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Abstract Small spin systems at the interface between analytical studies and experimental application have
been intensively studied in recent decades. The spin ring consisting of four spins with uniform antiferromag-
netic Heisenberg interaction is an example of a completely integrable system, in the double sense: quantum
mechanical and classical. However, this does not automatically imply that the thermodynamic quantities of
the classical system can also be calculated explicitly. In this work, we derive analytical expressions for the
density of states, the partition function, specific heat, entropy, and susceptibility. These theoretical results are
confirmed by numerical tests. This allows us to compare the quantum mechanical quantities for increasing
spin quantum numbers s with their classical counterparts in the classical limit s → ∞. As expected, a good
agreement is obtained, except for the low temperature region. However, this region shrinks with increasing s,
so that the classical state variables emerge as envelopes of the quantum mechanical ones.

1 Introduction

Small spin systems have been studied theoretically for two main reasons. In some cases, they can be realized by
magnetic molecules and analyzed by measurements, e.g., of magnetization curves, which allows comparison
with theoretical predictions [1–5]. Another reason is that some small spin systems can be described analytically
and thus can be used to test numerical calculations or theoretical conjectures, either quantum-theoretically [6–
11] or classically [8,9,12–21]. In the case for the spin square, primarily the second motive applies. However,
just recently we got aware of the successful synthesis of {Ga4 Gd4}. In this molecule the Gd ions are arranged
on the vertices of an almost perfect square and further magnetic investigation are in progress [22].

It is well known that the spin square with constant Heisenberg interaction and arbitrary spin quantum number
s is analytically solvable due to the additional conserved quantities of the partial spin sums corresponding to
the diagonals. The square belongs to a class of integrable spin systems where the Hamiltonian is a linear
combination of squared partial spin sums obtained by an iterative coupling scheme [23]. Other systems of this
class are the bow-tie and the octahedron. Nevertheless, the explicit calculation of thermodynamical quantities
as, e.g., the specific heat or the susceptibility becomes more and more difficult for large s, due to the increasing
number of terms, even if one uses computer-algebraic software. An obvious way out would be to consider
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the classical limit s → ∞, see [24,25]. Here one encounters the difficulty that, while the time evolution of
the classical spin square can be derived in an elementary way, see Sect. 2, there is, to our best knowledge, no
explicit representation of the mentioned thermodynamic quantities in the literature. The closest thing to this
is a series representation for the partition function of a spin ring [26] and an integral representation for the
partition function of the square [13]. Following [26] simplified expressions of the partition function of the
N -chain have been derived [27], especially for N = 2, 3, 4.

To describe observables in isolated integrable quantum systems after equilibration, the generalized Gibbs
ensemble (GGE) was introduced more than a decade ago [28,29]. Later, the GGE was also used for classical
systems, see for instance [30]. In the present work, however, we restrict ourselves to the traditional Gibbs
ensemble, which provides an adequate description for systems exposed to a heat bath.

The paper is organized as follows. After recalling some general definitions and results in Sect. 2 we briefly
explain, in Sect. 3, the numerical methods used to evaluate classical thermodynamical functions in our case.
Then we calculate a closed analytical expression for the density of states (dos) function of the classical spin
square in Sect. 4. This is accomplished by replacing the counting of quantum spin states by integrals in the
limit s → ∞. Consequently, the partition function and the specific heat can be obtained by integrations
using computer-algebraic tools, see Sect. 5, analogously for the entropy, see Sect. 6. The results are somewhat
complicated, but can still be presented explicitly. Similar integrations lead to the zero field static susceptibility,
see Sect. 7. All these expressions will be checked by comparison with numerical calculations using Monte
Carlo and Wang-Landau techniques. In addition, we will make comparisons between the classical quantities
and the corresponding quantum analogues, for increasing s. This will allow us to visualize the classical limit
directly. We will summarize our findings in Sect. 8.

Comparing our results with the above mentioned series representation in [26], we obtain a certain remark-
able identity for a series with modified spherical Bessel functions. This and related identities have been moved
to the Appendix A.

2 General Definitions and Results Concerning Classical Time Evolution

We consider a classical spin system described by four spin vectors sμ, μ = 1, . . . , 4, of unit length. The total
spin vector will be written as

S := s1 + s2 + s3 + s4, (1)

with components S(i), i = 1, 2, 3, and its length as S. Analogously, we define the partial sums of spins

Sa := s1 + s3, (2)

Sb := s2 + s4, (3)

with lengths Sa and Sb, resp. , such that S = Sa + Sb. The general Heisenberg Hamiltonian will be written as

H = J (s1 · s2 + s2 · s3 + s3 · s4 + s4 · s1) (4)

= J

2

(
S2 − S2

a − S2
b

)
, (5)

with a positive coupling coefficient J > 0 that will be set to 1 in what follows. The possible energies range
from E = −4 to E = 4, such that the ground state with Emin = −4 will be the Néel state ↑↓↑↓ and the
maximal energy E = 4 is assumed by the FM state ↑↑↑↑.

More generally, the partial spin inversion s2 �→ −s2, s4 �→ −s4 transforms a state of energy E into a
state of energy −E . This implies that the density of states to be calculated in the next section will be an even
function of E that, according to the above remarks, vanishes outside the interval [−4, 4].

