Skip to main content
Log in

A Brief Account of Steven Weinberg’s Legacy in ab initio  Many-Body Theory

Special Issue in Few-Body Systems: Celebrating 30 Years of Steven Weinberg’s Papers on Nuclear Forces from Chiral Lagrangians

  • Letter
  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

In this contribution to the special issue “Celebrating 30 years of Steven Weinberg’s papers on Nuclear Forces from Chiral Lagrangians,” we emphasize the important role chiral effective field theory has played in leading nuclear physics into a precision era. To this end, we share our perspective on a few of the recent advances made in ab initio  calculations of nuclear structure and nuclear matter observables, as well as Bayesian uncertainty quantification of effective field theory truncation errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Notes

  1. Gerry was such a masterful storyteller that S.B. always wondered if he was taking a bit of artistic license for comic effect in his recollection of the phone call. Several years later—it might have been over pints in Trento or Seattle during some long-forgotten conference—Bira ended any lingering doubts by basically telling the anecdote that is in his contribution.

References

  1. The University of Texas at Austin: UT News (2021) https://news.utexas.edu/2021/07/24/ut-austin-mourns-death-of-world-renowned-physicist-steven-weinberg

  2. S. Weinberg, Phys. Lett. B 251, 288 (1990)

    Article  ADS  Google Scholar 

  3. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  4. S. Weinberg, Phys. Lett. B 295, 114 (1992)

  5. Scimeter: keyword cloud generator based on data from the arXiv preprint server (2020) https://scimeter.org/ (maintained by Frankfurt Institute for Advanced Studies (FIAS))

  6. E. Epelbaum 10.22323/1.253.0014 PoS CD15 014 (2016) arXiv:1510.07036

  7. E. Epelbaum, H. Krebs, P. Reinert, Front. Phys. 8, 98 (2020) arXiv:1911.11875

  8. H.-W. Hammer, S. König, U. van Kolck, Rev. Mod. Phys. 92, 025004 (2020) arXiv:1906.12122

  9. R. Machleidt, D.R. Entem, Phys. Rept. 503, 1 (2011) arXiv:1105.2919

  10. E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009) arXiv:0811.1338

  11. K. Hebeler, Phys. Rept. 890, 1 (2021) arXiv:2002.09548 [nucl-th]

  12. K. Hebeler, J.D. Holt, J. Menendez, A. Schwenk, Annu. Rev. Nucl. Part. Sci. 65, 457 (2015) arXiv:1508.06893

  13. S.K. Bogner, R.J. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010) arXiv:0912.3688

  14. R.J. Furnstahl, T. Papenbrock, S.N. More, Phys. Rev. C 89, 044301 ( 2014) arXiv:1312.6876 [nucl-th]

  15. J. Lattimer, Annu. Rev. Nucl. Part. Sci. 71, 433–64 (2021)

    Article  Google Scholar 

  16. C. Drischler, J.W. Holt, C. Wellenhofer, Annu. Rev. Nucl. Part. Sci. 71, 403 ( 2021a) arXiv:2101.01709

  17. I. Tews, Front. Phys. 8, 153 (2020)

    Article  Google Scholar 

  18. H. Hergert, Front. in Phys. 8, 379 (2020) arXiv:2008.05061

  19. S.R. Stroberg, S.K. Bogner, H. Hergert, J.D. Holt, Annu. Rev. Nucl. Part. Sci. 69, 307 (2019) arXiv:1902.06154

  20. D. Sivia, J. Skilling, Data Analysis: A Bayesian Tutorial (Oxford University Press, Oxford, 2006)

    MATH  Google Scholar 

  21. J. Melendez, Effective Field Theory Truncation Errors and Why They Matter, Ph.D. thesis, School Ohio State University (2020)

  22. D.R. Phillips, R.J. Furnstahl, U. Heinz, T. Maiti, W. Nazarewicz, F.M. Nunes, M. Plumlee, M.T. Pratola, S. Pratt, F.G. Viens, S.M. Wild, J. Phys. G 48, 072001 (2021) arXiv:2012.07704 [nucl-th]

  23. J.A. Melendez, R.J. Furnstahl, D.R. Phillips, M T. Pratola, S. Wesolowski, Phys. Rev. C 100, 044001 (2019) arXiv:1904.10581

  24. R.J. Furnstahl, D.R. Phillips, S. Wesolowski, J. Phys. G 42, 034028 ( 2015) arXiv:1407.0657

  25. A. Sarkar, D. Lee (2021) arXiv:2107.13449 [nucl-th]

  26. D. Frame, R. He, I. Ipsen, D. Lee, D. Lee, E. Rrapaj, Phys. Rev. Lett. 121, 032501 (2018) arXiv:1711.07090

  27. J.A. Melendez, C. Drischler, A.J. Garcia, R.J. Furnstahl, X. Zhang (2021) arXiv:2106.15608

  28. S. Wesolowski, I. Svensson, A. Ekström, C. Forssén, R.J. Furnstahl, J.A. Melendez, D.R. Phillips (2021) arXiv:2104.04441 [nucl-th]

