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Abstract We apply the renormalization group procedure for effective particles (RGPEP) to the QCD eigen-
value problem for only heavy quarks. We derive the effective Hamiltonian that acts on the Fock space by solving
the RGPEP equation up to second order in powers of the coupling constant. The eigenstates that contain three
quarks and two or more gluons are eliminated by inserting a gluon-mass term in the component with one gluon
and the eigenvalue problem for baryons is formulated. We estimate masses for bbb and ccc states and find that
the results match the estimates obtained in lattice QCD and in quark models.

1 Introduction

In spite of many years of research, the issue of bound states in QCD remains to be a long-standing problem
to which an exact solution is still unknown. The QCD Hamiltonian which defines the Schrödinger equation
is full of complexities. The determination of its eigenvalues, which would lead to hadron masses and the
corresponding wave functions is certainly not straightforward.

The main difficulty concerns the fact that in quantum field theory one needs to deal with an infinite number
of degrees of freedom in the bound-state equation Ĥ |ψ〉 = E |ψ〉. For a baryon, which is the case discussed
in this work, the eigenstate has the following structure in terms of Fock components

|ψ〉 = |3Q〉 + |3QG〉 + |3QGG〉 + . . . , (1)

where we have denoted |3Q〉 ≡ |QQQ〉; and there is no limit in the number of particles allowed.
In this context, the renormalization group procedure for effective particles (RGPEP) was formulated as a

non-perturbative tool to construct bound states in quantum field theory. Nonetheless, any candidate for a basic
physical theory requires an initial perturbative search for the set of interaction terms that provides the basis on
which the full effective theory can be constructed in a series of successive approximations [1].

The RGPEP has its origin in the similarity renormalization group (SRG) for Hamiltonians [2,3] but, in
addition, it introduces the concept of effective particles [1,4]. The renormalization-group approach allows one
to consider particle interactions and phenomena at different energy scales. The key idea is that it is possible to
express the initial Hamiltonian through a unitary similarity transformation in a scale-dependent operator basis,
in such a way that for a certain scale, the number of non-negligible Fock components is small. The eigenstates
depend on the renormalization-group parameter t too:

|ψt 〉 = |3Qt 〉 + |3QtGt 〉 + |3QtGtGt 〉 + . . . . (2)
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If an infinite number of components can be neglected in Eq. (2), the bound-state equation is enormously
simplified and one can attempt to seek numerical solutions to the equation.

The RGPEP has been applied and solved exactly in several simple theories [5–7]. But, for the complex
case of QCD, only perturbative expressions of the Hamiltonian have been considered so far. Second-order
calculations with the inclusion of a gluon-mass ansatz have allowed us to examine the effective potential
between heavy quarks in mesons [8] and in baryons [9]. Third-order calculations have been employed to
calculate the running coupling in the front-form Hamiltonian [4], and recently, a new regularization procedure
that includes a canonical gluon mass has led to analogous results [10].

In this contribution, we focus on the study of triply heavy baryon spectra with equal quark masses, ccc and
bbb. For interested readers, we refer to a detailed analysis of ccb and bbc states provided in [9].

The next section presents the most general step in the RGPEP approach. In Sect. 3 we derive the bound
state equation for a system of three heavy quarks and provide the analytical result in Sect. 4. The numerical
setup is presented in Sect. 5 and the corresponding results are commented in Sect. 6. Finally, Sect. 7 concludes
the article.

2 Key Elements of the RGPEP

The starting point of this method is the Lagrangian density of the chosen theory. In this particular case, we
choose QCD, LQCD. The classical Hamiltonian, HQCD, can be derived using Noether’s theorem to calculate
the energy-momentum tensor.

We use the front-form of dynamics [11,12]. In this form, four vectors are represented as xμ = (x+, x−, x⊥),
where x+ = x0 + x3, x− = x0 − x3, x⊥ = (x1, x2), and the scalar product in Minkowski space-time is given
by a · b = 1

2a
+b− + 1

2a
−b+ − a⊥b⊥.

The quantum Hamiltonian Ĥ can
QCD is derived using canonical quantization with the initial conditions set on

the hypersurface x+ = 0 and in the light-cone gauge A+ = 0. The Hamiltonian can be expressed by the “-”
component of the four-momentum operator, P̂μ, which is the generator of space-time translations [12]:

Ĥ can
QCD = P̂− =

∫
dx−d2x⊥ : Ĥx+=0 : . (3)

The dots on both sides of the Hamiltonian density, Ĥx+=0, indicate normal ordering of creation and annihilation
operators. In the sequel we use the notation considered in [8,12,13].