H yields the corresponding Hamiltonian equations of motion, see [19],

ṡ1 = (s2 + s4) × s1, (6)

ṡ2 = (s1 + s3) × s2, (7)

ṡ3 = (s2 + s4) × s3, (8)

ṡ4 = (s3 + s1) × s4. (9)
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These equations of motion admit the conserved quantities S2
a , S

2
b , S

2, M := S(3), which satisfy the inequal-
ities

− S ≤ M ≤ S, (10)

|Sa − Sb| ≤ S ≤ Sa + Sb. (11)

Moreover, all three components of S are conserved as it holds for every Heisenberg spin system. The partial
spin sums satisfy the equations of motion

Ṡa
(6)(8)= (s2 + s4) × s1 + (s2 + s4) × s3 = Sb × Sa = S × Sa, (12)

and, analogously,

Ṡb = S × Sb. (13)

This means that Sa and Sb will rotate about the fixed vector S with angular velocity S. In a correspondingly
rotating frame s1 and s3 in turn will rotate about Sa with angular velocity −Sa . This follows from

ṡ1
(6)= (s2 + s4) × s1 = Sb × s1 = (S − Sa) × s1, (14)

and, analogously,

ṡ3 = (S − Sa) × s3. (15)

In the same manner, s2 and s4 will rotate about the rotating Sb with angular velocity −Sb, see Fig. 1.

3 Classical Numerical Methods

For a numerical investigation of the classical properties of the AF spin square we have performed standard
Monte-Carlo spin dynamics simulations [31]. One obtains the specific heat from such a simulation by calcu-
lating the fluctuations of the energy Eq. (4) according to

c(β) = β2
(〈
E2〉 − 〈

E
〉2)

, (16)

cp. (46). Here, 〈...〉 denotes sample averaging during a Monte-Carlo simulation at a given inverse temperature
β. Likewise, one obtains the susceptibility by calculating the fluctuations of the total magnetization S according
to

χ(β) = β

3

(〈
S2〉 − 〈

S
〉2)

, (17)

cp. (60). For the numerical calculation of the classical density-of-states (dos) function D(E) we have used
the method developed by Wang and Landau [32]. One advantage of this method is that once the density of
states is known one can directly calculate thermodynamic quantities for any temperature without the need
of performing any further simulations. Hence, by numerical integration of the dos in Eq. (42) we obtain the
temperature-dependent partition function Z(β) as well as the inner energy U1(β) = 〈E〉 and the 2nd moment
U2(β) = 〈

E2
〉
by evaluating Eq. (44). Given this, one can directly calculate the temperature-dependent specific

heat using Eqs. (16) or (46), resp. and the entropy using Eq. (50). The Wang-Landau method can be extended to
calculate the dos as a function of energy and magnetization, see [33–35]. We have implemented this extension
to numerically calculate the susceptibility additionally to the Monte-Carlo simulation, see Fig. 10.

4 Density of States

It turns out that the classical density-of-states (dos) function D(E) can be obtained in closed, even quite simple
form. To explain our method of calculating D(E), it is appropriate to make a brief digression into the quantum
theory of the AF spin square.
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Fig. 1 Illustration of the time evolution of the spin square consisting of a superposition of different rotations. The partial sum
vectors Sa and Sb rotate anti-clockwise around the total conserved spin vector S with angular velocity S (red circle). The individual
spin vectors s1 and s3 in turn rotate clockwise around Sa with angular velocity Sa (green circle), analogously s2 and s4 around
Sb (blue circle)

4.1 Quantum Case

The quantum version of the Eq. (5) can be written as

H∼ = 1

2

(
S∼

2 − Sa∼
2 − Sb∼

2
)

, (18)

where the Hermitean operators H∼ , S∼ etc. are defined on a (2s + 1)4-dimensional Hilbert space H and s =
1/2, 1, 3/2, . . . is the individual spin quantum number. A convenient base of H is given by the product base,
the vectors of which being written as |m1,m2,m3,m4〉 where mi = −s, −s+1, . . . , s−1, s for i = 1, . . . , 4.
The mi are the eigenvalues of individual spin operators S∼

(3)
i .
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The coupling of the two spins of number 1 and 3 gives rise to another basis in the (2s + 1)2-dimensional
Hilbert space H13 denoted by

|Sa,ma〉 =
∑

m1,m3

CG (Sa,ma; s,m1, s,m3) |m1,m3〉 , (19)

where the CG(. . .) are the Clebsch-Gordan coefficients, see, e. g., [37], 27. 9. . This is the common eigenbasis
of S∼

2
a and S∼

(3)
a with eigenvalues Sa (Sa + 1) and ma , resp. . Analogous remarks apply to the coupling of the

two spins of number 2 and 4 which yields

|Sb,mb〉 =
∑

m2,m4

CG (Sb,mb; s,m2, s,m4) |m2,m4〉 . (20)

Finally, we consider the coupling (1, 3), (2, 4) �→ (1, 2, 3, 4) which yields a common eigenbasis of
S∼

2, S∼
2
a, S∼

2
b, S∼

(3) with eigenvalues S (S + 1) ,Sa (Sa + 1) ,Sb (Sb + 1) ,M, resp. :

|S,Sa,Sb,M〉 =
∑

ma ,mb

CG (S,M;Sa,ma,Sb,mb) |Sa,ma,Sb,mb〉 . (21)