  29. S.B.S. Miller, A. Ekström, C. Forssén (2021a) arXiv:2106.00454 [nucl-th]

  30. R.J. Furnstahl, A.J. Garcia, P.J. Millican, X. Zhang, Phys. Lett. B 809, 135719 (2020) arXiv:2007.03635 [nucl-th]

  31. A. Ekström, G. Hagen, Phys. Rev. Lett. 123, 252501 (2019) arXiv:1910.02922 [nucl-th]

  32. S. König, A. Ekström, K. Hebeler, D. Lee, A. Schwenk, Phys. Lett. B 810, 135814 (2020) arXiv:1909.08446 [nucl-th]

  33. W. Jiang, A. Ekström, C. Forssén, G. Hagen, G. Jansen, T. Papenbrock, Phys. Rev. C 102, 054301 (2020) arXiv:2006.16774

  34. M. Piarulli, I. Tews, Front. in Phys. 7, 245 (2020) arXiv:2002.00032 [nucl-th]

  35. A. Ekström, G. Hagen, T.D. Morris, T. Papenbrock, P.D. Schwartz, Phys. Rev. C 97, 024332 (2018) arXiv:1707.09028

  36. C. Drischler, W. Haxton, K. McElvain, E. Mereghetti, A. Nicholson, P. Vranas, A. Walker-Loud, Prog. Part. Nucl. Phys. XY, 103888 (2021b)

  37. Low Energy Nuclear Physics International Collaboration (LENPIC) (2021) http://www.lenpic.org/

  38. H. Hergert, S.K. Bogner, T.D. Morris, A. Schwenk, K. Tsukiyama, Phys. Rept. 621, 165 (2016) arXiv:1512.06956

  39. T. Morris, Systematic improvements of ab-initio in-medium similarity renormalization group calculations. Ph.D. thesis, school Michigan State University (2016)

  40. M. Heinz, A. Tichai, J. Hoppe, K. Hebeler, A. Schwenk, Phys. Rev. C 103, 044318 ( 2021) arXiv:2102.11172 [nucl-th]

  41. S. Weinberg, Phys. Rev. 131, 440 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  42. J. Hoppe, C. Drischler, R.J. Furnstahl, K. Hebeler, A. Schwenk, Phys. Rev. C 96, 054002 (2017) arXiv:1707.06438

  43. S. Ramanan, S.K. Bogner, R.J. Furnstahl, Nucl. Phys. A 797, 81 (2007) arXiv:0709.0534

  44. S. Srinivas, S. Ramanan, Phys. Rev. C 94, 064303 (2016) arXiv:1606.09053 [nucl-th]

  45. P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54, 86 (2018) arXiv:1711.08821

  46. G. Hagen et al., Nat. Phys. 12, 186 (2015) arXiv:1509.07169

  47. U. van Kolck (2021) arXiv:2107.11675

  48. P. Maris et al., Phys. Rev. C 103, 054001 (2021) arXiv:2012.12396 [nucl-th]

  49. S.K. Bogner, H. Hergert, J.D. Holt, A. Schwenk, S. Binder, A. Calci, J. Langhammer, R. Roth, Phys. Rev. Lett. 113, 142501 (2014) arXiv:1402.1407 [nucl-th]

  50. S.R. Stroberg, A. Calci, H. Hergert, J.D. Holt, S.K. Bogner, R. Roth, A. Schwenk, Phys. Rev. Lett. 118, 032502 (2017) arXiv:1607.03229 [nucl-th]

  51. Z.H. Sun, G. Hagen, G.R. Jansen, T. Papenbrock (2021) arXiv:2107.14314 [nucl-th]

  52. S. Stroberg, J. Holt, A. Schwenk, J. Simonis, Phys. Rev. Lett. 126, 022501 (2021) arXiv:1905.10475

  53. K. Hebeler, S.K. Bogner, R.J. Furnstahl, A. Nogga, A. Schwenk, Phys. Rev. C 83, 031301(R) (2011) arXiv:1012.3381

  54. C. Drischler, K. Hebeler, A. Schwenk,, Phys. Rev. Lett. 122, 042501 (2019) arXiv:1710.08220

  55. J. Simonis, S. Stroberg, K. Hebeler, J. Holt, A. Schwenk, Phys. Rev. C 96, 014303 (2017) arXiv:1704.02915

  56. P. Gysbers et al., Nat. Phys. 15, 428 (2019) arXiv:1903.00047 [nucl-th]

  57. J.M. Yao, B. Bally, J. Engel, R. Wirth, T.R. Rodríguez, H. Hergert, Phys. Rev. Lett. 124, 232501 (2020) arXiv:1908.05424 [nucl-th]

  58. A. Belley, C.G. Payne, S.R. Stroberg, T. Miyagi, J.D. Holt, Phys. Rev. Lett. 126, 042502 (2021) arXiv:2008.06588 [nucl-th]

