of generality σI > 0 but do not restrict σR . Using completeness, Eq. (3), we can
also express the Lorentz transform using the solution of an inhomogeneous Schrödinger equation,

(H − E0 − σ)|ψ̃(q, σ )〉 = O(q)|ψ0〉, (9)

L(q, σ ) = 〈ψ̃(q, σ )|ψ̃(q, σ )〉 . (10)

In a finite basis of square-integrable functions, we can write the LIT decomposition in terms of the eigenfunc-
tions φi and eigenvalues Ei of the matrix representation of the Hamiltonian as discussed in [12], i.e.,

L(q, σ ) =
∑

i

|γi (q)|2
(Ei − E0 − σR)2 + σ 2

I

, (11)

This shows that the formal inverse transform is given in Eq. (4)—see also the discussion in Ref. [21] for
issues with this inversion. This often reflects itself in LIT transforms in peaks near isolated eigenvalues.
Reference [12] suggests that increasing the number of basis functions leads to a denser spectrum, and thus a
better LIT transformation; this is actually quite a subtle issue, as shown below. In the standard works on the
LIT, one usually uses a nonzero σI to smooth out small fluctuations when inverting the LIT. This removes
detail from the response function, and we expect that there is a price to pay in the inversion—at a minimum
the displacement of reaction strength below the reaction threshold. That can be a small price if the response is
smooth and phase-space factors suppress the cross section at low energies. Nevertheless, we find it difficult to
control the smoothness of numerical results, especially when using Gaußian basis sets. In that case, it is much
better to take some form of the limit σI → 0, and here we will discuss one practical approach to approximate
this limit.

We believe that our approach through the integrated strength function gives more stability for a larger
variety of basis functions; it is one of the main goals of this presentation to show how this is the case. We start
by illustrating this approach for a simple one-dimensional potential in the next section.
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3 A Simple Model

3.1 Analytical Treatment

We shall use the one-dimensional Pöschl-Teller potential [22] as a test example (this potential is discussed in
some detail in the textbook Ref. [23]). We consider the Hamiltonian

H = −1

2

d2

dx2 − λ(λ + 1)

2 cosh2 x
. (12)

The ground state is ψ0(x) = cosh−λ x with eigenvalue −λ2/2, and a first excited bound state ψ1(x) =
sinh(x)ψ0(x) appears at energy −(λ − 1)2/2 for λ > 1. Naively, we see there is a second state at exactly
zero energy for λ = 1, which is one of the cases we will consider. This is not a problem since the potential is
transparent and has no resonances in the continuum. However, it may be linked to some of the properties of
the analytical solution below.

We start by considering the case λ = 1, which has a single bound state with energy −1/2 and normalised
eigenfunction

ψ0(x) = 1√
2

1

cosh x
. (13)

We shall look at the “photo-excitation” cross section for this model potential in the dipole approximation,
O(q) = Eqx , and for simplicity, we shall choose units where the product of electric field and charge Eq = 1.

In order to evaluate Eq. (2) directly, we note that the operator x creates a state in the positive energy
continuum. This means that we need the odd-parity positive-energy spectrum for energy E = k2/2, which is
known to be [24]

ψo
k (x) = 1√

1 + k2
(k sin(kx) + tanh(x) cos(kx)) . (14)

We see that these wave functions approach sin(kx ± δk/2) for x → ±∞, with the phase shift δk =
2 arctan(1/k).

3.1.1 Momentum-Space Basis

From the result above, we calculate the generalised Fourier-decomposition of xψ0 relative to the energy
eigenfunction ψo

k (x) in closed form,

φ̃(k) =
∞∫

−∞
ψo
k (x) x ψ0(x) dx = π sech (πk/2)√

2
√
k2 + 1

. (15)

It is quite illustrative to calculate the inverse generalised Fourier transform of ψ1(k) in detail,

φ(x) := 1

2π

∞∫

−∞
ψo
k (x)

π sech (πk/2)√
2
√
k2 + 1

dk . (16)

This integral can be tackled by contour integration. Closing the contour in the lower half plane, we have
contributions from the poles at k = −(2n + 1)i, n ∈ N. Taking the residues, we recover the original function
as expected:

φ(x) = 1√
2

(
sinh(x) + x sech(x)

+ 1

2

∞∑

n=1

(−1)n(2n + 1)
(n − 1)!
(n + 1)! sinh((2n + 1)x)
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Fig. 1 The analytic calculation for F , Eq. (20) (red curve), and the integrated response T , Eq. (21) (blue dash-dotted curve). The
gray dashed line is the saturation value π2/12

− 1

2
tanh(x)

∞∑

n=1

(−1)n
(n − 1)!
(n + 1)! cosh((2n + 1)x)

)

= 1√
2
x sech x = xψ0(x) . (17)

3.1.2 Consistent Normalisation

We have not explicitly shown a consistent normalisation of the momentum space states; however since the
integral

∞∫

−∞
x2 sech2 x dx = π2

6
. (18)

equals the corresponding integral in k-space

1

2π

∞∫

−∞

π2 sech2 (kπ/2)(
k2 + 1

) dk = π2

6
, (19)

we see that the normalisation is consistent.

3.1.3 Response Function

The benchmark for all future calculations is the explicit analytic result for the response function, which from
Eq. (2) becomes

F(ω) = π2

2

1√
2ω

sech2(π
√

ω/2)

1 + 2ω
, (20)

where ω = k2/2, which is the energy relative to the threshold. This has an inverse square-root singularity at
the threshold, which is due to the density of states in one dimension. The integrated response distribution is
then

T (ω) =
ω∫

0

F(ω′)dω′, (21)

see Fig. 1 for a representation of the integral and integrand. The most important message from that graph is
the saturation of the integrated response function, which equals the norm squared of x |ψ0〉,

〈ψ0|x2|ψ0〉 = π2/12 ≈ 0.822467. (22)
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Fig. 2 The normalised LIT transformation L̃(ω − iσI ). a, b for fixed σI (0.1 and 0.04, respectively). We use various values of
the harmonic oscillator length parameters, from coarse spectral spacing (b = 1/2) to fine spectral spacing (b = 8). Case c) is for
fixed b = 8 (the closest spectral spacing) and various values of σI as indicated

To understand the analytical form of the LIT transformation, we express the response function as a k space
integral,

L(σ ) = 〈ψ0|x(H − σ ∗)−1(H − σ)−1x |ψ0〉

= 1

2π

π2

2

⎡

⎣
∞∫

−∞

sech2 (kπ/2)
(
k2 + 1

) ((
k2/2 − σR

)2 + σ 2
I

)dk

⎤

⎦ , (23)

where σ = σR + iσI .
There are two classes of contributions to the integral, namely one from the pole of the Lorentzian and the

other from the poles of the sech2, namely the poles of the wave function which lie in the lower half plane at
k = −(2n + 1)i due to the specific contour chosen, see example above. The latter contribution is given by the
sum

L1(σ ) = 6 + π2

12
∣∣σ + 1

2

∣∣2
+ 1
∣∣σ + 1

2

∣∣4
+

16�
((

σ + 1
2

)2)

∣∣σ + 1
2

∣∣6
+

�
(

ψ(1)
(

1
2 − i

√
σ√
2

)
−ψ(1)

(
i
√

σ√
2

+ 1
2

)

√
σ
(
σ+ 1

2

)

)

4
√

2σI
(24)

where ψ(n) is the Polygamma function. The shift of σ by 1/2 should be interpreted as the effect of the
bound-state pole at E = −1/2.