These states are also eigenstates of the Hamiltonian (18) with eigenvalues

ε = 1

2
(S (S + 1) − Sa (Sa + 1) − Sb (Sb + 1)) . (22)

Solving this equation for S ≥ 0 yields

S = Sε := 1

2

(√
8ε + (2Sa + 1)2 + (2Sb + 1)2 − 1 − 1

)
. (23)

This result can be used to calculate the number Nq(E) of eigenstates with an energy ε ≤ E. Note that the
Clebsch-Gordan coefficient (20) vanishes if the triangle inequality |Sa − Sb| ≤ S ≤ Sa + Sb is violated.
For each S satisfying this inequality and, additionally, S ≤ SE there are 2S + 1 states with the same energy
corresponding to different M in (21). Hence

Nq(E) =
∑

0≤Sa≤2s
0≤Sb≤2s

Min(SE,Sa+Sb)∑

S=|Sa−Sb|
2S + 1. (24)

4.2 Classical Case

Now we consider the classical limit s → ∞. This means: All quantum numbers are scaled according to
S = S/s, Sa = Sa/s, E = E/(s(s + 1)), . . . etc., all functions are expanded into 1/s-series and only the
leading terms independent of s are kept. The function Sε according to (23) will hence be replaced by

SE :=
√

2E + S2
a + S2

b . (25)

The sums occurring in (24) are replaced by corresponding integrals resulting in the following expression

N (E) =
2∫

0

dSa

2∫

0

dSb

Min(SE ,Sa+Sb)∫

|Sa−Sb|
2 S dS (26)

for the volume formed of phase space points with energy ≤ E .
Although the dos is symmetric w. r. t. E we will consider both cases E > 0 and E < 0 separately in order

to simplify the presentation of the analogous calculations for the susceptibility, see Sect. 7.1.
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Fig. 2 The region in (Sa, Sb, S)-space for the integration (26). The dark yellow polyhedron represents the triangle inequality
(11) and the light red surface is the graph of S = SE (Sa, Sb) for the example E = 1. This graph intersects the boundary of the
polyhedron at the blue curve which is projected onto the Sa − Sb-plane and yields the hyperbola Sa Sb = E according to (27).
The domain of integration (26) will hence be the intersection of the polyhedron with the region below the surface S = SE

4.2.1 E > 0 :
To simplify the evaluation of the minimum in the upper integral limit in (26) we will divide the Sa − Sb-square
into two regions according to whether Sa + Sb ≤ SE or not. Note that

Sa + Sb ≤ SE ⇔ (Sa + Sb)
2 ≤ S2

E = 2E + S2
a + S2

b ⇔ Sa Sb ≤ E . (27)

Hence the Sa − Sb-square is divided into two regions separated by a hyperbola, see Fig. 2.
Next, we will perform the integration (26) step by step. The integral over S has two different forms,

depending on whether Sa + Sb ≤ SE or not. In the first case we obtain

I1 =
Sa+Sb∫

|Sa−Sb|
S dS = 2Sa Sb, (28)

where we have omitted the overall factor 2 that can be absorbed by the normalization constant. The second
case yields

I2 =
SE∫

|Sa−Sb|
S dS = E + Sa Sb. (29)

The following integrations over Sa and Sb can be split into three parts corresponding to the regions A, B and
C , see Fig. 3, left panel. For the contribution from A we obtain

IA
(28)=

E/2∫

0

dSa

⎛

⎝
2∫

0

dSb(2 Sa Sb)

⎞

⎠ = E2

2
. (30)
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Fig. 3 The region in the (Sa, Sb)-plane for the integration (26) divided by the hyperbola Sa Sb = |E |. Left panel: E > 0. The
integral (26) assumes different forms in the three regions A, B and C . Right panel: E < 0. The integral (26) is only non-zero in
the region A

The region B contributes the integral

IB
(28)=

2∫

E/2

dSa

⎛

⎜
⎝

E/Sa∫

0

dSb(2 Sa Sb)

⎞

⎟
⎠ = E2 log

(
4

E

)
. (31)

In the region C the upper bound of S will be SE and hence the corresponding integral reads

IC
(29)=

2∫

E/2

dSa

⎛

⎜
⎝

2∫

E/Sa

dSb(E + Sa Sb)

⎞

⎟
⎠ = 4 + 4E − 5E2

4
− 3

2
E2 log

(
4

E

)
. (32)

The sum of (30), (31) and (32) can be simplified to

N (E) = IA + IB + IC = C

(
−3E2

4
− 1

2
E2 log

(
4

E

)
+ 4E + 4

)
, (33)

where the normalization constant C is preliminarily left open. The derivative of N (E) gives the dos:

D(E) = ∂N (E)

∂E
= C

(
4 − E

(
1 + log

(
4

E

)))
, for 0 ≤ E ≤ 4. (34)

4.2.2 E < 0 :
For E < 0 we have

SE =
√

2E + S2
a + S2

b <

√
S2
a + S2

b ≤ Sa + Sb, (35)

and hence the upper integral limit in (26) will always be SE . However, it may happen that the lower integral
limit in (26) is above SE , in which case the integral (26) vanishes. This occurs iff

SE ≤ |Sa − Sb| ⇔ 2E + S2
a + S2

b ≤ S2
a − 2SaSb + S2

b ⇔ SaSb ≤ −E = |E | , (36)

that is, iff (Sa, Sb) lies outside the region A, see Fig. 3, right panel. Therefore the only contribution to (26) will
be given by

