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Abstract In this article, we study an exponential decay for the gas of bosons with strong repulsive delta
interactions from a double-well potential. We consider an exactly solvable model comprising an infinite wall
and two Dirac delta barriers. We explore its features both within the exact method and with the resonance
expansion approach. The study reveals the effect of the splitting barrier on the decay rate in dependence on
the number of particles. Among other things, we find that the effect of the splitting barrier on the decay rate
is most pronounced in systems with odd particle numbers. During exponential decay, the spatial correlations
in an internal region are well captured by the “radiating state”.

1 Introduction

Over the past few years, there has been a growing interest in understanding the decay properties of unstable
quantum states [1–8]. In particular, recent progress in fabricating systems of interacting particles has inspired
the theoretical community to study the decay properties of unstable many-particle states [9–14]. A simple
model to study the decay process of many-particle states is the system of bosons with infinitely strong delta-
contact interactions, i.e., the so-called Tonks–Girardeau (TG) gas [15]. Considerable effort has been made
already to understand the decay properties of such systems. Among other works, the relevant for exponential
and long-time decays were presented in [12,13], respectively. A recent paper [14] went even further and
explained the decay mechanism of TG gases at intermediate stages of the time evolution (between exponential
and long-time regimes).

In the present paper, we provide a deeper insight into the exponential decay of TG gases from the double-
well trap. As a model, we consider the potential in the form [14]

V (x) =
{

∞, if x ≤ −L
αδ(x) + ηδ(x − L) otherwise.

(1)

Note that the model is a modification of the celebrated Winter model [3], to which a Delta barrier at x = 0
was added, see Fig. 1. The remainder of this article is structured as follows. Section 2 discusses the theoretical
tools for studying the time evolution of the decaying TG gas and focuses on the results. Section 3 presents
some concluding remarks.
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Fig. 1 Ilustrative diagram of double-well structure in Eq. (1)

2 Results

The scenario we consider is typical of controllable studies of the tunnelling phenomena in modern experiments.
In the case studied, the system is initially prepared (t < 0) in the ground state of the TG gas in a hard-wall
split trap (η = ∞). At t = 0, the strength of the right barrier is changed to a finite value of η. As a result, the
initial state is no longer stationary and begins to evaluate in time. According to Bose-Fermi mapping [15], the
time-dependent TG wave function is given by

Ψ (x1, x2, . . . , xN , t) = �k<lsgn(xk − xl)
1√
N !detNi, j [φi (x j , t)], (2)

where the one-particle state φk(x, t) is governed by the Schrödinger equation,

I h̄
∂φk(x, t)

∂t
=

[
− h̄2

2m

∂2

∂x2 + V (x)

]
φk(x, t), (3)

with the initial condition as the bound-state eigenfunction of the hard-wall split trap, ϕk(x), that is,
φk(x, t)|t=0 = ϕk(x). From here we set L = h̄ = m = 1 so that the spatial coordinates, time coordi-
nates, and energies are measured in units of L and mL2/h̄, and in h̄2/(mL2), respectively. The system under
consideration has a nice feature where both eigenfunctions of the hard-wall split trap, ϕk(x) and continuum
wave functions (η < ∞) ψp(x) (normalised to a delta Dirac distribution) can be obtained in closed analytical
forms. For further detail, we refer readers to the papers [14,16], in which the relevant formulas are reported.
Thanks to those, the solutions to Eq. (3) can be condensed in a Fourier series as follows:

φk(x, t) =
∫ ∞

0
ck(p)ψp(x)e

− I tp2

2 dp, (4)

where ck(p),

ck(p) =
∫ 1

−1
ϕk(x)ψp(x)dx, (5)

is given in closed analytical form [14]. Nonetheless, numerical computations are required to evaluate the
integrals in Eq. (4). We conduct our analysis in terms of the non-escape probability,

P(N )(t) =
∫

ΔN
|Ψ (x1, x2, . . . , xN , t)|2dx1 . . . dxN , (6)
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ΔN = [−1, 1]N , which informs us of the probability that N bosons remain in the internal region Δ at time
t . For the TG wavefunction in Eq. (2), the non-escape probability can be reduced to the matrix form [12,13]
P(N )(t) = detNk,l [Pkl(t)] with the entries Pkl(t) = ∫ 1

−1 φ∗
k (x, t)φl(x, t)dx . The diagonal elements Pkk(t)

are nothing but the non-escape probabilities of the one-particle states. We denote Pk(t) = Pkk(t). Within
the resonance expansion method [4], the one-particle state that experiences an exponential decay follows
the approximation: ψk(x, t) ≈ Mk(x)e−Γk t/2−Iεk t with Γk = −Im{p2

k }, εk = (Im{pk}2 − Re{pk}2)/2, and
Mk(x) = 2π I respk {ck(p)ψp(x)}, where pk are the roots of the denominator in the integrand in Eq. (4) on the
fourth quadrant of the complex p-plane (proper poles) and respk { f } stands for the residue of f at a pole pk .
It should be mentioned that numerical calculations are needed to obtain the values of pk . The corresponding
non-escape probability is Pk(t) ≈ mke−Γk t , where mk = ∫ 1