The poles of the Green’s functions give a contribution to the integral in (23) of

L2(σ ) = π2

2
√

2σI
�
(

sech2
(
π

√
σ/2
)

√
σ(2σ + 1)

)
, (25)

which is singular in the limit σI → 0.
Both L1 and L2 contain a large contribution from the pole at σ = −1/2; these cancel substantially for

small σ , and completely when σI → 0. Thus the response function can then be recovered from L2; indeed

lim
σI↓0

σI

π
L(ω − iσI ) = 1√

2π

sech2
(
π

√
ω/2

)
√

ω(2ω + 1)
(26)

Moving into the complex σ plane does therefore lead to a slightly confusing situation: The part of the response
function that contributes to the result on the real axis is suppressed as we increase the imaginary part of σ , and
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Fig. 3 The cumulative response for various values of the harmonic oscillator length parameter. In a the points plotted are the
midpoints of each jump (see main text for details. The number of basis functions used is b = 1/2: 60, b = 1: 50, b = 2: 80,
b = 4: 120 and b = 8: 240. In each case, the solid blue curve is the analytical result. In b the lower and upper lines connect the
values just before and just after the jumps, respectively. Colours correspond to (a) (but we do not show b = 1/2, which is too
coarsely spaced for this representation)

a totally separate expression dominates for large σI . We see that the dominant contributions are caused by the
fact that the wave function has poles in the complex k plane. The importance of the contribution of these poles
of the wavefunction is in all likelihood specific to the Pöschl–Teller potential, but the fact that the effect of the
Green’s function dominates on the real axis is probably generic and would explain why using an L2 basis at
small but nonzero σI is normally effective in practical calculations.

3.2 L2-Basis Calculations

In practical implementations of the methods discussed before, we normally use a square-integrable basis to
find either the LIT transform, or the calculation of the integrated response function as advocated in this work.

We first look at the LIT transform where we solve the Eq. (9), where we now define σ relative to the
threshold at zero energy,

(H − σ)ψ̃(x) = xψ0(x) (27)

using a basis of L2 functions. We shall use either a truncated complete basis consisting of a set of odd harmonic
oscillator states,

χ(n)(x) = H2n−1(x/b)e
−x2/b2

, (28)

φ(n)(x) = (sαn−1)3/4

4
√

4π
x exp

(
−1

2
sαn−1x2

)
, (29)

where a geometric progression with ratio α of widths starting at s is used to ensure a numerically acceptable
condition number of the overlap (norm) matrix.

For the orthonormal basis (28) we get

ψ̃(x) =
N∑

n=1

cn(σ )χ(n)(x), dn = 〈χ(n)|x |ψ0〉 (30)

which gives the equation

(Hnm − σδnm)cm(σ ) = dn. (31)

If we denote the eigenvectors of H in this basis as en , and the eigenvalues as λn , we get a LIT transform of
the form (10), with γi = ei · d.

For the Gaußian basis

ψ̃(x) =
N∑

n=1

cn(σ )φ(n)(x), dn = 〈φ(n)|x |ψ0〉, (32)
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we define a Hamiltonian and overlap matrix by integration from the left with the same basis,

{
Hnm
Onm

}
=
〈
φ(n)

∣∣∣∣

{
H
1

} ∣∣∣∣φ
(m)

〉
. (33)

This gives the equation (Hnm − σOnm)cm(σ ) = dn . If we denote the generalised eigenvectors of H in this
basis as ek with eigenvalues λk , Hnm(ek)m = λkOnm(ek)m , normalised as (el)nOnm(ek)m = δlk , we see that
again γi = ei · d.

The integrated response thus always approaches a limit for large energies,

∑

n

(en · d)2 ≤ ||d||2, (34)

where the last inequality is saturated for a complete decomposition of the state, e.g., n → ∞.
Let us first analyse the LIT transformation, see Fig. 2 for some representative results using a harmonic

oscillator basis. Since the Lorentzian ((x − σR)2 + σ 2
I )

−1 is not normalised, the LIT transform diverges in
the limit σI = 0. Thus, for ease of comparison, it is better to look at the LIT transform of the normalised
Lorentzian, L̃(σ ) = L(σ )σI /π . We see that for a coarse spectral spacing (small b) we get a very oscillatory
LIT transformation, from which it would be impossible to reconstruct the continuum result for the response
function. For smaller spectral spacings we get a convergent result. However, the smaller the value of σI , the
narrower the spacing we need in the spectrum to avoid spurious peaks and oscillations. That raises the question
how we can extract the inverse reliably from just one of these transforms. We thus need to answer two questions:

1. How can one ensure a smooth inversion? We already know that the exact inversion of the data is given by a
sum of delta distributions at the eigenenergies of the Hamiltonian (31), so for us to obtain a smooth result
we can only perform an approximate inversion from a transform with substantial imaginary σI .

2. How do we disentangle the singular and regular parts of the LIT? We have seen above that we have two
contributions, but only one survives in the limit σI → 0. At finite σI both contribute, with domination from
the “wrong” component at positive energies.

The second problem may be solved by doing the inversion at multiple values of σI , and interpolating to σI = 0.
This is a non-trivial task in realistic calculations, since oscillatory noise always enters the results. As explained
before, some of this may be special for the Pöschl–Teller potential—but if we have problems for one case,
there may well be others.

The first one is more troublesome. In some sense what we are trying to do is to invert the LIT by sub-
sampling, and solving the result by a continuous approximation, often by choosing a small set of basis functions
that impose a shape on the resulting response function. Both of these are very indirect approaches, and it is
almost unclear why we need the LIT as an intermediate if the inversion is such a difficult problem to resolve.

So, as an alternative approach, we consider the direct calculation of the response functions, given therefore
simply as a finite sum of delta distributions. It looks like we lose more than we gain. However, we now analyse
the integral of this sum as a function of the “energy” ω = σR which is continuous, and can reliably be
approximated by a smooth function. This integrated response distribution T is continuous and approximated
by a smooth differentiable function, which can be used to reconstruct the response function F itself.

We now analyse the results for the two basis sets. We have performed numerical calculations for harmonic
oscillator bases with b = 1/2, 1, 2, 4 and 8, see Fig. 3. Since for the numerical calculations the integrated
response T makes a finite jump (d · en)2 at eigenvalue λn , there are multiple ways to represent this. We chose
to plot at λn the midway point between these two values. This seems to be overall a very true representation
of the analytical result. As we can see from Fig. 3, we can closely mirror the analytic results. In c), we also
show bands obtained from the outer and inner steps; we see a large width for a low spectral density, and a
much narrower result for a high one: the width goes down rapidly as b increases. Also, the midpoints track the
analytical results remarkably well.