The canonical Hamiltonian needs regularization and counterterms. The regularized canonical Hamiltonian
with counterterms is called initial Hamiltonian, since it provides the initial condition for solving the RGPEP
equation.

The regularization is provided by inserting functions defined in Ref. [8] in every interaction vertex. Such
functions depend on ultraviolet and small-x cutoffs, Δ and δ, respectively, which will be removed at the end
of the calculation.

The RGPEP provides a means for the calculation of counterterms. It introduces effective particle operators
related by a unitary transformation

qs = Usq0U†
s , (4)

where s has units of length and plays the role of a renormalization group parameter. It is associated with the
size of the effective particles. If q and q† are operators that annihilate or create pointlike particles in the Fock
space, effective particle operators qs and q†

s annihilate or create particles of size s. It is convenient to consider
the scale parameter λ = 1/s which has units of energy and the parameter t = s4 which we have already used
in Eq. (2).

The renormalization-group parameter labels a family of equivalent Hamiltonians that correspond to the
same theory but expressed in terms of degrees of freedom that are differently defined. If H0 = H0(q0) is the
initial Hamiltonian, then the RGPEP demands that:

H0(q0) = Ht (qt ) . (5)

An effective Hamiltonian that satisfies this condition is a solution of the RGPEP equation:

H′
t = [[H f ,HPt ],Ht ] , (6)
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where Ht = H(q0), and the prime on the effective Hamiltonian, Ht , indicates differentiation with respect to
t . The subscript f stands for free and refers to terms that do not depend on the coupling constant. Finally, HPt

is identical to Ht but multiplied by a factor 1
2

(∑
i p

+
i

)2
, with i refering to all incoming and outgoing particles

involved in a vertex [1].
The ease of solving Eq. (6) depends on the complexity of the initial Hamiltonian. Although there are theories

for which it is possible to find exact solutions [5–7], the complexity of QCD forces us to use a perturbative
expansion in powers of the coupling constant. Such form of a solution can be written as

Ht = H0 + gHt1 + g2Ht2 + g3Ht3 + g4Ht4 + . . . (7)

The numerical subscript 0, 1, 2, ... refers to the power of the coupling constant. Thus, H0 ≡ H f is the 0th-order
term which does not depend on the coupling constant g or on the renormalization-group parameter t . In the
2nd-order expansion one has

H′
0 + gH′

t1 + g2H′
t2 = [[H0,H0 + gHPt 1 + g2HPt 2

]
,H0 + gHt1 + g2Ht2

]
, (8)

which can be solved order by order:

H′
0 = 0 , (9)

gH′
t 1 = [[H0, gHPt 1] ,H0] , (10)

g2H′
t 2 = [[H0, g

2HPt 2
]
,H0

] + [[H0, gHPt 1] , gH1t ] . (11)

Solving Eqs. (9)–(11) yields exponentials of products of t by differences of invariant masses squared. These
functions play the role of form factors that appear at interaction vertices. The renormalized Hamiltonian is
determined by the initial condition that at t = 0 it should equal the regularized canonical Hamiltonian plus
counterterms. The counterterms should be such that every matrix element of the renormalized Hamiltonian is
cutoff independent for t > 0, i.e. free of ultraviolent divergences. In this work, we restrict our calculation to
second-order expansions.

Note that this perturbative expansion is made at the level of the RGPEP equation, not at the level of the
Schrödinger equation.

3 Effective Hamiltonian and Bound-State Equation for Triply Heavy Baryons

The simplest possible systems that can be considered in QCD are heavy quarkonia and triply-heavy baryons.
Thus, we simplify the picture by considering only heavy flavors, and neglecting light quarks. The eigenvalue
problem simplifies enormously choosing the renormalization-group parameter in the following region

mQ � λ � ΛQCD , (12)

where mQ is the quark mass. The fact that λ is much larger than ΛQCD allows one to keep only the first term in
the Hamiltonian expansion in powers of the coupling constant [4]. The condition mQ � λ, on the other hand,
makes Fock sectors with extra quark-antiquark pairs strongly suppressed by RGPEP form factors and they can
be neglected. However, sectors with more gluons cannot be neglected, since they are massless, and many of
them can be produced without adding much to the invariant mass of a system. We cannot deal with infinitely
many Fock sectors of gluons. To address this problem, we drop all the sectors with more than one gluon and
account for them by introducing a gluon mass ansatz in the sector Qt Q̄tGt for mesons and Qt Qt QtGt for
baryons [8,9]. Thus, our gluon mass ansatz accounts for all possible non-Abelian effects that we cannot take
into account explicitly. Higher-order calculations should be able to replace such an ansatz by elements of the
theory.