  59. E. Epelbaum, H. Krebs, U.G. Meißner, Eur. Phys. J. A 51, 53 (2015a) arXiv:1412.0142

  60. E. Epelbaum, H. Krebs, U.G. Meißner, Phys. Rev. Lett. 115, 122301 (2015b) arXiv:1412.4623

  61. S. Binder, A. Calci, E. Epelbaum, R. Furnstahl, J. Golak, et al. (Collaboration LENPIC), Phys. Rev. C 93, 044002 (2016) arXiv:1505.07218

  62. D. Lonardoni, I. Tews, S. Gandolfi, J. Carlson, Phys. Rev. Res 2, 022033(R) (2020) arXiv:1912.09411

  63. BUQEYE collaboration (2020) https://buqeye.github.io/

  64. J.A. Melendez, S. Wesolowski, R.J. Furnstahl, Phys. Rev. C 96, 024003 (2017) arXiv:1704.03308

  65. C. Drischler, J.A. Melendez, R.J. Furnstahl, D.R. Phillips, Phys. Rev. C 102, 054315 (2020a) arXiv:2004.07805 [nucl-th]

  66. S. Wesolowski, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, J. Phys. G 46, 045102 (2019) arXiv:1808.08211

  67. D.G. Ireland, W. Nazarewicz, J. Phys. G Nucl. Part. Phys. 42, 030301 (2015)

  68. Information and Statistics in Nuclear Experiment and Theory (ISNET) Series website (2021) https://isnet-series.github.io/

  69. Bayesian Analysis of Nuclear Dynamics (BAND) Framework project (2020) https://bandframework.github.io/

  70. Y. Lim, J.W. Holt, Phys. Rev. Lett. 121, 062701 (2018)

    Article  ADS  Google Scholar 

  71. A. Carbone, A. Rios, A. Polls, Phys. Rev. C 90, 054322 (2014) arXiv:1408.0717

  72. C. Drischler, R.J. Furnstahl, J.A. Melendez, D.R. Phillips, Phys. Rev. Lett. 125, 202702 (2020b) arXiv:2004.07232 [nucl-th]

  73. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998) arXiv:nucl-th/9804027

  74. M. Baldo, I. Bombaci, G.F. Burgio, Astron. Astrophys. 328, 274 (1997) arXiv:astro-ph/9707277

  75. H. Müther, M. Prakash, T.L. Ainsworth, Phys. Lett. B 199, 469 (1987)

    Article  ADS  Google Scholar 

  76. P.-G. Reinhard, X. Roca-Maza, W. Nazarewicz, (2021) arXiv:2105.15050

  77. T. Hüther, K. Vobig, K. Hebeler, R. Machleidt, R. Roth, Phys. Lett. B 808, 135651 (2020) arXiv:1911.04955

  78. C. Drischler, S. Han, J. M. Lattimer, M. Prakash, S. Reddy, T. Zhao, Phys. Rev. C 103, 045808 (2021c) arXiv:2009.06441 [nucl-th]

  79. C. Drischler, M. Quinonez, P.G. Giuliani, A.E. Lovell, F.M. Nunes (2021d) arXiv:2108.08269

  80. X. Zhang, R.J. Furnstahl, note in preparation

  81. B. Abbott et al. (Collaboration LIGO Scientific, Virgo), Phys. Rev. Lett. 121, 161101 (2018) arXiv:1805.11581

  82. S. De, D. Finstad, J.M. Lattimer, D.A. Brown, E. Berger, C.M. Biwer, Phys. Rev. Lett. 121, 091102 (2018), note [Erratum: Phys. Rev. Lett. 121, 259902 (2018)] arXiv:1804.08583

  83. C.D. Capano, I. Tews, S.M. Brown, B. Margalit, S. De, S. Kumar, D.A. Brown, B. Krishnan, S. Reddy, Nat. Astron. 4, 625 (2020) arXiv:1908.10352

  84. M.C. Miller et al. (2021b) arXiv:2105.06979

  85. T.E. Riley et al. (2021) arXiv:2105.06980

  86. D. Adhikari et al. (Collaboration PREX) Phys. Rev. Lett. 126, 172502 (2021) arXiv:2102.10767

  87. B.T. Reed, F.J. Fattoyev, C.J. Horowitz, J. Piekarewicz, Phys. Rev. Lett. 126, 172503 (2021) arXiv:2101.03193

  88. R.J. Furnstahl, H.-W. Hammer, A. Schwenk, Few-Body Syst 62, 72 (2021). https://doi.org/10.1007/s00601-021-01658-5

Download references

Acknowledgements

We thank our colleagues and collaborators who have helped shape our understanding of nuclear EFT and many-body theory. We are also grateful to Alejandro Kievsky for the kind invitation to contribute to this special issue and Heiko Hergert for providing us with the data for Figs. 4 and 5. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under the FRIB Theory Alliance award DE-SC0013617, and the National Science Foundation awards PHY-2013047 and PHY-1713901.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Drischler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drischler, C., Bogner, S.K. A Brief Account of Steven Weinberg’s Legacy in ab initio  Many-Body Theory. Few-Body Syst 62, 109 (2021). https://doi.org/10.1007/s00601-021-01677-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-021-01677-2

Navigation