Since we want to use the SVM approach, which relies on Gaußian basis functions, later on, we are
particularly interested in the efficacy of using Gaußian states as in Fig. 4. We see that in all cases the midpoints
of the jumps track the analytical results extremely closely. If we bracket the solutions with the upper and lower
values of the jump, we see in the lower panel b) that the width is rather large. That is clearly an enormous
over-estimate of the theory error in the results, which are extremely close to the analytical results. We find that
20 Gaußian basis states can achieve as much accuracy as ≈ 200 orthonormal ones.
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Fig. 4 The convergence of the cumulative response for a small Gaußian basis (29). In a we show the results for α = 2 and s = 0.01
(data set i, 12 basis functions), s = 0.001 (data set ii, 16 basis functions) and s = 0.0001 (data set iii, 20 basis functions). As in
Fig. 3, the points plotted are the midpoints of the jumps. In b the lower and upper lines of each colour connect the values just
before and just after the jumps, respectively. Colours correspond to those used in a)

Fig. 5 a calculation of the integrated response function (dots shown at the midpoint of jump) for two different sets of Gaußian basis
functions (blue and red dots); solid lines are the fitted smooth response distributionsb response function obtained by differentiation
of the fit from a—colours used correspond to the data sets. The two response distributions are visually indistinguishable

So far, we were concerned with a slightly artificial one-dimensional world. To show that the method set out
above can be effective in a three-dimensional world and a much larger density of states above the threshold,
we consider the dipole excitation from an s-wave state, chosen as originating from a Pöschl Teller potential,

H = − 1

2r2 ∂r r
2∂r − λ(λ + 1)

2

1

cosh2 r
, (35)

where we choose λ = 1.8 for a single bound state at dimensionless energy −0.32 and wave function

ψ0(r) = 1

r
sinh(r) cosh−λ(r). (36)

We now perform the calculation of the response function as set out above, with a perturbing dipole operator
z. We diagonalise the p-wave Hamiltonian in a set of Gaußian basis functions z exp(−αr2), calculate the
integrated response function, and finally fit with a Padé approximant of the form

T (ω) =
∑n

i=2 aiω
i

1 +∑n
i=1 biω

i
, (37)

where we take n = 4 in the results shown in Fig. 5. This provides an almost perfect fit.
We use two rather different basis sets but notice little difference in the results: the response functions, as

shown in b) coincide within the line width.

4 Deuteron Photo-Disintegration

As a further test of our method in a more physical context, we analysed the one-body part of the total E1
deuteron-photodisintegration cross section using the Argonne V18 potential [25]. This exactly matches the
treatment using the LIT in Ref. [14], allowing us to make direct comparisons with that work.
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Fig. 6 A comparison of the strength function multiplied with energy-transfer squared, Fig. 8 in Ref. [14]. Black line: J = 0, blue
line J = 1 and red line J = 2. The dashed lines are the results from Ref. [14], solid lines are our results

The underlying idea is to look at the response due to the Siegert form of the E1 operator, O = [H, D],
where D is the intrinsic dipole moment of the charge density, D = αr/2, where r is the relative coordinate
between the proton and neutron.

We use a numerical solution of Schrödinger equation on a grid, by first mapping the interval 0 ≤ r < ∞
onto x ∈ [0, 1] via r = βx/(1−x) while employing a 7th order Gauß-Laguerre interpolation for the derivatives,
using the fact that we can continue the function as odd beyond x = 0 and x = 1 to obtain expressions valid
near the end of the interval.

As before, we calculate the cumulative response function F by integrating over the δ functions at the
eigenenergies of the intermediate channel Hamiltonian. The resulting strength functions FJ for intermediate-
state total angular momentum J are shown in Fig. 6. We see that our results very closely track the LIT ones
from Ref. [14]. Small differences should come as no surprise, especially since the representation used in the
figure enhances the small tails of these functions, where we expect the methods to show most the largest
divergence. Bampa et al. devote substantial work to the LIT inversion, and still see clear dependence on the
basis function used. In our method, the fit is relatively robust, and again not as sensitive to the tail since it
is very flat in the integrated function. Nevertheless, it is encouraging to see that the differences appear rather
small.

A more direct calculation of the basis of the cross section is given by the polarisation functions PJ . For a
deuteron, the E1 operator allows for the channels J = 0, 1, 2. The imaginary part is directly related to the FJ ’s,
and the real part can be calculated from a dispersion relation. This is a much more robust test of differences
between the strength functions. Once again, we see in Fig. 7 that the results of the LIT and of our method
are very similar. The main conclusion from the results on the left hand-side, which are direct calculations, is
that there are small differences only—essentially, from top to bottom to middle, we zoom in by a factor of
10 each time, and even at the largest scale the deviations are small. Some of that seems to be due to a very
robust calculation on our end, which explains the differences around 40 MeV. The real surprise is how our
simple fit seems to more easily capture the large-energy behaviour which required substantial work in the LIT
calculation. That can also be seen in the right column. Since each of these curves is the result of a dispersion
integral, it shows how close our results are to the LIT ones over a much larger domain. This gives us some
confidence moving forward, even though we have one additional problem to discuss.

We can use this output to calculate the differential photo-dissociation cross section, but little detailed
data is available. Instead, we show in Fig. 8 the total photo-disintegration cross section. The results from our
calculation agree well with the experimental data extracted from EXFOR [26]. As we can see, the agreement
is excellent, which is a confirmation both of the stability of the calculation and of the fact that the differences
to the LIT variant are small. There is some indication that our results decay slightly too fast at the highest
energies. That might not be surprising since our computation only contains the one-body E1 operator. While
the importance of magnetic multipoles is well-known to decrease with energy, higher electric multipoles and
pion-exchange currents play a more prominent role at higher energies.

5 Three-Particle Decays

Clearly, the method set out above is very effective for simple structureless two-body problems. One of the
questions we have to answer is how it survives in the many-body context, especially where we may have multiple
thresholds that complicate the calculations and their interpretation—indeed, this is one of the problems that
led to the current approach. The issue already arises for A = 3, where both two-body and three-body breakup
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Fig. 7 A comparison of the polarisabilities that enter the calculation of the cross section, Fig. 9 in Ref. [14]. Red dashed lines
show results from Ref. [14], and solid blue lines are results using the present method. We have chosen the scale on the axes to
be identical to that in the reference cited, and thus in the figures in the left column, the x-axis runs from 0 to 95 MeV, and on the
right from 10 to 100

Fig. 8 A comparison of the deuteron cross section as extracted from our method (using the imaginary part of the responses in
Fig. 7) versus the data from the EXFOR database [26] (green dots)

channels with different thresholds exist, e.g. 3He→ ppn or → pd . One issue is the degeneracy of the three-
body continuum: Since it is described by two Jacobi coordinates, we expect a substantial degeneracy as a
function of the excitation energy, which is apt to lead to some complications.

So let us again study a simplified, exactly solvable, problem which, as we shall show later, is an illuminating
simplification of the problem to be studied in detail in future articles. We consider the dipole response function
for a simple three-body ground state consisting of two identical bosons interacting with a third distinguishable
particle, all three of the same mass. The dipole operator either acts on the third particle, or equivalently on
the two bosons: translation invariance shows these two are identical up to a multiplicative constant. This is
obviously the bosonic equivalent to the 3He system mentioned above.