N (E)
(29)=

2∫

−E/2

dSa

⎛

⎜
⎝

2∫

−E/Sa

dSb(E + Sa Sb)

⎞

⎟
⎠ = 3E2

4
− 1

2
E2 log

(
− E

4

)
+ 4E + 4. (37)
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Fig. 4 Comparison of the analytical density of states (dos) function D(E) according to (39) (blue curve) with the numerical result
(red points) obtained by Wang-Landau sampling [32]

The derivative of N (E) gives the dos:

D(E) = ∂N (E)

∂E
= C

(
4 + E

(
1 + log

(
− E

4

)))
, for − 4 ≤ E ≤ 0. (38)

This agrees with (34) if E is replaced by −E , thereby again confirming the symmetry of the dos.

4.2.3 −4 ≤ E ≤ 4 :
Extending D(E) to all values of E and calculating the normalization constant as C = 1/8 finally gives the
result

D(E) =
{

1
8

(
4 − |E |

(
1 + log

(
4

|E |
)))

−4 ≤ E ≤ 4,

0 else,
(39)

see Fig. 4.
For later purposes we expand the dos at E = Emin = −4 into a power series in the variable ε = E−Emin =

E + 4:

D(E) = D(−4 + ε) =
∞∑

n=2

2−2n−1

(n − 1)n
εn (40)

= ε2

64
+ ε3

768
+ ε4

6144
+ ε5

40960
+ ε6

245760
+ ε7

1376256

+ ε8

7340032
+ ε9

37748736
+ ε10

188743680
+ O

(
ε11) . (41)

5 Specific Heat

5.1 Classical Case

For the calculation of the specific heat we do not have to resort to the phase space, but can use the density-of-
states function D(ε) modulated by the Boltzmann factor e−β ε, where β = 1/T denotes the (dimensionless)
inverse temperature, as usual. Then the partition function can be expressed as

Z(β) =
4∫

−4

D(ε) e−β ε dε. (42)
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Using the explicit form of D(ε) according to (39) we obtain

Z(β) = 1

4β2 (Chi(4β) − log(4β) − γ ) , (43)

where Chi(z) denotes the hyperbolic cosine integral, see [36], 6. 2. 16. , and γ the Euler-Mascheroni constant.
The inner energy is obtained as the first moment U1(β) where the n−th moment is defined by

Un(β) = 1

Z(β)

4∫

−4

εn D(ε) e−β ε dε. (44)

For the spin square the inner energy assumes the form

U1(β) = 1

β

(
2 + 2 sinh2(2β)

log(β) − Chi(4β) + γ + log(2)

)
. (45)

After a short calculation the specific heat c(T ) := ∂
∂T U1(1/T ) can be written in the well-known form as

c(β) = β2 (
U2(β) −U 2

1 (β)
)
, (46)

where U2(β) denotes the second moment according to the general definition (44). The explicit form reads

c(β) = 1

(log(β) − Chi(4β) + γ + log(4))2 ×
((log(β) − Chi(4β) + γ + log(4))(6 log(β) − 4β sinh(4β) + 5 cosh(4β)

−6Chi(4β) + 6γ − 5 + 12 log(2))

−(2 log(β) + cosh(4β) − 2Chi(4β) + 2γ − 1 + log(16))2) . (47)

Using the series expansion (40) of the dos we can easily derive a low temperature expansion of c(T ) of the
form

c(T ) ∼ 3 + T

2
+ 9T 2

16
+ 13T 3

16
+ 355T 4

256
+ 1383T 5

512
+ 24129T 6

4096
+ 29093T 7

2048
+ 2460087T 8

65536

−2182975T 9

131072
− 7263267T 10

1048576
+ O

(
T 11) . (48)

The low temperature limit limT→0 c(T ) = α + 1 = 3 is due to the lowest non-vanishing power of α = 2
in the expansion (40). It can also be derived by the following elementary argument: The number of degrees of
freedom of the spin square is 2 × 4 = 8 and the Néel ground state is collinear and can be freely rotated in spin
space. This reduces the number of quadratic modes for excitations close to the ground state to 8 − 2 = 6. Each
quadratic mode contributes 1

2 to the specific heat at T = 0 which confirms the above result of limT→0 c(T ) = 3.
The high temperature limit of c(T ) is obtained by a Taylor expansion of (47) in the variable β = 1/T :

c(T ) ∼ 4

3

1

T 2 + 8

45

1

T 4 − 16

63

1

T 6 + 6304

91125

1

T 8 + 64

66825

1

T 10 + O

(
1

T 12

)
for T → ∞. (49)

Hence c(T ) decays for T → ∞ with the leading power of 4
3T 2 . Moreover, it has a global maximum at

Tm = 0.371046 with height cm = c(Tm) = 3.27751, see Fig. 5.
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Fig. 5 Specific heat c(T ) as a function of temperature T . We show the analytical result (47) (blue curve), the low-temperature
expansion (48) (black, dotted curve), the leading power 4

3T 2 of the high temperature limit according to (49) (dashed, yellow curve)
as well as the numerical results using Monte-Carlo simulation (red points) and Wang-Landau calculation (cyan points). Note the
low temperature limit c(T = 0) = 3 as well as the global maximum at Tm = 0.371046 with height cm = c(Tm) = 3.27751 (thin
red lines)