The triply-heavy baryon bound-state problem with two Fock sectors (i.e. in the second order in the RGPEP)
and gluon mass ansatz is (cf. [8] and [9] for more details):

{[
(Ht 0 + μ2

t ) gHt1
gHt1 (Ht 0 + g2Ht2)

]
− E

} [ |3Qt Gt 〉
|3Qt 〉

]
= 0 , (13)

where μ2
t is the gluon-mass operator, which acts on the Qt Qt QtGt sector. We assume that the mass ansatz

depends on the relative motion of the gluon with respect to the quarks in that sector.
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Since we consider only terms up to second order in powers of the coupling constant in the effective
Hamiltonian, the approximate eigenvalue problem Eq. (13) can be reduced to the sector with no gluons [14].
Matrix elements after the reduction are

〈l|Heff t |r〉 (14)

= 〈l|
[
Ht0 + g2Ht2 + 1

2
gHt1

(
1

El − Ht0 − μ2
t

+ 1

Er − Ht0 − μ2
t

)
gHt1

]
|r〉 .

where left (l) and right (r) states are both in the 3Qt sector, H f |l〉 = El |l〉 and H f |r〉 = Er |r〉, where H f is
the free term of the Hamiltonian, that does not depend on the coupling constant.

4 Result: Coulomb and Harmonic-Oscillator Potentials

The effective front-form eigenvalue equation for baryons has the following structure

Heff t |3Qt 〉 = M2 + P⊥2

P+ |3Qt 〉 , (15)

where the state |3Qt 〉 is defined as

|3Qt 〉 =
∫

123

P+δ̃P.123 ψt (123)
εc1c2c3

√
6

b†
t 1b

†
t 2b

†
t 3|0〉 . (16)

where the spin-momentum wave function, ψt (123) is multiplied by the color factor εc1c2c3/
√

6. We have used
the shortcut notation δ̃P.123 = 2(2π)3δ3(P − p1 + p2 − p3) for the delta function of momentum conservation.
Details of the structure of the effective Hamiltonian can be found in [9].

In the non-relativistic limit, the expressions of the interaction potentials and mass functions simplify
enormously. To define this limit we introduce variables defined in [15,16],

K⊥
12 =

√
x1 + x2

6x1x2
κ⊥

12 , K z
12 =

√
x1 + x2

6x1x2

x1 − x2

x1 + x2
mQ , (17)

Q⊥
12 =

√
2/9

x3(1 − x3)
κ⊥

3 , Qz
12 =

√
2/9

x3(1 − x3)
(3x3 − 1)mQ . (18)

where κ⊥
12 is the relative transverse momentum of particle 1 with respect to particle 2, κ⊥

3 is the relative
transverse momentum of particle 3 with respect to particles 1 and 2, and x1, x2, x3 are longitudinal momentum
fractions xi = p+

i /P+ of particles i = 1, 2, and 3, respectively. In the nonrelativistic approximation the
eigenvalue equation can be written in the form

[
K12

2

2μ12
+ Q3

2

2μ3(12)

− B + 3
δm2

1 t

2mQ

]
ψt (123)

+
∑

σ1′σ2′

∫
d3K ′

12

(2π)3 [ ft 12.1′2′V 12
C,BF + W 12]ψt (1

′2′3)

+
∑

σ2′σ3′

∫
d3K ′

23

(2π)3 [ ft 23.2′3′V 23
C,BF + W 23]ψt (12′3′)

+
∑

σ3′σ1′

∫
d3K ′

31

(2π)3 [ ft 31.3′1′V 31
C,BF + W 31] ψt (1

′23′) = 0 , (19)

where B is the binding energy; V i j
C,BF = VC,BF (Ki j , K′

i j ) and Wi j = W (Ki j − K′
i j ) are, respectively, the

Coulomb term with Breit-Fermi (BF) corrections and the additional interaction resulting from the gluon mass
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ansatz. μ12 = mQ/2, μ3(12) = 2mQ/3 are the reduced masses. Both V and W are similar to the ones in the
quarkonium case [8]:

VC,BF (K, K′) = −2

3
g2 1

ΔK2 (1 + BF) , (20)

W (ΔK) = −2

3
g2

[
1

(ΔK z)2 − 1

ΔK2

]
μ2

μ2 + ΔK2 exp

[
−2tm2

Q
ΔK4

(ΔK z)2

]
, (21)

where ΔK = K − K′ and the RGPEP form factor is

ft i j.i ′ j ′ = exp
{
−16t[K2

i j − (K′
i j )

2]2
}

. (22)

We assume now that the mass ansatz μ2 dominates ΔK2 in the relevant integration range, then μ2

μ2+ΔK2 ≈ 1,
and the wave function can be expanded in a Taylor series in such a way that the resulting potential that corrects
the Coulomb term is a harmonic oscillator one, with oscillator frequencies [9]

ωbaryon =
√

3

2

√
α

18
√

2π

λ3

m2
Q

. (23)

The result of quarkonia and triply heavy baryons differ by a factor
√

3/2, in such a way that ω2
baryon/ω

2
meson =

3/4.

5 Numerical Studies

To provide numerical results for heavy quarkonia and baryons, we need to estimate the values of α,mc, andmb.
Although the RGPEP is defined to provide an exact effective Hamiltonian independent of the scale parameter
λ, the second-order approximation results in a certain λ-dependence, which is negligible in a window of values
of λ (cf. Figures in Refs. [17,18]).

We assume that the scale parameter is proportional to the coupling constant and the quark mass, λ ∼√
αmQ . In this way, if α is sufficiently small, the assumption satisfies our hierarchy of scales Eq. (12) and, for

the quark-antiquark system λ � kB ∼ αμ, where kB is the Bohr momentum and μ is the quark reduced mass.
This ensures that the RGPEP form factors are approximately 1 and do not influence significantly the eigenvalue
problem1 [9]. Furthermore, the fact that λ is proportional to

√
α makes the resulting hadron binding energies

proportional to α2, in analogy to QED [19]. In fact, the harmonic oscillator frequencies obtained from QCD
are expected to be comparable in size with the strong-interaction Rydberg-like constant R = μ(4α/3)2/2,
since the low-mass quarkonium spectra can be characterized as intermediate between the Coulomb and the
oscillator spectra [20].

Several simplifications are taken into account in this pilot application of our method. The numerical sketch
we provide yields approximate results restricted to the low-mass hadron spectrum. In this numerical sketch,
we estimate the Coulomb effects in first-order perturbation theory around the oscillator solution. Therefore,
we consider only the diagonal matrix elements of the Coulomb potential in the basis of harmonic oscillator
wave functions, since the effects of the non-diagonal ones are relatively small and do not change significantly
the lowest-mass heavy-baryon spectrum. In particular, those effects are smaller than the effects due to spin-
dependent interactions, which we neglect (yet we include the effects of the Pauli exclusion principle).

5.1 Adjustment of Parameters

The coupling constant α depends on the scale parameter λ in the following way [4]:

α =
[
β0 log

(
λ2

ΛQCD

)]−1

(24)
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Table 1 Masses in MeV for all bbb and ccc states up to the second excited band of the harmonic oscillator

bbb-states ccc-states

J P Name Mass J P Name Mass

1/2+ B1/2+ 14885 1/2+ B1/2+ 5350
C1/2+ 14896 C1/2+ 5358

3/2+ 0ω 14347 3/2+ 0ω 4797
A3/2+ 14832 A3/2+ 5309
C3/2+ 14896 C3/2+ 5358
D3/2+ 14917 D3/2+ 5374

5/2+ C5/2+ 14896 5/2+ C5/2+ 5358
D5/2+ 14917 D5/2+ 5374

7/2+ C7/2 14896 7/2+ C7/2 5358
1/2− 1ω 14645 1/2− 1ω 5103
3/2− 1ω 14645 3/2− 1ω 5103

with β0 = (33 − 2n f )/(12π). We take n f = 2, for two heavy flavors, b and c, though the result does not
change significantly for n f in the range up to 5. The value of ΛQCD = 371 MeV is imposed by the fact that
α = 0.1181 for λ = MZ = 91.1876 GeV.

Quark masses,mb andmc, and the renormalization group parameter λ are determined by the fit of computed
heavy quarkonia spectra to the known experimental ones. The numerical results of this fitting are given in
Appendix A. Hence, our estimates of the baryon masses are predictions without any free parameters.