To find a problem that can both be tackled analytically and numerically we start from the wave function

ψ0 = 1

4π

4α3/2

√
π

exp(−α/2(r2
13 + r2

23))

= 1

4π

4α3/2

√
π

exp
(−αη2

3 − αξ2
3 /4
)
, (38)

(see (55) for the definition of coordinates) and act with the dipole operator

dz = (Z − z3) = 1

3
(z13 + z23) = 2

3
η3z . (39)
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We assume that the Hamiltonian describing states in the L = 1 channel is just the free Hamiltonian, which
takes the form

H (1) = 1

2
(p2

1 + p2
2 + p2

3) = 1

6
p2
R + 3

4
p2
η + p2

ξ . (40)

This can be tackled with results discussed in Appendix A. We can evaluate the effect of the E1 operator using
only the “12-3” Jacobi coordinates. We once again apply Eq. (9). Looking at the right hand side, we see the
effect of the E1 operator on |ψ0〉 gives an L = 0 solution in ξ , and a L = 1 state in η,

OE1|ψ0〉 = 1

4π

8α3/2

3
√

π
η3z exp

(−αη2
3

)
exp
(−αξ2

3 /4
)

. (41)

The total response is the norm of this state,

〈ψ0|O2
E1|ψ0〉 = 1

9α
. (42)

In order to find the response function, we need to find the relevant (normalised) continuum solutions, which
are

f0(qξ , ξ3) = 1

4π

√
2

π
j0(qξ ξ3),

f1(qξ , ξ3) = 3

4π

√
2

π
cos θη cos θqη j1(qηη3) . (43)

The energy for the direct product of these two states is

E = 3

4
q2
η + q2

ξ . (44)

The normalisation can be checked from:

(4π)2

∞∫

0

q2 dq f0(q, ξ)

∞∫

0

ξ ′2dξ ′ f0(q, ξ ′) exp(−βξ ′2) = exp(−βξ2) (45)

and

(2π)2

∞∫

0

q2dq d cos θq f1(q, ξ)

∞∫

0

ξ ′2dξ ′d cos θ ′ f1(q, ξ ′)ξ ′ cos θ ′ exp(−βξ ′2)

= cos θ ξ exp(−βξ2). (46)

Thus

〈qξ , qη|dz|ψ0〉 = qη cos(θqη ) exp

(
− q2

η

4α
− q2

ξ

α

)
1

3π3/2α5/2
. (47)

This satisfies the consistency check

(4π)(2π)

∫
〈qξ , qη|dz|ψ0〉2q2

ηdqηd sin θqηq
2
ξ dqξ = 1

9α
. (48)

If we now substitute q2
ξ = ω − 3

4q
2
η , and integrate over qη, we get, using qξ =

√
ω − 3q2

η/4,
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Fig. 9 Dots: calculation of the integrated response function for a pure three-body continuum for 20 sets of independently chosen
Gaußian basis functions; the solid yellow line is the analytic result Eq. (49)

Fig. 10 The fitted response function obtained from Eq. (50) for a m = 3 and b m = 4. The labels 1 to 3 are the order n of
interpolation. The magenta dash-dotted line is the analytic result Eq. (49)

F(ω) = 8π2

√
4ω/3∫

0

q2
ηdqη

∫
d sin θqη〈qξ , qη|dz|ψ0〉2 1

2qξ

= 1

81
√

3α2
e−4ω/(3α)

((ω

α

)2
I0

(
2ω

3α

)
+
((ω

α

)2 − 3
ω

α

)
I1

(
2ω

3α

))
. (49)

Indeed, this still integrates to the same value as before. The calculation for the integrated response can easily
be done numerically, and we conclude that the function F rises as ω3 for small ω, and thus with a quartic
power for the integrated response, and decays for large ω as exp(−2ω/3α)ω3/2.

As can be seen in Fig. 9, there is a small but definite scatter in the fully numerical (SVM with a suitably
random choice of basis functions) calculations, which agrees very well with the analytical result. We still need
to convince ourselves that a fit to the integrated response allows us to extract the response itself. To that end,
we fit the integrated response with a function of the form

Ftest(ω) =
∑m+n−1

i=m aiωi + βωm+n

1 +∑m+n−1
i=1 biωi + ωm+n

, (50)

where β is the known saturation value, and the other parameters are fit to the data. We impose a no-positive-
root condition on the denominators. We know from the analytic results that the correct choice for the power is
m = 4, even though in this case this relies on a subtle cancellation, and with a small perturbation it would be
m = 3. We have used both powers to see how that would influence the fit. In Fig. 10 we compare the derivative
T since that is much more sensitive to small deviations that the integral F . We see that the convergence appears
to be better for m = 3 than m = 4, but for the converged results with n = 3, both give answers that are very
close to the analytic result. Thus the details of the fitting function are not important to the physical result
extracted.

Thus we have reached stage one: we are confident that we can deal with a three-body continuum correctly.
Now we look at coupled channels.

6 Two-Body Bound State and Three-Body Continuum

We now increase complexity and add to the three-body system a set of scalar (and thus radial) Pöschl–Teller
two-particle potentials; its details are discussed in detail in the Appendix A. In the spirit of our motivation to
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Fig. 11 Dots: calculation of the integrated response function for the coupled-channel problem Eq. (51). We use 14 sets of
independently chosen Gaußian basis functions, indicated by dots of different colour

study the 3He/3H systems, two of the particles are assumed to be identical bosons (they could also be fermions
with opposite spins), and the third is distinguishable. We assume the potential between identical particles is
too weak for a bound state (using λ1 = 1), but that the ones between any of the two identical and the third
particle is strong enough for a bound state (like in the 3S1 2N system, using λ2 = λ3 = 2.2). Thus

H = −1

2

∑

i

∇2
i −

∑

i< j

λk(λk + 1)

2

1

coshp(ri j )
, (51)

where k is “the missing index in i j”, e.g., k = 3 for i j = 12. We use p = 2 in the following.
We assume the third particle is charged (or the two identical particles are and the third one is neutral, which

is equivalent), and look at excitation due to a dipole operator, relative to the CoM. This gives rise to an L = 1
state in the η3 coordinate, leaving the other coordinate unaffected.

Further details can be found in the Appendix.

6.1 Numerical Calculation

As we can see in Fig. 11, we get a good description of the integrated response for energies ω < 0, but the
results spread out directly above the three-particle threshold at ω = 0. The scatter of the individual calculations
is much larger than in the absence of final state interactions, as shown in Fig. 9. So what is the origin of this?
First of all, it is not the effect of channel coupling. While it does play a role, the integrated response distribution
shows in the worst case scenario a singularity in the second derivative w.r.t. energy, and thus is barely visible
in a plot. The lowest points correspond to cases where some response is lacking directly below zero or directly
above zero, i.e., in the pure two-body channel, (typically because there is no state near zero in that specific
calculation).

It is not immediate clear from the figure that each individual calculation has 4-to-5 states below zero energy.
Actually, a lot of the problematic behaviour is due to states that carry no or very little dipole response. That is
not a surprise: the response at low energy must be driven by the two-body channel (since the phase space of
the three-body channel opens very slowly), but there are a large number of different configurations of (almost)
zero response states.

That leads to the question whether this feature is peculiar to the SVM method, or whether more structured
computational schemes can resolve this issue. To that end, we also tackle this model using a hyperspherical
harmonics approach in the formalism set out in Ref. [27] using a simple harmonic oscillator basis; see Appendix
B for details. For the angular-momentum-zero ground state, we need equal angular momentum on both Jacobi
coordinates. For the J = 1 state caused by the dipole excitation, which only acts on one of the two Jacobi
coordinates, we use angular momenta 0 ⊗ 1 and 2 ⊗ 1, 2 ⊗ 3, 4 ⊗ 3, etc. We use all L’s that match the choices
made for J = 0, with the odd angular momentum one larger than the largest one in the J = 0 state. The values
of L used link to the hyperspherical quantum number K = 2κ + L1 + L2. Thus we see that, with κ = 0, the
cut-off in K is linked to the maximal values of L; for example, J = 0 implies Lmax = Kmax/2. One encounters
some difficulties with the hyperspherical approach: while a small h̄ω is needed for closely spaced states and
a description of the 2+1 channel, it makes it also highly non-trivial to describe the ground state in sufficient
detail; for the calculation reported here (h̄ω = 0.04), we use 90 basis states for each value of K , and use K
up to 16, and thus L up to 8 for J = 0 and 9 for J = 1). The bound state energy is found as E = −0.648,
which is slightly larger than the value using the SVM (E = −0.652). Since the method provides a strict upper
bound, the SVM result therefore is objectively better. Obtaining any sensible values for the two-body bound
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Fig. 12 Result from the hyperspherical harmonic calculation, as cyan dots, overlaid on the SVM results, Fig. 11

Fig. 13 The fitted response functions obtained from Eq. (52) for (a) and Eq. (53) for (b). The labels 3 to 5 are the order n of
interpolation

state as a continuum threshold is even more difficult. Its best estimate from the SVM is E = −0.172, with a
number of additional states below zero energy, whereas for the HH method we only find two, with the lowest
at E = −0.108—and even that requires substantial work. Again, the SVM result provides a better bound to
the true value. As we can see in Fig. 12, the strength calculated in the HH calculation is a few percent larger
than that in the SVM ones. We have been able to trace this to the slightly poorer choice of the 3-body bound
state wave function, as discussed above.