5.2 Quantum Case

Using the results of Sect. 4.1 it is a straightforward task to calculate the eigenvalues εn = εSa ,Sb,S,M , see
(22), together with their multiplicity dn . In general, further degeneracies occur, additional to the degeneracy
w. r. t. M , which reduce the number of different eigenvalues. For the largest chosen value of the individ-
ual quantum number s = 30 we thus obtain 6103 different eigenvalues with multiplicities dn that sum up
to the dimension of the Hilbert space of (2s + 1)4 = 13, 845, 841. Therefore, in this case, the partition
function Z = ∑

n dn exp(−βεn) has 6103 terms and the specific heat c(β) has about four times as many
terms, that can, nevertheless, be handled in reasonable computing times by a computer-algebraic software like
MATHEMATICA� [38].

We will plot c(T ) for the quantum numbers s = 1/2, 5, 30 as well as for the classical limit s → ∞
calculated in the previous section. For the sake of comparison we have chosen the scaled temperature T

s(s+1)

as the independent variable, see Fig. 6. For a finite quantum spin system and T → 0, c(T ) always converges
in a flat-foot fashion to 0. This can be clearly seen in Fig. 6 for s = 1/2 but not for s = 5 or s = 30 due to
numerical instabilities. However, Fig. 6 also illustrates how this fact can be reconciled with limT→0 c(T ) = 3 in
the classical case: Besides the global maximum, the specific heat for the quantum systems at low temperatures
and increasing s forms a shoulder and the classical c(T ) is the envelope of these shoulders for s → ∞.

6 Entropy

6.1 Classical Case

The entropy S(β) can be generally defined by

S(β) := β U1(β) + log Z(β). (50)

Inserting the above results for U1, see (45), and Z , see (43), we obtain

S(β) = 2 + log

(
− log(4β) − Chi(4β) + γ

4β2

)
+ 2 sinh2(2β)

log(β) − Chi(4β) + γ + log(4)
. (51)

For T → 0 the entropy diverges logarithmically. In order to determine the asymptotic form of S(T ) for T → 0
we first consider

Chi(x) ∼ 1

2
exp(x)

(
1

x
+ 1!

x2 + 2!
x3 + 3!

x4 + . . .

)
for x → ∞, (52)
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Fig. 6 Specific heat c as a function of scaled temperature T
s(s+1)

. We show the classical result (47) (blue curve), as well as the
quantum results for s = 1/2, 5, 30 (magenta, green, red curves)

S

Fig. 7 Reduced classical entropy S(T ) − 3 log T as a function of temperature T . We show the analytical result (51) (blue curve),
the numerical Monte-Carlo calculations (red points) and the low-temperature expansion (55) (yellow, dashed curve)

which can be derived from [36], 6.5.4., 6.2.20., 6.12.3., and 6.12.4.. Using Z(β) ∼ 1
4β2 Chi(4β) for β → ∞

we thus obtain

log Z ∼ 4

T
+ 3 log T − 5 log 2 + T

4
+ . . . for T → 0. (53)

Together with

β U1 ∼ − 4

T
+ 3 + T

4
+ . . . for T → 0 (54)

we thus obtain for T → 0

S(T ) ∼ 3 log T + (3 − 5 log(2)) + T

2
+ 9T 2

32
+ 13T 3

48
+ 355T 4

1024
+ 1383T 5

2560

+8043T 6

8192
+ 29093T 7

14336
+ 2460087T 8

524288
− 550015T 9

1179648
+ 25395933T 10

10485760
+ O

(
T 11) . (55)

Hence it is meaningful not to plot S(T ) but the reduced entropy S(T ) − 3 log T , see Fig. 7.
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Fig. 8 Plot of the entropy S as a function of scaled temperature T
s(s+1)

. We show the classical entropy Scl according to (51) (blue
curve) and the quantum entropies Squ for s = 1/2, 5, 30 (magenta, green, red curves), where the zero-point of Squ has been
chosen as explained in the text. The low temperature limits Squ(T → 0) = −4 log(2s + 1) are indicated by small colored dots

6.2 Quantum Case

The calculation of the entropy Squ = βU1 + log(Z) in the quantum case is largely analogous to the calculation
of the specific heat explained in Sect. 5.2. However, there occurs an additional problem. In the high-temperature
limit β → 0 we have

Squ → lim
β→0

log Z = lim
β→0

log Tr exp(−βH∼ ) = log Tr1 = log dim, (56)

where dim = (2s + 1)4 is the dimension of the Hilbert space. This means that the high temperature limit
depends on s. In contrast, the high temperature limit of the classical entropy vanishes: Scl → limβ→0 log Z =
log Z(0) = log 1 = 0. Therefore, approximate agreement of Squ and Scl for large temperatures can only be
achieved by an s-dependent shift of the zero-point of entropy. We decide to shift the quantum entropy and
replace log Z by log Z

dim in the definition of Squ, following a common practice, see e. g., [24], (3.1). This
has the consequence that the low temperature limit of Squ(T ) no longer vanishes, as it would follow for a
non-degenerate ground state, but will be shifted to Squ(T → 0) = − log dim. This is in accordance with the
logarithmic divergence of the classical entropy to −∞, see Sect. 6.1 and Fig. 8.