We would like to point out that our estimates are in a primitive stage of development. However, the
obtained results in this crude approximation are in surprisingly good agreement with other long-standing and
widely used approaches. The purpose of this preliminary study is to find out whether the oscillator terms that
follow from the assumption of gluon mass are capable of reproducing a good approximation to the heavy
hadron spectrum. This would motivate higher-order studies in our perturbative expansion Eq. (7), to provide
a theoretical explanation of the gluon-mass generation.

Therefore, we ignore Breit-Fermi spin interactions and estimate Coulomb effects by evaluating the expec-
tation values of the corresponding interaction terms in the oscillator eigenstates. In this paper we select the
most remarkable results and present them in Table 1 and Figure 1.

6 Analysis of Results

The notation is the following. State 0ω is the ground state of the system, while state 1ω is the first (orbitally)
excited state. States called A, B, C , and D in bbb and ccc refer to the second excitation of the harmonic
oscillator with excitation energy 2ω (with ω ≡ ωbaryon) above the ground state. They are mixtures of radial
and orbital excitations and their masses differ due to different expectation values of the Coulomb potential.

The values of masses obtained for bbb and ccc baryons agree well with model calculations [21–27]
including quark-diquark [28] and hypercentral approximations [29,30], Regge phenomenology [31,32], bag
models [33–35], pNRQCD [36], sum rules [37–40], Dyson-Schwinger approach [41] and lattice studies [42–
48].

We remark the comparison of the ground state of ccc, for which different lattice approaches yield values
between 4733 and 4796 MeV. Our result, 4797 MeV, differs by 29 MeV from the average result, 4768 MeV,
which corresponds to 0.6%. In the case of the ground state of bbb, we obtain 14347 MeV, as compared with
the lattice result of 14369 MeV, a difference of 23 MeV, 0.2%. Concerning mass splittings, we differ in about
10% with lattice results provided in [43] for bbb states, and in 20% with lattice results [45] for the case of ccc
states. Analyses of results for states bbc and ccb are not presented in this document. The reader is invited to
consult the detailed analysis provided in [9].

It is surprising that this preliminary approximation of our RGPEP method with no free parameters, after
fitting quark masses and scale to heavy quarkonia spectra, produces similar splittings to those obtained from
advanced calculations.

1 Note that form factors are necessary in higher-order calculations since they regulate terms that otherwise would be divergent.
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Fig. 1 Graphical representation of mass spectra for all bbb and ccc states up to second band of harmonic oscillators

7 Conclusion

The effective Hamiltonian for heavy quarkonia and triply-heavy baryons derived in the second-order of our
RGPEP with gluon-mass ansatz leads to baryon mass spectra that are comparable with the expectation obtained
from other approaches to physics of bbb and ccc.

The considered method is invariant under boosts and in principle appears capable of providing a relativis-
tic description of hadrons in terms of a small number of effective constituents, with suitably adjusted size.
Therefore, an extension to higher-order calculations appears worth doing. A fourth-order calculation is needed
to verify if the introduced gluon-mass ansatz provides an adequate representation of the gluon dynamics in
the presence of heavy quarks. Furthermore, such calculations are also needed in the study of spin splittings
and rotational symmetry. As a remark, it should be pointed out that the ratio

√
8/6 of harmonic oscillator fre-

quencies in heavy quarkonia and baryons is close to the ratio
√

8/5 obtained for u and d quarks in constituent
models using the gluon condensate. This suggests studying if the RGPEP formalism can be applied also to
light hadrons as built from constituent quarks and massive gluons. Even in the heavy-quarks case, the effective
oscillator potential provides simple wave functions that can be used in relativistic processes involving heavy
hadrons.
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Masses of Quarks and Other Parameters

Quark masses and scale parameters are calculated using a fit to the masses of Υ (1S), Υ (2S), and χb1(1P) for
bottomonia and J/ψ , ψ(2S) and χc1(1P) for charmonia. Results of the fit yield:

mb = 4698 MeV and λbb̄ = 4258 MeV , (25)

mc = 1460 MeV and λcc̄ = 1944 MeV , (26)

These values are associated, respectively, with

α(λbb̄) = 0.2664 and ωbb̄ = 268.8 MeV , (27)

α(λcc̄) = 0.3926 and ωcc̄ = 321.6 MeV . (28)
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