Overall we find that there is a great similarity between the two sets of calculations. It is more difficult to find
the threshold in the HH calculation—but there exist dedicated methods to improve this [3]. That also links to
the lack of spectral density below ω = 0. Interestingly enough, the HH calculation shows the same horizontal
jumps as the SVM calculations, but more regularly spaced. Specifically, the HH flat region seen near ω = 0
agrees with the average behaviour of the SVM calculations. We thus conclude that for this type of calculation,
an SVM method with a suitable basis choice methodology can be highly successful and efficient and makes it
probably easier to extract a smooth result—but at the price of the need to do a number of calculations due to
the statistical nature of the process.

To complete this calculation, we need to show that we can reliably extract results from the scatter of data
for the response functions. In this case, we find that the fit below zero is a simple quadratic power law. We thus
try two different fits

Fa(ω) =
∑n−1

i=2 ai (ω − ωmin)
i + Fas(ω − ωmin)

n

1 +∑n−1
i=1 bi (ω − ωmin)i + (ω − ωmin)n

(52)

and

Fb(ω) = β(ω − ωmin)
2

α + (ω − ωmin)2 + θ(ω)
(Fas − β)ωn +∑n−1

i=3 a(i)ωi

1 +∑n−1
i=1 biωi + ωn

(53)

where the second fit takes into account the fact that we may have additional structure at the three-body threshold.
As we see in Fig. 13, we have an excellent fit from either approach—there are only very small differences, which
may be useful to quantify the small uncertainty in the result. A jacknife approach to information incorporated
in these data sets suggests the fit form itself is sufficiently rigid that parameters do not change appreciably
between fits. We thus conclude that we can extract robust conclusions from our SVM results, where as for the
HH we would find it difficult to get results around and below the three-body threshold.
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7 Conclusions

In this article, we explored a novel approach to extracting response functions from a bound-state method that
uses a basis of square-integrable functions. This provides an alternative to the Lorentz integral transform (LIT)
and may have advantages over that method in extracting responses of systems of three or more particles.

Our approach uses the stochastic variational method (SVM) to solve the inhomogenous Schrödinger equa-
tion that gives the response of the wave function to an external field. The stochastically-chosen basis of this
method has advantages over the commonly-used hyperspherical harmonics for describing channels with cluster
structures, such as appear in break-up of systems of three of more particles, and can describe both thresholds
and reponse reasonably well.

Any method using a square-integrable basis generates a response function in the form of a set of δ distri-
butions. The LIT folds this with a Lorentzian to obtain a continuous function of energy. With care, this can
be inverted to yield a continuum response function. In contradistinction, we consider the integrated response
function. This is a stepwise continuous function of energy, with steps at random positions depending on the
particular SVM basis. By running a sufficient number of independent SVM calculations, we are able to per-
form a robust fit of a smooth function to the ensemble of integrated response functions. The derivative of this
function with respect to energy then provides our approximation to the physical response function.

We have successfully tested our method using a simple model of two particles interacting via a Pöschl–
Teller potential, where we find excellent agreement with analytic results. We have also applied it to a more
realistic two-body system, namely deuteron break-up using the Argonne V18 potential. The agreement with
the data is very good, and similar to that of other approaches that consider only the one-body E1 operator. We
have also used a dispersive method to calculate the real parts of the dynamical polarisabilities corresponding
to the deuteron response functions, finding good agreement with older calculations using the LIT.

Our ultimate goal is to apply the method to photodisintegration of and Compton scattering from light nuclei
including 3H, 3He and 4He. As a preparation for this, we have here applied it to a simple three-particle model,
with an interaction that generates a two-particle bound state. Like the realistic three-body systems, this has
two- and three-body continuum channels. Below the three-body threshold, SVM bases give a good description
of the strength in the two-body break-up channel, in contrast to HH ones. Above this threshold, the spread of
the different bases is wider and so a larger ensemble of them is required for a good fit of a continuous function
to the integrated response. The region immediately above this threshold has proved to be a challenging one
for both SVM and HH bases, and there are indications that the response there is not well described. We plan
to examine this further in future.

One aspect of physics that we have not yet explored in this approach is the treatment of resonant structure
in the continuum. This will be needed for applications to 4He and heavier nuclei. We hope to address this issue
in future work, before applying the method to response functions of light nuclei.
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A SVM Approach to the Two-Channel Model

We consider three inequivalent equal mass particles, with Hamiltonian

H = −1

2

∑

i

∇2
i −

∑

i< j

λk(λk + 1)

2

1

coshp(ri j )
, (54)

where k is “the missing index in i j”, e.g., if i j = 12, k = 3. We choose the same value for λk , 1 < λk < 2
for k = 2, 3 and 0 < λ1 < 1, so that there is a two-body bound state between the two pairings of “unlike”
particles, but not between the one pair of similar (but distinguishable!) particles. We shall also assume that
only the third particle is charged, and will be interested in dipole excitations relative to the centre of mass.
We shall tackle this problem in terms of the “T” Jacobi coordinates but will freely exchange between the three
equivalent choices, since we shall only use correlated Gaußian which can be trivially decomposed in each of
the three choices of Jacobi coordinates.

We introduce the Jacobi coordinates, labelled by the third particle index,

ξ3 = r2 − r1 ,

η3 = (r3 − (r2 + r1)/2) , (55)

R = (r1 + r2 + r3)/3 ,

and cyclic permutations.
We will use correlated Gaußian wave function of the form

φ({r i }) =
(

det A

2π

)3/4

exp

(
−1

2
Ai j r i · r j

)
, (56)

where as usual we add an artificial centre-of-mass Gaußian, which we later will remove by taking a0 → 0,
and thus

A =
⎛

⎝
a0/9 − b2 − b3 a0/9 + b3 a0/9 + b2

a0/9 + b3 a0/9 − b1 − b3 a0/9 + b1
a0/9 + b2 a0/9 + b1 a0/9 − b1 − b2

⎞

⎠ . (57)

Using the parametrisation

a0 = χ,

b1 = γ − β/2, b2 = −γ − β/2, b3 = −α + β/4 , (58)

or

χ = a0,

α = −1

4
(b1 + b2) − b3, β = −b1 − b2, γ = (b1 − b2)/2, (59)

we can also write the wave function as

φαβγ ;χ ({r i }) = N exp

(
−1

2
χR2

)

× exp
(−α/2ξ2

3 − β/2η2
3 − γ ξ3 · η3

)
, (60)

Calculating the determinant of A, det(A) = χ
(
αβ − γ 2

)
, we see that we must require hat |γ | <

√
αβ.