−1 |Mk(x)|2dx . If mk ≈ 1 (Pk(0) ≈ 1), then the
exponential decay starts at about t = 0 and the state |ψk(t)〉 can well be approximated in the region Δ by the
so-called “radiating state”: |ψk(t)〉 ≈ e−Γk t/2−Iεk t |ψk(0)〉. When taking this approach, the time-dependent
TG wavefunction in the region ΔN takes the form:

Ψ (x1, x2, . . . , xN , t) ≈ e−Γ (N )t/2−Iε(N )t�k<lsgn(xk − xl)
1√
N !detNi, j [φi (x j , 0)], (7)

with Γ (N ) = ∑N
k=1 Γk , ε(N ) = ∑N

k=1 εk . Consequently, its validity is expected to hold when mk ≈ 1 for
k = 1, . . . , N (M (N ) = �N

k=1mk ≈ 1). The corresponding N -particle non-escape probability is:

P(N )(t) ≈ e−Γ (N )t . (8)

Now, we focus on examining when the above approximations are satisfied and what follows from their appli-
cability.

Our results are summarised in Fig. 2. Figure 2a shows the behaviour of M (N ) as a function of N . We
can observe a local minimum with a value slightly smaller than one. As a result, there is a value where
N = Nc(greater than where the minimum occurs) such that M (Nc) ≈ 1. Starting from N = Nc the deviation of
M (N )from 1 rapidly increases as N increases. This suggests that the point N = Nc can be viewed as a transition
point to the regime in which the non-escape probability begins to diverge significantly from its approximation
in Eq. (8). To clarify this, Fig. 2b offers a comparison of the results obtained from Eq. (8) with the results of
the exact numerical calculations, where to support the presentation only case η = 10, α = 0 is shown. As the
results indicate, the period in which the decay is consistent with the “radiating state” shrinks with increasing
N . When N exceeds the critical value Nc = 10 (see Fig. 2a), the decay of the N -particle state switches to the
non-exponential regime at a very small t value. When the splitting barrier is present an effect of the parity of a
number of particles appears. This is demonstrated in Fig. 2c which displays the behaviour of a relative change
defined as γ (N ) = (Γ (N ) − Γ

(N )
α=0) : Γ

(N )
α=0, where Γ

(N )
α=0 represents the decay rate for a system without the

splitting barrier. We conclude that the change in the decay process caused by the addition of the splitting barrier
is most pronounced for systems with odd numbers of particles and in the small N regime, i. e. where γ (N )

exhibits its most rapid variation. When there is instead an even number of particles, the decay rate becomes
almost insensitive to changes in α. It is worth mentioning that the coherence of the initial state depends on α
in the opposite way [16]. That is to say, it strongly depends on α only when N is even. To determine whether
Eq. (7) can capture the correlation in the internal region, we tested its ability to reproduce a function n(x, t)
defined as P(N )(t) = ∫ 1

−1 n(x, t)dx ,

n(x, t) =
∫

ΔN−1
|Ψ (x, x2, . . . , xN , t)|2dx2 . . . dxN . (9)

If n(x, t) is divided by the corresponding value of P(N )(t), then the resulting quantity can be interpreted as the
probability density of finding a particle, provided that all the particles remain in the region Δ. The correctness
of the “radiating state” in reproducing the spatial correlation is confirmed in Fig. 2d, where the results for
n(x, t) obtained using it and the exact wave function are compared. The results imply that during exponential
decay, spatial correlations in the internal region are indeed consistent with those in the initial state. More details
regarding the correlation in the initial state (i.e. in the TG ground state in the hard-wall split trap) can be found
in [16].
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Fig. 2 Results for different quantities as discussed in the text obtained for some transparent control parameter values. a Results
for M (N ) as a function of N . b N -particle non-escape probability, where the continuous lines represent the results of Eq. (8)
and the markers the results of exact calculations. For clarity, the dashed vertical lines mark the points where the deviations from
the exponential decay begin in the cases of N = 11 and N = 15. c The behaviour of the relative change γ (N ). d Results for
n(x, t), obtained for N = 3 particles at t = 10 from the numerically exact wave function (markers) and its approximation in
Eq. (7) (continuous lines)

3 Conclusions

We have studied the exponential decay of N bosons with strong delta interactions from the double-well
structure. Using the resonance expansion approach, we have analysed the effect of the splitting barrier on the
decay rate of the N -particle system in dependence on N . We have found that the decay rate of an initial state
with an odd number of particles is strongly affected by the splitting barrier, in contrast to its coherence which
is insensitive to changes in the height of the splitting barrier. Our results have shown that in the exponential
regime the “radiating state” effectively reproduces the spatial correlations in the internal region.
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