7 Susceptibility

7.1 Classical Case

If we apply a magnetic field B in 3-direction, the Hamiltonian (4) is modified by an additional Zeeman term
to

HB = H − S(3)B. (57)

The resulting magnetization M(B) is given by the expectation value of S(3) using the modified partition
function. Due to the isotropy of the Hamiltonian (4) the magnetization will vanish at B = 0 and hence the
first generally non-vanishing term of the Taylor expansion of M(B) at B = 0 will be given by the “zero field
susceptibility"

χ(β) = dM

dB

∣
∣∣
∣
B=0

. (58)
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After a short calculation one obtains the well-known expression

χ(β) = β

Z0

∫

P

(
S(3)

)2
exp (−β H) dV =: β 〈

(
S(3)

)2〉. (59)

Again using isotropy of H we have 〈(S(1)
)2〉 = 〈(S(2)

)2〉 = 〈(S(3)
)2〉 and thus

χ(β) = β

3
〈S2〉= β

3Z(β)

4∫

−4

D̃(E) exp(−βE)dE, (60)

where

D̃(E) = ∂

∂E

1

8

2∫

0

dSa

2∫

0

dSb

Min(SE ,Sa+Sb)∫

|Sa−Sb|
S3 dS, (61)

analogously to (26). The factor 1
8 has been introduced in (61) according to the normalization constant deter-

mined in (39). Analogously to Sect. 4.2 we consider a case distinction according to the sign of E .

7.1.1 E > 0 :
To simplify the evaluation of the minimum in the upper integral limit in (61) we will divide the Sa − Sb-square
into two regions according to whether Sa + Sb ≤ SE or not, separated by the hyperbola Sa Sb = E , see Fig. 2.

The integral over S has two different forms, depending on whether Sa + Sb ≤ SE or not. In the first case
we obtain

J1 =
Sa+Sb∫

|Sa−Sb|
S3 dS = 2SaSb

(
S2
a + S2

b

)
. (62)

The second case yields

J2 =
SE∫

|Sa−Sb|
S3 dS = (SaSb + E)

(−SaSb + S2
a + S2

b + E
)
. (63)

The following integrations over Sa and Sb can be split into three parts corresponding to the regions A, B and
C , see Fig. 3, left panel. For the contribution from A we obtain

JA
(62)=

E/2∫

0

dSa

⎛

⎝
2∫

0

dSb J1

⎞

⎠ = E2 + E4

16
. (64)

The region B contributes the integral

JB
(62)=

2∫

E/2

dSa

⎛

⎜
⎝

E/Sa∫

0

dSb J1

⎞

⎟
⎠ = 3E2 − 3E4

16
. (65)

In the region C the upper bound of S will be SE and hence the corresponding integral reads

JC
(63)=

2∫

E/2

dSa

⎛

⎜
⎝

2∫

E/Sa

dSb J2

⎞

⎟
⎠ = 7E4

48
+ 2

3
E3 log(E) − 4

9
E3(2 + log(8)) − 2E2 + 32E

3
+ 80

9
. (66)
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The sum of (64), (65) and (66) can be simplified to

Ñ (E) = JA + JB + JC = E4

48
+ 2

3
E3 log(E) − 4

9
E3(2 + log(8)) + 2E2 + 32e

3
+ 80

9
. (67)

The derivative of Ñ (E) gives the function

D̃(E) = 1

8

∂Ñ (E)

∂E
= 1

8

(
E3

12
+ 2E2 log(E) − E2(2 + log(16)) + 4E + 32

3

)
, for 0 ≤ E ≤ 4. (68)

7.1.2 E < 0 :
Analogously to Sect. 4.2 the only contribution to (61) will be given by

Ñ (E)
(63)=

2∫

−E/2

dSa

⎛

⎜
⎝

2∫

−E/Sa

dSb J2

⎞

⎟
⎠ = − E4

48
− 2

3
E3 log(−E) + 4

9
E3(2 + log(8)) + 6E2 + 32E

3
+ 80

9
.

(69)

The derivative of Ñ (E) gives the function

D̃(E) = 1

8

∂Ñ (E)

∂E
= −1

8

(
E3

12
− 2E2 log(−E) + E2(2 + log(16)) + 12E + 32

3

)
, for − 4 ≤ E ≤ 0.

(70)

7.1.3 −4 ≤ E ≤ 4 :
Extending D̃(E) to all values of E finally gives the result

D̃(E) =

⎧
⎪⎪⎨

⎪⎪⎩

1
8

(
− E3

12 − 2E2 log(−E) + E2(2 + log(16)) + 12E + 32
3

)
−4 ≤ E ≤ 0,

1
8

(
E3

12 + 2E2 log(E) − E2(2 + log(16)) + 4E + 32
3

)
0 ≤ E ≤ 4,

0 else.