We shall act with the “dipole” operator dz = z3 − Z = 2
3η3z . We will also want to express this in term of the

other coordinates, in other words:

dz = 2

3
η3z

= −1

3
η1z + 1

2
ξ1z

= −1

3
η2z − 1

2
ξ2z . (61)
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A.1 Ground State

We first concentrate on the L = 0 ground state. Calculating the kinetic energy is simple:

K − KCoM = −∇2
ξ3

− 3

4
∇2

η3
. (62)

When acting between two wave functions of the form (60) we get

〈α′β ′γ ′|K − KCoM|αβγ 〉 =
∫

d3ξ3d3η3 φα′β ′γ ′φαβγ

(
(−αξ3 − γ η3) · (−α′ξ3 − γ ′η3) + 3

4
(−γ ξ3 − βη3) · (−γ ′ξ3 − β ′η3)

)
. (63)

So the final integral we need to do is of the form
∫

d[3]ξ3d[3]η3

(
η3 · ξ3

(
αγ ′ + α′γ + 3βγ ′

4
+ 3β ′γ

4

)
+ ξ2

3

(
αα′ + 3γ γ ′

4

)
+ η2

3

(
3ββ ′

4
+ γ γ ′

))

exp(−1

2
(α + α′)ξ2

3 − 1

2
(β + β ′)η2

3 − (γ + γ ′)ξ3 · η3)

= 3

4

3ββ ′(α + α′) + 4αα′(β + β ′) − 4αγ ′2 − 4α′γ 2 − 3βγ ′2 − 3β ′γ 2

(α + α′)(β + β ′) − (γ + γ ′)2 〈α′β ′γ ′|αβγ 〉. (64)

Here

〈α′β ′γ ′|αβγ 〉 = (αβ − γ 2)3/4(α′β ′ − γ ′2)3/4

(
(α + α′)(β + β ′) − (γ + γ ′)2

)3/2 . (65)

If a0 is zero, we can also re-express this in terms of the b’s:

〈{b′}|K − KCoM|{b}〉 = − 3

(b1 + b′
1)(b2 + b′

2) + (b2 + b′
2)(b3 + b′

3) + (b3 + b′
3)(b1 + b′

1)

×
(

(b1 + b′
1)(b2 + b′

2)(b3 + b′
3) − b1b2b3 − b′

1b
′
2b

′
3

+ b1b
′
1(b2 + b′

2 + b3 + b′
3) + b2b

′
2(b3 + b′

3 + b1 + b′
1) + b3b

′
3(b1 + b′

1 + b2 + b′
2)

)
. (66)

If b = b′, we find −3(b1 + b2 + b3)/2.
The potential contributions are a bit more complex, and are best done in terms of the cyclic permutations

of α, β and γ . Supposing we have those at hand, we can just work through the example of one of these

〈α′β ′γ ′| 1

coshp(ξ3)
|αβγ 〉 = N

∫
d3ξ3 exp

(
−1

2

(
(α + α′) − (γ + γ ′)2

β + β ′

)
ξ2

3

)
1

(coshp ξ3)

×
∫

d3η′
3 exp(−1

2
(β + β ′)η′

3
2
)

= 〈α′β ′γ ′|αβγ 〉I
(

(α + α′) − (γ + γ ′)2

β + β ′

)

= 〈{b′}|{b}〉I0
(

− (b1 + b′
1)(b2 + b′

2) + (b2 + b′
2)(b3 + b′

3) + (b3 + b′
3)(b1 + b′

1)

b1 + b′
1 + b2 + b′

2

)

where

I0(λ) = √2/π

∫
r2dr exp(−1

2
r2)

1

coshp(r/
√

λ)
. (67)

We make use of the cyclic permutations of the b’s to get an expression for α, β and γ relevant to each of the
three potentials,

α = 1

4
(−b1 − b2) − b3, β = −b1 − b2, γ = (b1 − b2)/2 . (68)
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A.2 Excited State

The L = 1, M = 0 excited state we shall consider is again of the correlated Gaußian form

φ1({r i }) = N
(
∑

i

ci zi

)
exp

(
−1

2
Ai j r i · r j

)
, (69)

where
∑

i ci = 0. Here

N =
(

det A

2π

)3/4 (
(A−1)i j ci c j

)1/2
, (70)

where we have used

∂Ai j det A = det A (A−1)i j . (71)

We now bring this into a Jacobi form as

〈ξ , η|αβγ c〉 = N exp

(
−1

2
χR2

)(
c1 + c2 − 2c3

3
η3z + c1 − c2

2
ξ3z

)
exp
(−α/2ξ2

3 − β/2η2
3 − γ ξ3 · η3

)
,

(72)

We can express the norm as

Nαβγ c = 23/2 (αβ − γ 2)5/4
/(c2

mβ + c2
pα − 2cmcpγ )1/2, (73)

and the overlap

〈α′β ′γ ′c′|αβγ c〉 = Nαβγ cNα′β ′γ ′c′
cmc′

m(β + β ′) + cpc′
p(α + α′) − (cmc′

p + c′
mcp)(γ + γ ′)

((α + α′)(β + β ′) − (γ + γ ′)2)5/2
. (74)

The kinetic energy takes the form

〈α′β ′γ ′c′|K − KCoM|αβγ c〉 =
∫

d3ξ3d3η3 φα′β ′γ ′φαβγ

(
(−αξ3 − γ η3) · (−α′ξ3 − γ ′η3) + 3

4
(−γ ξ3 − βη3) · (−γ ′ξ3 − β ′η3)

)

×
((

−c′
1 + c′

2 − 2c′
3

3
η3z + c′

1 − c′
2

2
ξ3z

)(
−c1 + c2 − 2c3

3
η3z + c1 − c2

2
ξ3z

)

+c′
1 + c′

2 − 2c′
3

3

c1 + c2 − 2c3

3
+ 3

4

c′
1 − c′

2

2

c1 − c2

2

)
(75)

=
(
cmc

′
m

(
−12(β + β ′)

(
αγ ′2 + α′γ 2)− 8γ γ ′(α + α′)(β + β ′) + 12αα′(β + β ′)2

+3ββ ′(α + α′)(β + β ′) − 3β ′γ 2(β + 3β ′) + 12ββ ′γ γ ′ − 3βγ ′2(3β + β ′) + 8γ γ ′(γ + γ ′)2
)

+cmc
′
p

(
3(α + α′)

(
2β2γ ′ − ββ ′(3γ + γ ′)

)− 4αα′(β + β ′)(γ + 3γ ′)

+4(γ + γ ′)
(
3αγ ′2 + α′γ (γ − 2γ ′)

)+ 8α′2γ (β + β ′) + 3(γ + γ ′)
(
βγ ′(γ ′ − 2γ ) + 3β ′γ 2)

)

+c′
mcp

(
3(α + α′)

(
2β ′2γ − ββ ′(3γ ′ + γ )

)− 4αα′(β + β ′)(γ ′ + 3γ )

+4(γ + γ ′)
(
3α′γ 2 + αγ ′(γ ′ − 2γ )

)+ 8α2γ ′(β + β ′) + 3(γ + γ ′)
(
β ′γ (γ − 2γ ′) + 3βγ ′2)

)
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+cpc
′
p

(
−12

(
α2γ ′2 + α′2γ 2)− 3(α + α′)

(
2γ γ ′(β + β ′) + 3βγ ′2 + 3β ′γ 2)

+9(α + α′)2(ββ ′) + 4αα′(α + α′)(β + β ′) − 4αα′ (γ 2 − 4γ γ ′ + γ ′2)+ 6γ γ ′(γ + γ ′)2
))

× 1

4
(
(α + α′)(β + β ′) − (γ + γ ′)2

)2 〈α′β ′γ ′|αβγ 〉. (76)

Here

cm = (c2 − c1)/2 , (77)

cp = −(c1 + c2 − 2c3)/3 = c3 . (78)

The potential can also be evaluated:

〈α′β ′γ ′c′| 1

coshp(ξ3)
|αβγ c〉

= NN ′
∫

d[3]ξ3

(
cpc

′
p + (cm(β + β ′) − cp(γ + γ ′))(c′

m(β + β ′) − c′
p(γ + γ ′)

β + β ′ ξ2
3z

)

× exp

(
−1

2

(
(α + α′) − (γ + γ ′)2

β + β ′

)
ξ2

3

)
1

coshp ξ3

(2π)3/2

(β + β ′)5/2

= 〈α′β ′γ ′c′|αβγ c〉V2

(
cpc

′
p, ε, (α + α′) − (γ + γ ′)2

β + β ′

)
, (79)

with

ε =
(
cm(β + β ′) − cp(γ + γ ′)

) (
c′
m(β + β ′) − c′

p(γ + γ ′)
)

β + β ′ . (80)

Here V2 is a short-hand for the integral

V2(c, ε, δ) =
∫

d[3]ξ3 exp(−δξ2
3 /2)(c + εξ2

3z)
1

coshp ξ3∫
d[3]ξ3 exp(−δξ2

3 /2)(c + εξ2
3z)

=
∫
r2dr exp(−δr2/2)(c + 1

3εr2) 1
coshp r∫

r2dr exp(−δr2/2)(c + 1
3εr2)

. (81)

The integral in the denominator is
√

π/2(cδ + ε)/δ5/2. The one in the numerator is best dealt with using the
asymptotic expansion

∫
r2dr exp(−δr2/2)

(
c + 1

3
εr2
)

1

coshp r

= δ−3/2
∫

r2dr exp(−r2/2)

(
c + 1

3

ε

δ
r2
)

1

coshp(rδ−1/2)
(82)

= cδ−3/2
√

π/2I (δ) + 1

3
ε3δ−5/2

√
π/2I2(δ) , (83)

where

I2(δ) = 1

3

√
2/π

∫
r4dr exp

(
−1

2
r2
)

1

coshp(r/
√

δ)
, (84)

and I0 is specified in Eq. (67). The numerical parametrisation can be tackled through an asymptotic expansion
in δ, which is then turned into a high-order [n/n + 1] Padé approximant in 1/δ. The difference in powers in
the Padé gives the correct zero for δ = 0.
So, finally,

V2(c, ε, δ) = cδ I0(δ) + ε I2(δ)

cδ + ε
. (85)
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B Hyperspherical Harmonics

We also tackle the problem of Appendix A using a hyperspherical harmonics approach; we follow the formalism
as set out in Ref. [27], using a simple harmonic oscillator basis.

B.1 Basis Used

Following the standard conventions we label the Jacobi coordinates as ξ1 and ξ2, which equal ξ3 and
√

4
3η3 as

used above, and thus

ξ1 = r1 − r2,

ξ2 =
√

4

3

(
r3 − r1 + r2

2

)
,

Rcm = 1

3
(r1 + r2 + r3), (86)

and then define

ξ1 = ξ sin φ, ξ2 = ξ cos φ. (87)

we find that

∇2
ξ1

+ ∇2
ξ2

= ∂2

∂2ξ
+ 5

ξ

∂

∂ξ
+ 1

ξ2

(
∂2

∂2φ
+ 4 cot(2φ)

∂

∂φ
− (csc2(φ)L2

1 + sec2(φ)L2
2

))
. (88)

The integration volume is

d3ξ1d
3ξ2 = ξ5dξ sin2(φ) cos2(φ)dφ d�1d�2. (89)

We now define the 6-dimensional harmonic oscillator state as the eigenvalues of

H = −1

2
(∇2

ξ1
+ ∇2

ξ2
) + 1

2
ω2ξ2. (90)

As usual we separate in a radial and (hyper-)angular part. It is easy to show that the latter part has the normalised
eigenfunctions

ϕκ,L1,M1,L2,M2(φ, �1, �2)

= NκL1L2 sinL1+1/2(φ) cosL2+1/2(φ)P(L2+1/2,L2+1/2)
κ (cos 2φ)Y L1

M1
(�1)Y

L2
M2

(�2). (91)

These are eigenfunctions of the hyper-angular momentum operator

K̂ 2 = − ∂2

∂2φ
− 4 cot(2φ)

∂

∂φ
+ csc2(φ)L2

1 + sec2(φ)L2
2 (92)

with eigenvalue of K (K + 4), where K = 2κ + L1 + L2. The radial wavefunction is now given by Laguerre
polynomials,

ψKn(ξ) = NKne
−ξ2ω/2 (ξ

√
ω
)K √

2ω3LK+2
n

(
ξ2ω
)
. (93)

Here we use normalisation constants

NκL1L2 =
√

2�(κ + 1) (2κ + L1 + L2 + 2) � (κ + L1 + L2 + 2)

�
(
κ + L1 + 3

2

)
�
(
κ + L2 + 3

2

) ,

NKn =
√

n!
(K + n + 2)! . (94)
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B.2 Kinetic Energy Matrix Elements

As for all harmonic oscillator problems, the matrix elements of the kinetic energy operator are very simple.
Since this is a hyper-scalar operator, K and consequently the hyper-radial wave function, are unchanged by
the action of the kinetic energy, and we find that

[
− ∂2

∂2ξ
− 5

ξ

∂ f

∂ξ
+ K (K + 4)

ξ2

]
ψKn(ξ) =ω(3 + K + 2n)ψKn(ξ)

+ ω
√

(n + 1)(K + n + 3)ψKn+1(ξ)

+ ω
√
n(K + n + 2)ψKn−1(ξ) . (95)

B.3 Potential Energy Matrix Elements

We express the potential energy in a multipole expansion,

V (ξ, φ, θ12) =
∞∑

L=0

PL (cos (θ12)) VL(ξ, φ). (96)

We define (the is is the only place where hat denotes a unit vector)

z = cos (θ12) = ξ̂1 · ξ̂2, (97)

and thus

VL(ξ, φ) = 2L + 1

2

1∫

−1

PL(z)V (ξ, φ, z) dz . (98)

We assume that the potential energy is a sum of central two-body forces

V =
∑

i< j

Vi j
(
ri j
)
, (99)

where we take the 12 interaction different from the 13 and 23 ones, which are assumed to be equal. After some
coordinate algebra we then find that

V (ξ, φ, z) = V12(ξ sin φ)

+ V13

(
1

2
ξ

√√
3z sin(2φ) + cos(2φ) + 2

)
+ V13

(
1

2
ξ

√
−√

3z sin(2φ) + cos(2φ) + 2

)
.