(71)

Inserting this result into (60) and performing the integral gives, after some simplifications,

χ(β) = 4β(2β + 2γ − 1 + log(16)) + 8β log(β) − 4β sinh(4β) + (4β + 1) cosh(4β) − 8βChi(4β) − 1

6β(log(β) − Chi(4β) + γ + log(4))
,

(72)

see Fig. 10. A Taylor expansion of (72) at β = 0 yields the high temperature limit

χ(T ) ∼ 4

3T
− 8

9

1

T 2 + 8

27

1

T 3 − 16

405

1

T 4 − 16

405

1

T 5
+ 32

945

1

T 6 − 416

127575

1

T 7

− 12608

1913625

1

T 8 + 1856

637875

1

T 9 − 128

1804275

1

T 10 + O

(
1

T 11

)
. (73)

For T → 0 the susceptibility is of the form 0
0 since the total spin of the Néel ground state vanishes. A

closer inspection of (72) shows that limT→0 χ(T ) = 2/3, see Fig. 10.
It will be instructive to sketch another derivation of this result. To this end we consider Cartesian coordinates

(xμ, yμ), μ = 1, 2, 3, 4 in the tangent planes at sμ for a Néel ground state ↑↓↑↓ and calculate the Hessian K
of the Hamiltonian H w. r. t. these coordinates. K has the eigenvalues 2, 2, 1, 1, 1, 1, 0, 0 corresponding to six
quadratic modes and two zero modes describing rotations of the ground state. The eigenvectors characterizing
these modes give rise to an alternative set of “normal" coordinates ξi , i = 1, . . . , 8. The total energy H as
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Fig. 9 Plot of two modes of excitation from the Néel ground state ↑↓↑↓. The first mode (left panel) leads to finite total spin
square S2 (red double arrow), whereas the total spin square S2 of the second mode (right panel) vanishes in quadratic order.
There are two modes of the first kind (the one shown and its rotation by 90◦) and four modes of the second kind (resulting from
interchanging the pairs (1,3) and (2,4) and rotations by 90◦)

well as the square of the total spin S2 of a superposition of excitations can be expanded into a Taylor series in
the ξi , namely

H = −4 + 2
(
ξ2

1 + ξ2
2

) +
6∑

j=3

ξ2
j + O

(
ξ3) , (74)

S2 = 4
(
ξ2

1 + ξ2
2

) + O
(
ξ3) . (75)

This means that only the first two quadratic modes contribute to S2 and hence to the susceptibility χ(T = 0),
see Fig. 9. We will calculate the contribution of the first mode:

〈
S2〉 =

∞∫

0

4ξ2
1 exp

(−β(−4 + 2ξ2
1 )

)
dξ1

/ ∞∫

0

exp
(−β(−4 + 2ξ2

1 )
)
dξ1 (76)

= 1

β
. (77)

In view of χ = β
3

〈
S2

〉
the first mode contributes 1/3 to the susceptibility; and analogously for the second

mode which explains limT→0 χ(T ) = 2/3.

7.2 Quantum Case

Also the calculation of the susceptibility χqu in the quantum case is largely analogous to the procedure
for the specific heat and for the entropy. The difference is that we have to calculate not only the different
energy eigenvalues εn and their degeneracies dn but have also to resolve for different total spin quantum
numbers resulting in a number of triples (dm, εm, Sm). For s = 20 there are already 20, 239 such triples and
corresponding numbers of terms for χqu. Hence we restrict ourselves to s = 20 as the maximal spin quantum
number.

Since the spin square has a unique ground state with S = 0 the susceptibility χqu(T ) converges to 0, even
in a flat-footed fashion. This can be seen for s = 1/2, 1, 5/2, 5 in Fig. 11. The classical susceptibility χcl(T )

again appears as the envelope of all χqu, plotted versus scaled temperature T
s(s+1)

, with the aforementioned
finite limit χcl(T → 0) = 2/3, see Fig. 11.
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0 1 2 3 4 5
T

0.2

0.4

0.6

0.8
χcl

Fig. 10 Plot of the classical susceptibility χcl as a function of temperature T according to (72) (blue curve) together with the
numerical Monte-Carlo results (red points), Wang-Landau results (cyan points) and the high temperature limit (73) (dashed,
yellow curve). The limit of the classical susceptibility for vanishing T is χcl(T → 0) = 2/3. χcl has a global maximum at
Tm = 0.570563 and χm = 0.756339 (thin, red lines)

0.6

Fig. 11 Plot of the susceptibility χ as a function of scaled temperature T
s(s+1)

. We show the classical susceptibility χcl according
to (72) (blue curve) and the quantum susceptibilities χqu for s = 1/2, 1, 5/2, 5, 20 (magenta, brown, cyan, green, red curves)

8 Summary and Outlook

We have derived closed-form expressions for certain thermodynamic quantities of the classical AF spin square,
viz. density of states, partition function, specific heat, entropy, and susceptibility. The partition function of
the square has already been given in [13] albeit in terms of definite integrals, which could not be computed
explicitly. Our results were numerically verified by Monte Carlo simulations and/or Wang-Landau calculations.
The quantum version of the thermodynamic functions was also calculated analytically using known identities
for the coupling of four spins, but these are too intricate to be stated explicitly. For practical reasons, we have
limited these calculations to quantum numbers of s ≤ 20 for susceptibility and to s ≤ 30 for the other cases.

With analytical results for thermodynamic functions in both cases, quantum and classical, a comparison
with the classical limit s → ∞ is obvious. This comparison not only shows the consistency between the two
classes of results, but also illustrates the precise way to understand the classical limit. The first point to pay
attention to is the correct scaling of the temperature in the form T

s(s+1)
, which follows the scaling of the energy.
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60

80

100

Fig. 12 The partition function Z3(β) of the spin triangle, calculated according to (A6) (blue curve), and according to (A5) (red
dashed curve)

Another point is the behavior for T → 0. Quantum mechanically, the specific heat and susceptibility approach
0 flatly, while the classical counter-parts take positive values. This apparent contradiction can be resolved by
observing that the "quantum flat feet" are increasingly compressed with respect to the scaled temperature,
yielding the classical quantities as their envelopes, see Figs. 6 and 11.