(100)

The first term is independent of z, so only contributes an L = 0 multipole; in the next two terms the odd powers
in the multipole expansion cancel, and thus V only contains even powers of L , which are equal for both terms.
If we restrict the calculation to even values we can restrict attention to one of the two last forms, and write

V (ξ, φ, z) = V12(ξ sin φ) + 2V13

(
1

2
ξ

√
−√

3z(sin(2φ)) + cos(2φ) + 2

)
. (101)

We can now calculate the matrix elements of V between three-body HH states in two parts:
〈
nK L1L2 JM = 0|V |nK ′L ′

1L
′
2 JM = 0

〉

= 〈nK L1L2 |VL | n′K ′L ′
1L

′
2n

′〉 〈L1L2 JM |PL (cos θ12)| L ′
1L

′
2 JM

〉
. (102)

Here, using the standard notation L̂ = √
2L + 1,
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〈
L1L2 JM |PL (cos θ12)| L ′

1L
′
2 JM

〉 = −
{
L ′

1 L ′
2 J

L2 L1 L

}
L̂2 L̂1 L̂ ′

2 L̂
′
1

(
L ′

2 L L2
0 0 0

)(
L ′

1 L L1
0 0 0

)
,

(103)

see the more detailed explanation in the next section. The radial matrix element is
〈
nK L1L2 |VL | n′K ′L ′

1L
′
2

〉

= NKnNK ′n′
∫

ξ5dξ
(
ξ
√

ω
)K ′+K

exp
(−ξ2ω

)
LK+2
n

(
ξ2ω
)
LK ′+2
n′

(
ξ2ω
)

× NκL1L2Nκ ′L ′
1L

′
2

∫
dφ VL(ξ, φ) sinL ′

1+L1+2 φ cosL
′
2+L2+2 φ

× P

(
L1+ 1

2 ,L2+ 1
2

)

κ (cos(2φ))P

(
L ′

1+ 1
2 ,L ′

2+ 1
2

)

κ ′ (cos(2φ)) , (104)

with K = 2κ + L1 + L2.
In practical calculations, we only calculate the required set of φ integrals once. We can then vary the radial

basis size independently, keeping the angular dependence fixed. The ξ integrals are easily calculated by a
very high (usually 200th) order Gauß-Laguerre integration in extended precision. We also need to evaluate
the transition matrix elements. Using the fact that the “E1” operator we use can be expressed as 1√

3
ξ2,z =

1√
3
ξ cos φ cos θ2, we calculate

1√
3

〈
nK L1L2 J = 1 |ξ cos φ cos θ2| n′K ′L ′

1L
′
2 J = 0

〉

= NKnNK ′n′
1√
3ω

∫
ξ5dξ exp

(−ξ2ω
) (

ξ
√

ω
)K ′+K+1

LK+2
n

(
ξ2ω
)
LK ′+2
n′

(
ξ2ω
)

× Nκ ′L ′
1L

′
2
NκL1L2

∫
dφ sin2 (φ) cos3 (φ) sinL ′

1+L1 (φ) cosL
′
2+L2 (φ)

× P

(
L1+ 1

2 ,L2+ 1
2

)

κ (cos(2φ))P

(
L ′

1+ 1
2 ,L ′

2+ 1
2

)

κ ′ (cos(2φ))

× 〈L1L2 J = 1Jz = 0 |cos θ2| L ′
1L

′
2 J = 0

〉
(105)

and the norm

1

3

〈
nK L1L2 J = 0

∣∣(ξ cos φ cos θ2)
2
∣∣ n′K ′L ′

1L
′
2 J = 0

〉

= NKnNK ′n′
1

3ω

∫
ξ5dξ exp

(−ξ2ω
) (

ξ
√

ω
)K ′+K+2

LK+2
n

(
ξ2ω
)
LK ′+2
n′

(
ξ2ω
)

× Nκ ′L ′
1L

′
2
NκL1L2

∫
dφ sin2 (φ) cos4 (φ) sinL ′

1+L1 (φ) cosL
′
2+L2 (φ)

× P

(
L1+ 1

2 ,L2+ 1
2

)

κ (cos(2φ))P

(
L ′

1+ 1
2 ,L ′

2+ 1
2

)

κ ′ (cos(2φ))

× 〈L1L2 J = 0
∣∣cos2 θ2

∣∣ L ′
1L

′
2 J = 0

〉
(106)

That means there are two more angular integrals to calculate—the radial ones are dealt with through the same
Gauß-Laguerre technique.

B.4 Angular Momentum Algebra

The angular momentum part of the matrix element requires some trivial recoupling algebra. We first look at
the matrix element

〈L ′
1L

′
2 J Jz = 0|PL(cos θ12)|L1L2 J Jz = 0〉. (107)
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Fig. 14 Reduced matrix element for a general state. A red star denotes a time-reversed state. See [28] for an explanation of the
notation used

Fig. 15 Reduced matrix element for the overlap (left) and the norm (right) of a state multiplied with ξ2. A red star denotes a
time-reversed state

We write

PL(cos θ12) = (−1)L
4π

L̂
[YL (�1) ⊗ YL (�2)]

0 (108)

and use the reduced matrix element,

〈L ′
1L

′
2 J Jz = 0|PL(cos θ12)|L1L2 J Jz = 0〉 = 1

Ĵ
〈L ′

1L
′
2 J‖PL(cos θ12)‖L1L2 J 〉, (109)

as shown in Fig. 14. As usual, we re-express the conjugate state in terms of a time reversed one, Ỹ L
M =

(−1)L+M
(
Y L−M

)∗
.

We can now evaluate the matrix element as in Fig. 14. Below, the square brackets denote a square 9J symbol,
also called a recoupling symbol that arises in the recoupling of 4 angular momenta, [28]

1

Ĵ
(−1)L

4π

L̂
(−1)−J+L ′

1+L ′
2(−1)2L

⎡

⎣
L ′

2 L ′
1 J

L L 0
La Lb J

⎤

⎦ (−1)−J+L1+L2

⎡

⎣
La Lb J
L2 L1 J
0 0 0

⎤

⎦

× (−1)L
′
2
L̂ L̂2 L̂ ′

2√
4π

(
L ′

2 L L2
0 0 0

)
(−1)L

′
1
L̂ L̂1 L̂ ′

1√
4π

(
L ′

1 L L1
0 0 0

)
, (110)

which results in the expression in Eq. (103).
The overlap and norm are simpler, see Fig. 15, and we find, expressing cos θ2 as

√
4π/3Y 1

0 (�2)

〈L ′
1L

′
2 J = 1Jz = 0| cos θ2|L1L2 J = 0〉

= 1√
3

√
4π

3
(−1)L

′
1+L ′

2−1δL1,L2

⎡

⎣
1 0 1
L2 L1 0
X L1 1

⎤

⎦

⎡

⎣
L ′

2 L ′
1 1

X L1 1
0 0 0

⎤

⎦ (−1)L
′
2

1̂L̂ ′
2 L̂2√
4π

(
L ′

2 1 L2
0 0 0

)
L̂1

= (−1)L
′
2
L̂ ′

2

1̂

(
L ′

2 1 L2
0 0 0

)
, (111)
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and (where L1 = 1 in the figure)

〈L ′L ′ J = 0| cos2 θ2|LL J = 0〉

= 1

1̂

4π

3

∑

X,Y

⎡

⎣
1 0 1
L ′ L ′ 0
Y L ′ 1

⎤

⎦

⎡

⎣
1 0 1
L L 0
X L 1

⎤

⎦

⎡

⎣
Y L ′ 1
X L 1
0 0 0

⎤

⎦ 1

4π
L̂23X̂

(
L 1 X
0 0 0

)2

L̂

= 1

3
δLL ′

∑

X=L±1

X̂2
(
L 1 X
0 0 0

)
= δLL ′

3
. (112)
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