With respect to entropy, another apparent contradiction occurs: The quantum entropy at T = 0 should
vanish due to a non-degenerate ground state, while the classical entropy diverges logarithmically to −∞. As
explained in detail in Sect. 6 the classical limit of the quantum entropy for medium and large T can only be
reached if the high temperature limits are properly adjusted. Here we have made the obvious choice of re-

defining the quantum partition function by Zqu = Tr
(

exp(−βH∼ )/dim
)

, which resolves the aforementioned

contradiction in the low temperature region.
The comparison of our results with the series representation of the partition function in [26] has led to

certain identities, see the appendix A. For the spin triangle, it appears that the result of [26] needs to be modified,
a discovery that requires further investigation. Another future task would be to extend the present results to
other similarly integrable spin systems, e. g., the bow-tie or the octahedron.

Acknowledgements H.-J. S. would like to thank Martin Gembé, Ciarán Hickey, Yasir Iqbal, Johannes Richter, and Simon Trebst
for the discussions on the square Kagome lattice that gave rise to the idea for this paper.

Author Contribution Both authors have carried out the research in close collaboration, with emphasis on analytical and computer
algebraic calculations by H-JS, and numerical calculations by CS. The text was written and reviewed by both authors.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Declarations

Competing interests The authors declare no competing interests.

Appendix A: Comparison to Other Results

Using transfer matrix methods, a series representation of the partition function of the AF Heisenberg N -ring
has been derived [26] that reads

ZN (β) =
∞∑


=0

(2
 + 1)

(√
π

2β
I
+ 1

2
(β)

)N

. (A1)

http://creativecommons.org/licenses/by/4.0/
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This series can be re-written using the definition of the modified spherical Bessel function i
(z) :=
√

π
2z I
+ 1

2
(z),

see [36], 10.47.7.. For N = 2, 3, 4 there exist independent expressions for ZN (β). Let us start with N = 2.
According to [8], Eq. (14) and setting Jc = 2, we have

Z2(β) = sinh(2β)

2β
. (A2)

This result also follows from [13], Eq. (37), in the limit of vanishing magnetic field and leads to the identity

∞∑


=0

(2
 + 1)I
+ 1
2
(β)2 = sinh(2β)

π
. (A3)

The latter identity can also be obtained by multiplying the recurrence relation

2
 + 1

β
i
(β) = i
−1(β) − i
+1(β), (A4)

see [39], Eq. (37), with i
(β) and summing over 
 = 0, . . . ,∞.
Curiously, the analog procedure does not work for N = 3. We adopt the explicit form of Z3 from [13], Eq.
(23), up to the factor (4π)3,

Z3(β) = e3β/2

4β3/2

√
π

2

(

3 erf

(√
β

2

)

− erf

(

3

√
β

2

))

. (A5)

This equation has been independently checked using the methods of this paper. But (A5) differs numerically
from (A1) for N = 3. Instead we found the following identity

Z3(β) = −
∞∑


=0

(2
 + 1)

(√
− π

2β
I
+ 1

2
(−β)

)
3, (A6)

which agrees with (A5) as verified by Fig. 12. When evaluating the modified spherical Bessel function for
negative real arguments we have to consider that this function has a cut on the negative real axis, cp. [36],
§10.25. In (A6) we have used the convention, also adopted by MATHEMATICA� [38], that i
(z) will be an
odd function for even 
 and an even function for odd 
.
Now we pass to N = 4. In order to evaluate

Z4(β) =
∞∑


=0

(2
 + 1)

(
π

2β

)2

I
+ 1
2
(β)4 =

∞∑


=0

(2
 + 1) i
(β)4, (A7)

which is (A1) for N = 4, we consider the equation

2
d

dβ
i
(β) + 1

β
i
(β) = i
−1(β) + i
+1(β), (A8)

see [36] 10.51.4. Following a similar procedure as in [39] this equation will be multiplied with (A4) and further
with i
(β)2. The result is summed over 
 = 0, . . . ,∞ and can be written as

1

2β

d

dβ
Z4(β) + 1

β2 Z4(β) =
∞∑


=0

i
(β)2 (
i
−1(β)2 − i
+1(β)2) = i−1(β)2 i0(β)2 = sinh2 2β

4β2 . (A9)

This differential equation with initial condition Z4(0) = 1 has the solution

Z4(β) = 1

π2 (Chi(4β) − log(4β) − γ ) , (A10)

where γ is the Euler-Mascheroni constant. This result coincides with the partition function of the square Z(β)
calculated above, see (43).
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For the sake of completeness we add the analogous identity for N = 1 which follows from [37], 10.2.26,
and θ = 0, but has no physical interpretation in terms of partition functions for spin systems:

∞∑


=0

(2
 + 1)I
+ 1
2
(β) =

√
2β

π
exp β. (A11)

This identity can also be derived by summing (A4) over 
 = 0, . . . ,∞.
All identities mentioned here have been numerically tested.
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